
Chapter 1

RANDOM SAMPLING: SORTING AND SELECTION

Danny Krizanc
Dept. of Math. and Comp. Sci.

Wesleyan University

dkrizanc@wesleyan.edu

Sanguthevar Rajasekaran
Dept. of Comp. and Info. Sci. and Engg.

University of Florida

raj@cise.ufl.edu

Abstract Random sampling techniques have played a vital role in the design of sorting
and selection algorithms for numerous models of computing. In this article we
provide a summary of sorting and selection algorithms that have been devised
using random sampling. Models of computations treated include the parallel
comparison tree, the PRAM, the mesh, the mesh with fixed, reconfigurable, and
optical buses, the hypercube family, and parallel disk systems.

1. INTRODUCTION

Comparison problems such as sorting and selection have been studied by
researchers extensively owing to their paramount importance. Given a sequence
of n keys the problem of sorting is to rearrange this sequence in nondecreasing
order. The selection problem takes as input a sequence of n keys and an integer
i (1 � i � n). The problem is to identify the ith smallest key of the sequence.

Optimal (comparison based) sequential RAM algorithms are known for
sorting and selection. Sorting algorithms such as mergesort, heapsort, etc. run
in time O(n log n) time in the worst case (see e.g., [3, 30]). The selection
algorithm of Blum et al. [15] runs in linear time.

Optimal or near-optimal algorithms for sorting and selection have been
developed for numerous other models of computing as well. The technique of
random sampling has been successfully employed in many of these algorithms.

1

2 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

In this article we provide a survey of some of these algorithms given for parallel
models of computing.
Notation. Throughout this article we let n denote the input size and p denote
the number of processors available.

1.1 AN INTRODUCTION TO MODELS OF
COMPUTING

In this section we give a brief introduction to the models of computing
considered in this article.

1.1.1 The Parallel Comparison Tree. The Parallel Comparison Tree
(PCT) model [84] is the natural generalization of the sequential comparison tree
model [3] to the parallel setting. The basic operation available to processors
is the comparison of two keys. With p processors, p comparisons may be
performed simultaneously in one step. Depending on which of the 2p possible
results is attained, the next set of p comparisons is chosen. The computation
ends when sufficient information is discovered about the relationships of the
keys to specify the solution to the given problem. The deterministic complexity
of a problem in this model is the number of steps required for the worst case
input or the minimum depth of a tree solving the problem, as a function of the
size of the input sequence and the number of processors used.

We note that in this model we do not consider any of the overheads, such as
processor communication, memory accesses, etc., associated with performing
the comparisons and making the appropriate deductions from the results of the
comparisons. However, in cases where the cost of comparisons dominates the
computation, upper bounds in this model can often be translated into upper
bounds in more restricted models and in all cases where algorithms base their
decisions solely upon comparisons, lower bounds in this model translate to
lower bounds in these other models.

The model is easily extended to allow random computations. In the random-
ized PCT model, at each step we introduce a probability distribution over the
choice of which p comparisons are to be performed. In this case, the complexity
is the expected number of steps required on the worst case input.

1.1.2 The Parallel Random Access Machine. The Parallel Random
Access Machine (PRAM) is the natural generalization of the RAM model to
the parallel setting. In it, p synchronous processors, each identical to a RAM,
communicate through the use of a shared memory. There are three main
variants of the PRAM depending on what restrictions are placed on concurrent
access to the same memory cell in the shared memory. The Exclusive Read
Exclusive Write (EREW) PRAM does not allow any simultaneous access to
the same memory cell. The Concurrent Read Exclusive Write (CREW) PRAM

Random Sampling: Sorting and Selection 3

allows concurrent reads to take place but does not allow concurrent writes. The
Concurrent Read Concurrent Write (CRCW) PRAM allows both concurrent
reads and concurrent writes. There are three standard varieties of CRCW
PRAM depending on the interpretation of a concurrent write operation. In the
common CRCW PRAM, it is required that concurrent writes to a cell are all
writing the same value. In the arbitrary CRCW PRAM model an arbitrary value
among those being written is chosen. In the priority CRCW PRAM the value
written by the lowest indexed processor is the result of the concurrent write. It
is easy to see that the CRCW PRAM is stronger than the CREW PRAM which
in turn is stronger than the EREW PRAM. It is easy to show that they are all
three logarithmically related.

