
A talk to the undergraduates in CS 337 on the last class day
Jayadev Misra

5/2/03

Let me talk a little bit about myself, a topic that I am slightly embarrassed
to talk about. I started working with computers at a relatively early age in the
late 60s. I was introduced to computers by a friend who showed me one evening
how to write some simple programs in Fortran, the prevalent language of the
day. It took him a little less than 2 hours to explain to me what computers (and
tapes drives, memory, printer) are, what programming is, how one prepares a
deck of punched cards (punching holes manually is not to be recommended)
etc.; you see why I believe so strongly in study groups of your peers.

I was fascinated by computers for two reasons: First, you get the answer
to an experiment immediately, and second, you make no approximations. It is
only later that I had to revise my opinion considerably. After some practice I
became proficient at programming, eventually designing a language, a compiler
and an operating system for my Bachelor’s thesis. I had learnt no theory, all
my algorithms were my own. It took considerable thinking and experimenting,
but there was a rush when it all worked. Programming was a great intellectual
challenge, with an impartial referee. You struggled with your programs and you
had a right to feel victorious when you at last wrestled one to the ground.

I had two great surprises immediately after I joined graduate school. I
learnt the notion of grammars, and saw how I could have shortened my compiler
considerably had I known about it earlier. And, I learnt about program proving,
using assertional methods, which could establish correctness without doing any
testing at all. I had been using something like invariants in my reasoning about
my programs, without any good theoretical basis or understanding. Here was
something truly marvelous. Those were two stunning examples of theory in
practice, which could have avoided a large amount of wrestling with programs.

What has any of this got to do with you? This is another era, machines are
faster by several orders of magnitude, we have a huge number of tools, including
powerful debuggers and program analyzers, and we program on personal com-
puters at our convenience. Gifted high school students hack out large systems
by working and debugging hard. Who needs theory, particularly when they are
not immediately applicable?

Well, you are all young and you can be forgiven for asking these questions.
But there are many in our profession, including managers in large companies,
who continue to believe that software is a contact sport. Design and analysis
prior to coding is for sissies. My wife was offered a job after she had finished
a Masters degree in CS, but she was offered the same salary as one with a
bachelors degree, the rational being higher education adds nothing more to
one’s programming skills. It is instructive to recall the words of John Maynard
Keynes, a prominent economist: Practical men, who believe themselves to be
quite exempt from any intellectual influences, are usually the slaves of some
defunct economist.

Let me try to draw an analogy with automobile tinkering. In the late 60s

1



and early 70s, before the manufacturers put in electronic fuel injection and
other such gadgets, tinkering with automobiles was a favorite pastime for many
young and old men. Yet, no significant advance in automobile design has come
by tinkering with it. Lean-burn engines, antilock braking, better suspensions,
have all come from people who went to engineering schools, and learnt physics,
thermodynamics and mechanical engineering. Tinkering might ignite a passion,
but that is not an end in itself.

So it is, I contend, with software systems. It used to be the case that brilliant
people designed software by intuitive leaps, and the rest of us could only marvel
and try to emulate those practices. We have come a long way. The very first
program by the great John von Neumann was a mergesort, a typical freshman-
level programming exercise today. We ask students to develop compilers which
would have been worthy of a team effort in a large company 30 years ago. And,
conversely, the web browsers of today could not have been implemented with
the software knowledge we had 20 years back, even if all the hardware were
available then.

Today, higher level languages, including their type systems, methodologies
for component integration, databases and query languages, specialized theories
that are applicable for specific domains, have made software design an activity
for trained professionals, not inspired amateurs. I can not imagine developing an
algorithm without worrying about its asymptotic running time or if the problem
itself is NP-complete. I can not imagine starting to write a program without a
precise understanding of its specification.

Your working life will really begin in another 15 years, or so. I can not
predict which skills will be in demand then. But I can’t imagine that you will
be heavily involved in coding and debugging. You will probably be designing
software, several orders larger than what you do in a project. A first-rate school
has to prepare you for such a future, not the one you will immediately confront
after your graduation.

What are the short-term skills you need: Familiarity with some popular
programming languages, APIs, ability to use operating systems, downloading
and installing packages, and deciphering their manuals and applying them in
a specific context. And, then there are software engineering skills: how to do
a code walk-through, collaborate, communicate with people of different skills
and manage projects. Many of these skills are transitory, and often specific to
one company. We will be abdicating our responsibilities if that is all we taught
you. Teaching students to be familiar with a specific package is common in
lower-ranked schools; their concerns are more short-term and the students they
educate are destined for organizations where the skills required are installing and
maintaining packages. We expect that you will be the developers of packages.
How will you design a language without knowing about grammars, networking
systems without knowing some graph theory or message transmissions from
spacecrafts without knowing error-correcting codes?

The longer term skills involve learning to understand the requirements, pro-
gram design and analysis including the questions of correctness and perfor-
mance, knowing where to look for extant solutions, program integration and

2



testing. Designs of appropriate experiments, to measure system performance
and for testing, are of immense importance. Then there is domain specific
knowledge. If you are going to do computer-based animation you must know
the theory and practice of computer graphics. And, you must know where to
look for answers.

The computers you will program eventually may not be recognizable as a
computer to many of us today. There are people who are implementing tiny
operating systems and databases in devices with, say, 4k of main memory. There
are people who are studying power consumption in smart cards, for possible
security measures. And, developing web access from a cell phone was not even
imagined 10 years back. True electrical engineers could not have believed in the
90s that they will have to know predicate calculus; yet, that is a routine activity
now if you are applying model-checking in chip design.

It is difficult to predict the future; so, let me predict the past: Long term
skills pay off. I hope we are doing our best to prepare you for the unexpected
and I hope you will be a credit to this institution.

3