1.1.3 The Mesh. A mesh is a
p
p � p

p square grid where there is a
processor at each grid point. Every processor is connected to its four or less
neighbors through bidirectional links. Each processor can communicate with
all of its neighbors in one unit of time.

1.1.4 Mesh with Buses. Two variants of the mesh assume the existence
of electrical communication buses: 1) the mesh connected computer with fixed
buses (denoted as Mf), and 2) the mesh with reconfigurable buses (denoted as
Mr).

In Mf each row and each column has an associated broadcast bus. A bus
can be used to broadcast a message in every time step. It is assumed that the
message broadcast along a bus can be read by all the processors connected to
this bus in the same time unit.
Mr also employs buses but these buses are reconfigurable. Reconfigurability

of the buses is achieved as follows. Each processor has (at most) four switches,
one for each of its neighbors. This switch can be dynamically set on or off. If
a switch of a processor is on, it means that the processor is connected to the
corresponding neighbor. Depending on how the switches of the processors are
set, we can get several disjoint buses. For instance we can form a row bus by
setting all the switches along the row on. Each bus functions similar to the
buses of Mf , i.e., a message can be broadcast in any bus at every time step and
this message can be read by all the processors connected to the bus in the same
time step.

In Mf and Mr we assume the existence of electrical buses. Optical technol-
ogy can be employed to realize these buses in which case we get meshes with
optical buses. Several such models have been investigated in the literature.

1.1.5 The Hypercube. A hypercube of dimension ` has p = 2` nodes
and `2`�1 edges. Each node in an `-dimensional hypercube can be labelled
with an `-bit binary number. Nodes x and y in a hypercube will be connected

4 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

by a bidirectional link if and only if x and y (considered as binary numbers)
differ in exactly one bit position. Thus there are exactly ` edges going out of
(and coming into) any vertex.

If a hypercube processor can communicate with only one neighbor at any
time step, this version of the hypercube will be called the sequential model.
If a processor can communicate with all its neighbors in a time step then this
variant of the hypercube is called the parallel model.

A multitude of other important networks are related to the hypercube.
Among the more important (constant degree) members of the hypercube family
are the Cube Connected Cycle (CCC), the Butterfly and the de Bruijn family
of networks. For definitions of these networks see [46].

1.1.6 The Star Graph. Let s1s2 : : : sn be a permutation of n symbols.
For 1 < j � n, we define SWAPj(s1s2 : : : sn) = sjs2 : : : sj�1sj+1 : : : sn:

An n-star graph is a graph Sn = (V;E) with jV j = n! nodes, where V =

fs1s2 : : : snjs1s2 : : : sn is a permutation of n different symbolsg, and
E = f(u; v)jv = SWAPj(u) for some j; 1 < j � ng.

1.1.7 Parallel Disk Systems. With the widening gap between processor
speeds and disk access speeds, the I/O bottleneck has become critical. Parallel
Disk Systems (PDS) have been introduced to alleviate this bottleneck [85]. In
this model there are D distinct and independent disk drives. The disks can
simultaneously transmit a block of data. A block consists of B records. If
M is the internal memory size, then one usually requires that M � 2DB.
While analyzing algorithms developed for this model, one typically computes
the number of I/O operations needed for the algorithm. Local computations
are neglected since the time for I/O is much more than the time for local
computations.

2. RANDOM SAMPLING

Random sampling has been employed in the development of numerous
sorting and selection algorithms. One of the early papers that dealt with
sampling was due to Frazer and McKellar [25]. They proposed the following
sorting algorithm which can be thought of as a generalization of the quicksort
algorithm [29]: 1) Sample o(n) keys from the input and use any (possibly
nonoptimal) algorithm to sort them; 2) Use these sample keys to partition the
input into subsequences; and 3) Sort each subsequence independently. Sorting
algorithms for several models of computing have been designed using this
technique.

Random sampling has also dominated the arena of selection algorithms. As
an example, Floyd and Rivest [24] proposed the following scheme for selection:

Random Sampling: Sorting and Selection 5

1) Randomly pick o(n) keys from the input and identify two keys 1̀ and `2

from this sample such that the element to be selected has a value in the range
[`1; `2] and not many input keys are in the range [1̀; `2]; 2) Delete all the input
keys that are outside the range [1̀; `2]; and 3) Perform an appropriate selection
from out of the remaining keys. The number of comparisons made by this
algorithm to identify the ith smallest key is n+minfi; n� ig+o(n) with high
probability. The proof of this fact and related sampling bounds are generally
encapsulated in a “sampling lemma.”

2.1 A SAMPLING LEMMA

Several sampling lemmas have been proven in the literature. One of the basic
lemmas deals with the following sampling process. Let S = fk1; k2; : : : ; ksg
be a random sample from a sequence X of n numbers. Let the sorted order of
S be k01; k

0
2; : : : ; k

0
s. If ri is the rank of k0

i
in X , many algorithms benefit from

a high probability confidence interval for ri. (The rank of any element k in X
is the number of elements � k in X .) A proof of the following Lemma can be
found in [74].

Lemma 2..1 For every�, Prob.
�
jri � i

n

s
j >

p
3� np

s

p
log n

�
< n

��.

Notation. We say a randomized algorithm has a resource bound of eO(f(n)) if
there exists a constant c such that the amount of resource used is no more than
c�f(n) on any input of size n with probability � (1� n

��) (for any � > 0).
In an analogous manner, we could also define the functions eo(:); e
(:), etc.

2.2 ORGANIZATION OF THIS PAPER

The rest of this article is organized as follows. Sections 3 and 4 are devoted
to sorting and selection problems, respectively. In Section 5 we provide some
concluding remarks.

3. SAMPLING BASED SORTING

3.1 A GENERAL THEME

The following is an idea introduced by Frazer and McKellar [25] that has
been implemented over a variety of models.

Algorithm I

Step 1. Pick a random sample of n� (for some constant � < 1)
input keys.

Step 2. Sort this sample (using any nonoptimal algorithm).

6 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

Step 3. Partition the input using the sorted sample as splitter keys.

Step 4. Sort each part separately in parallel.

It is easy to show using lemma 2..1 that the splitter keys very evenly distribute
the keys so that in the last step the work done by each processor is approximately
the same, with high probability.

3.2 THE PCT

One of the classical results in parallel sorting is Batcher’s algorithm [10].
This algorithm is based on the idea of bitonic sorting and was proposed for the
hypercube and hence can be run on stronger models such as any of the PRAMs
and the PCT as well. Batcher’s algorithm runs in O(log2 n) time when sorting
n keys using n processors. Followed by this, a very nearly optimal algorithm
was given by Preparata [62]. Preparata’s algorithm used n logn processors
and took O(logn) time. Finding a logarithmic time optimal parallel algorithm
for sorting remained an open problem for a long time in spite of numerous
attempts.

Finally in 1981, Reischuk was able to design a randomized logarithmic time
optimal algorithm for the CREW PRAM [78] which implies the result for
the randomized PCT. At around the same time Ajtai, Komlós, and Szemerédi
announced their sorting network of depth O(logn) [4]. This established the
upper bound for sorting on the PCT for the case p � n. This was extended by
Alon, Azar and Vishkin [7] to the case p > n. Taken together their results show
the complexity of sorting n keys on a p processor PCT is �(logn= log(1 +

p=n)): The matching lower bound for randomized or deterministic sorting was
first shown by Alon and Azar [6]. A significantly simpler proof of the same
result was provided by Boppana [16].

3.3 THE PRAM

As was stated above, Reischuk was the first to design an optimal logarithmic
time a randomized CREW PRAM algorithm for sorting [78]. His algorithm
may be derived from Algorithm I. The AKS sorting circuit [4] implies the
existence of a deterministic EREW PRAM algorithm running in logarithmic
time. However the size of the circuit was O(n logn) and also the underlying
constant in the time bound was enormous. Leighton subsequently was able to
reduce the circuit size to O(n) using the technique of columnsort [45]. Though
several attempts have been made to improve the constant in the time bound, the
algorithm of [4] remains a result of only theoretical interest.

In 1987 Cole presented an optimal logarithmic time EREW PRAM algorithm
for sorting, the constant in the time bound being reasonably small [18]. In the
same paper, a sub-logarithmic time algorithm for sorting on the CRCW PRAM

Random Sampling: Sorting and Selection 7

is also given. This algorithm uses n(logn)� processors, the run time being
O(log n

log log log n
). Here � is any constant > 0. The lower bound result of Beame

and Hastad states that any CRCW PRAM sorting algorithm will have to take

(log n

log log n
) time in the worst case as long as the processor bound is only a

polynomial in the input size n [11]. Rajasekaran and Reif [73] were able to
obtain a randomized algorithm for sorting on the CRCW PRAM that runs in
time eO(log n

log log n
), the processor bound being n(logn)�, for any fixed � > 0.

This algorithm is also processor-optimal, i.e., to achieve the same time bound
the processor bound can not be decreased any further.

3.4 THE MESH

The first asymptotically optimal sorting algorithm for the mesh was given by
Thompson and Kung [83]. Their algorithm can sort n numbers on a

p
n�pn

mesh in O(
p
n) time. Since the diameter of an n-node mesh is 2

p
n�2, [83]’s

algorithm is clearly optimal. Thompson and Kung’s algorithm is based on the
idea of odd-even merging. Since a mesh has a large diameter, it is imperative
to have not only asymptotically optimal algorithms but also they should have
small underlying constants in their time bounds. Often times, the challenge in
designing mesh algorithms lies in reducing the constants in time bounds.

Subsequent to Thompson and Kung’s algorithm, Schnorr and Shamir gave
a 3

p
n + o(

p
n) time algorithm [79]. They also proved a lower bound of

3
p
n�o(pn) for sorting. However, both the upper bound and the lower bound

were derived under the assumption of no queueing. Ma, Sen, and Scherson [49]
gave a near optimal algorithm for a related model. Kaklamanis et al. presented
a very interesting algorithm for sorting with a run time of 2:5

p
n+ eo(pn) [35].

This algorithm was randomized and used queues of size O(1). The underlying
idea here is the same as that of Algorithm I. Kaklamanis and Krizanc later
improved this time bound to 2

p
n+ eo(pn) [34].

The idea of using O(1) sized queues has been successfully employed to
design better deterministic sorting algorithms as well. Kunde has presented
a 2:5

p
n + o(

p
n) step algorithm [43]; Nigam and Sahni have given a (2 +

�)
p
n + o(

p
n) time algorithm (for any fixed � > 0) [56]; Also Kaufmann,

Sibeyn, and Torsten have offered a 2
p
n + o(

p
n) time algorithm [36]. The

third algorithm closely resembles the one given by [34] and Algorithm I.
The problem of k� k sorting is to sort a mesh where k elements are input at

each node. The bisection lower bound for this problem is k
p
n

2
. For example, if

we have to interchange data from one half of the mesh with data from the other
half, k

p
n

2
routing steps will be needed. A very nearly optimal randomized

algorithm for k�k sorting is given in [65]. Kunde [44] has matched this result
with a deterministic algorithm.

8 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

3.5 MESHES WITH BUSES

For a mesh with fixed buses, it is easy to design a logarithmic time algorithm
for sorting n numbers using a polynomial (in n) number of processors (see
e.g., [66]). However, if the mesh is of size

p
n�p

n, then the bisection lower
bound for sorting will be
(

p
n). The same lower bound holds for a mesh

with a reconfigurable bus system also. In general, we can obtain impressive
speedups on Mr and Mf if the number of processors used is much more than
the input size.

When the input size n is the same as that of the network size, sorting can
be done using a randomized algorithm on Mr in time that is only eo(pn) more
than the time needed for packet routing under the same settings as has been
proven in [72]. This randomized algorithm is also similar to Algorithm I. In
[41], Krizanc, Rajasekaran, and Shende show that on Mf also, sorting can be
done in time that is nearly the same as the time needed for packet routing. The
best known algorithm for packet routing on Mr takes time 17

18

p
n + eo(pn)

[17]. For Mf , the best known packet routing time is 0:79
p
n + eo(pn) [80].

Therefore, sorting can be done on Mr in time 17
18

p
n + eo(pn) and on Mf in

time 0:79
p
n+ eo(pn).

An interesting feature of Mr is that sorting can be done on it in time O(1)

using a quadratic number of processors. In contrast, sorting can not be done
in O(1) time even on the CRCW PRAM, given only a polynomial number
of processors [11]. A constant time algorithm using n3 processors appears in
[86]. The processor bound was improved to n

2 in independent works [33],
[48], [54], [57].

3.6 THE HYPERCUBE

Batcher’s algorithm runs in O(log2 n) time on an n-node hypercube [10].
This algorithm uses the technique of bitonic sorting. Odd-even merge sorting
can also be employed on the hypercube to obtain the same time bound. Nassimi
and Sahni [55] gave an elegant O(log n) time algorithm for sorting which uses
n
1+� processors (for any fixed � > 0). This algorithm, known as sparse

enumeration sort, has found numerous applications in the design of other
sorting algorithms on various interconnection networks. A variant of Algorithm
I was employed by Reif and Valiant to derive an optimal randomized algorithm
for sorting on the CCC [77]. The best known deterministic algorithm for sorting
on the hypercube (or any variant) is due to Cypher and Plaxton and it takes
O(log n log log n) time [21]. This algorithm makes use of the technique of
deterministic sampling and the underlying constant in the time bound is rather
large. An excellent description of this algorithm can be found in [46]. Hsu and
Wei [31] have recently presented an O(dn2 log d) time algorithm for sorting

Random Sampling: Sorting and Selection 9

on the dn = N node de Bruijn network. If d = 2, their algorithm runs in time
2 log2N steps.

3.7 THE STAR GRAPH

Menn and Somani [51] employed an algorithm similar to that of Schnorr
and Shamir [79] to show that sorting can be done on a star graph with n! nodes
in O(n3 log n) time. Rajasekaran and Wei [76] have offered a randomized
algorithm with a time bound of eO(n3). This algorithm is based on a randomized
selection algorithm that they derive. A summary of this algorithm follows:

There are n phases in the algorithm. A star graph with n! nodes is denoted
as Sn. In the first phase they perform a selection of n uniformly distributed
keys and as a consequence route each key to the correct sub-star graph Sn�1 it
belongs to. In the second phase, sorting is local to each Sn�1. At the end of
second phase each key will be in its correct Sn�2. In general, at the end of the
`th phase, each key will be in its right Sn�` (for 1 � ` � n� 1). Selection in
each phase takes eO(n2) time. Making use of these selected keys, every input
key figures out the Sn�` it belongs to in O(n2) time. The keys are routed to the
correct Sn�`’s in eO(n) time. Thus each phase takes eO(n2) time, accounting
for a total of eO(n3) time.

The above approach differs from Algorithm I. However, random sampling
is used in the selection algorithm of [76].

3.8 PARALLEL DISK SYSTEMS

The problem of disk sorting was first studied by Aggarwal and Vitter in their
fundamental paper [2]. In the model they considered, each I/O operation results
in the transfer ofD blocks each block havingB records. A more realistic model
was envisioned in [85]. Several asymptotically optimal algorithms have been
given for sorting on this model. Nodine and Vitter’s optimal algorithm [58]
involves solving certain matching problems. Aggarwal and Plaxton’s optimal
algorithm [1] is based on the Sharesort algorithm of Cypher and Plaxton. Vitter
and Shriver gave an optimal randomized algorithm for disk sorting [85]. All
these results are highly nontrivial and theoretically interesting. However, the
underlying constants in their time bounds are high.

In practice the simple disk-striped mergesort (DSM) is used [9], even though
it is not asymptotically optimal. DSM has the advantages of simplicity and a
small constant. Data accesses made by DSM is such that at any I/O operation,
the same portions of the D disks are accessed. This has the effect of having
a single disk which can transfer DB records in a single I/O operation. An
M

DB
-way mergesort is employed by this algorithm. To start with, initial runs

are formed in one pass through the data. At the end the disk has N=M runs
each of length M . Next, M

DB
runs are merged at a time. Blocks of any run

10 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

are uniformly striped across the disks so that in future they can be accessed
in parallel utilizing the full bandwidth. Each phase of merging involves one
pass through the data. There are log(N=M)

log(M=DB)
phases and hence the total number

of passes made by DSM is log(N=M)
log(M=DB)

. In other words, the total number of

I/O read operations performed by the algorithm is N

DB

�
1 +

log(N=M)
log(M=DB)

�
. The

constant here is just 1.
A known lower bound on the number of passes for parallel disk sorting is

�
log(N=B)
log(M=B)

�
. Here N is the input size, M is the core memory size, and B

is the block size. If one assumes that N is a polynomial in M and that B is
small (which are readily satisfied in practice), the lower bound simply yields

(1) passes. A number of optimal algorithms that make only O(1) passes have
been proposed in the literature. So, the challenge in the design of parallel disk
sorting algorithms is in reducing this constant. If M = 2DB, the number of
passes made by DSM is 1 + log(N=M), which indeed can be very high.

Recently, much work has been done that deals with the practical aspects of
parallel disk systems. Pai, Schaffer, and Varman [59] analyzed the average
case performance of a simple merging algorithm, employing an approximate
model of average case inputs. Barve, Grove, and Vitter [9] have presented
a simple randomized algorithm (SRM) and analyzed its performance. The
analysis involves the solution of certain occupancy problems. The expected
number RSRM of I/O read operations made by their algorithm is such that

RSRM �
N

DB

�
1 +

ln(N=M)

ln kD

lnD

k ln lnD

�
1 +

ln ln lnD

ln lnD
+

1 + ln k

ln lnD
+O(1)

��
(1.1)

The algorithm merges R = kD runs at a time, for some integer k. When
R =
(D logD), the expected performance of their algorithm is optimal.
However, in this case, the internal memory needed is
(BD logD). They
have also compared SRM with DSM through simulations and shown that SRM
performs better than DSM.

In a recent work, Rajasekaran [67] has presented a simple algorithm (called
(`;m)-merge sort (LMM)) that is asymptotically optimal (under the assump-
tions that N is a polynomial in M and B is small) and the underlying constant
is small. LMM is as simple as the DSM. LMM makes less number of passes
through the data than DSM when D is large. Recent implementation results
[60] [71] indicate that LMM is competitive in practice.

4. SELECTION ALGORITHMS

The sequential selection algorithm of Blum et. al. works as follows: 1)
Partition the input of n numbers into groups with 5 elements in each group;

Random Sampling: Sorting and Selection 11

2) Find the median of each group; 3) Recursively compute the median M of
the group medians; 4) Partition the input into two using M as the splitter key.
Part I has all the input keys � M and Part II has the remaining keys. Identify
the part that has the key to be selected and recursively perform an appropriate
selection in this part.

One can easily show that the above algorithm runs in time O(n). This is a
good example of how deterministic sampling can be employed. A variant of the
above has been used in all the deterministic parallel algorithms for selection.

Likewise, random sampling has been effectively applied to derive optimal
or near optimal selection algorithms in various parallel models. A summary of
such an algorithm is given below. To begin with all the input keys are alive.
We are interested in selecting the ith smallest key.

Algorithm II

Step 1. Sample a set S of o(n) keys at random from the collection
X of alive keys.

Step 2. Sort the set S.

Step 3. Identify two keys l1 and l2 inS whose ranks inS are i s
n
�Æ

and i s
n
+ Æ respectively, Æ being a ‘small’ integer.

(* Using lemma 2..1 or a variant it is easy to show the rank of l1 in
X is < i, and the rank of l2 in X is > i, with high probability. *)

Step 4. Eliminate all the keys in X which are either < l1 or > l2.

Step 5. Repeat Steps 1 through 4 until the number of alive keys is
‘small’.

Step 6. Finally, concentrate and sort the alive keys.

Step 7. Perform an appropriate selection on the alive keys.

Next we enumerate known parallel selection algorithms on various models
and show how the above theme has been used repeatedly.

4.1 THE PCT

Valiant [84] showed a deterministic lower bound for selection on the PCT.
A deterministic upper bound was shown by Azar and Pippenger [8] (building
on the work of Ajtai et al. [5]). Their results together show that deterministic
selection from a sequence of n keys using p processors requires �(n=p +

log(log n= log(2 + p=n))) steps.
Meggido [50] and independently Reischuk [78] showed that the above lower

bound could be “beaten” using randomization by providing an optimal ran-
domized PCT algorithm for selection that runs in �(n=p + 1) steps. Both of
their algorithms are implementations of Algorithm II on the randomized PCT.

12 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

The results above show that there is a significant gap between the randomized
and deterministic parallel complexity of selection in the PCT model. A partial
explanation of this phenomenon is given in [37] where a tight tradeoff between
the amount of randomness used by a randomized PCT for selection and its
performance, measured by the time it requires to complete its computation
with a given failure probability, is shown.

4.2 THE PRAM

A straight forward implementation of Algorithm II on any of the PRAMs
will yield an optimal randomized eO(log n) time parallel algorithm for selection.
On the CRCW PRAM, a similar algorithm can be used to solve the problem
of finding the maximum of n given numbers in eO(1) time using n processors
[75]. Cole used the idea of deterministic sampling to design anO(log n log� n)

time n

log n log� n
processor EREW PRAM algorithm [19]. The time bound of

this algorithm has been improved to O(log n) using deterministic sampling as
well as algorithms for approximate prefix computation [26].

4.3 THE MESH

The problem of selection on the mesh where the number of processors is
equal to the input size has been studied by many researchers. The best known
algorithm is due to Condon and Narayanan [20]. This randomized algorithm
has a run time of 1:15

p
n + eo(pn) and is similar to Algorithm II. The best

known deterministic algorithm has a run time of 1:44
p
n+o(

p
n) [40]. Krizanc

and Narayanan provide optimal (to within an additive term)
p
n+ o(

p
n) step

algorithms for certain special cases of selection, e.g., the maximum [38]. For
the case n > p Krizanc and Narayanan [39], present a deterministic algorithm
with a run time of O(minfp log n

p
;maxf n

p2=3
;
p
pgg). Rajasekaran, Chen, and

Yooseph [70] have presented both deterministic and randomized algorithms
for selection when n > p. Their deterministic algorithm has a run time of
O(n

p
log log p+

p
p logn) and the randomized algorithm resembles Algorithm

II and runs in time eO((n
p
+
p
p) log log p). A new deterministic selection scheme

has been proposed in [70]. The idea is to employ the sequential algorithm of
Blum et. al. [15] with some crucial modifications.

A summary of the selection scheme of [70] is given below since it can be
applied to any interconnection network to obtain good performance. To begin
with, each one of the p processors has n

p
keys.

Random Sampling: Sorting and Selection 13

Algorithm III

N := n

Step 0. if log(n=p) is � log log p then
sort the elements at each node

else
partition the keys at each node into log p

equal parts such that keys in one part will
be � keys in parts to the right.

repeat
Step 1. In parallel find the median of keys at each
node. Let Mq be the median and Nq be the number
of remaining keys at node q, 1 � q � p.
Step 2. Find the weighted median of M1;M2; : : : ;Mp

where key Mq has a weight of Nq, 1 � q � p. Let
M be the weighted median.
Step 3. Count the rank rM of M from
out of all the remaining keys.
Step 4. if i � rM then

eliminate all the remaining keys that are > M

else
eliminate all the remaining keys that are �M .

Step 5. Compute E, the number of keys eliminated.
if i > rM theni := i�E; N := N �E.

until N � c, c being a constant.
Output the ith smallest key from out of the remaining keys.

When the above algorithm is implemented on the mesh the resulting time
bound is O(n

p
log log p+

p
p logn).

4.4 MESHES WITH BUSES

Here we consider the problem of selection when n = p. On a mesh with
reconfigurable buses, a lower bound of
(log log n) applies for comparison
based deterministic selection, since selection even on the parallel comparison
tree model has the same lower bound. ElGindy and Wegrowicz [23] applied
an algorithm similar to that of [53] and showed that selection can be done
on a p-node Mr in O(log2 p) time. Followed by this, Doctor and Krizanc
[22] presented a very simple randomized algorithm (similar to Algorithm II)
that achieves the same time bound with high probability. This time bound
was improved to O(log p) by Hao, McKenzie, and Stout [27]. Using an
algorithm similar to that of Algorithm II and some other crucial properties of

14 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

Mr, Rajasekaran [64, 69] gave anO(log log p log� p) expected time randomized
algorithm.

On the other hand,
(p1=6) is a lower bound for selection on Mf [42]. A
very nearly optimal algorithm has been given in [42]. An optimal randomized
algorithm can be found in [64, 69].

4.5 THE HYPERCUBE

A plethora of algorithms have been proposed for selection on the hypercube
(both for the case p = n and the case p < n). For the case p = n, an optimaleO(log n) time randomized algorithm has been given in [77] and [63]. The
algorithm in [77] is for sorting and hence can be applied for selection as well.
On the other hand, the algorithm given in [63] is very simple. [63]’s algorithm
has been implemented on CM-2 and empirical results are promising [70]. The
best known deterministic algorithm is due to Berthomé et. al. [13] and has a
run time of O(logn log� n).

For the case of p < n on the sequential model, [61]’s deterministic algorithm
runs in time O(n

p
log log p+ log2 p log(n

p
)) whereas the randomized algorithm

of [63] has a run time of eO(n
p
log log p+log p log log p). A lower bound for this

problem is n

p
log log p+log p. On the weak parallel model, [61]’s deterministic

algorithm has a run time ofO(n
p
+log p log log p) and the randomized algorithm

of [63] has a run time of eO(n
p
+ log p). A lower bound for selection on this

model is n

p
+ log p. All of these algorithms use the technique of sampling

(either deterministic or randomized). A slightly better deterministic algorithm
can be obtained using Algorithm III as has been shown in [70]. The run time
is O(n

p
log log p+ log2 p log log p). If a better sorting algorithm is discovered

for the hypercube, this time bound will improve further.

4.6 THE STAR GRAPH

The only known selection algorithm on the star graph is due to Rajasekaran
and Wei [76]. This randomized algorithm runs in time eO(n2) on an n!-node
star graph. Within the same asymptotic time bound, this algorithm can perform
n different selections. A sorting algorithm with a run time of eO(n3) follows
from this algorithm and is discussed in section 3.7.

4.7 PARALLEL DISK SYSTEMS

In [68] two algorithms have been presented for selection on the PDS model.
The first algorithm is randomized and the second algorithm is deterministic.
The number of parallel I/O read operations needed for either isO

�
N

DB

�
, where

N is the number of input keys,D is the number of disks, andB is the block size.

Random Sampling: Sorting and Selection 15

Thus the algorithms are asymptotically optimal. Due to the small underlying
constants, the algorithms have the potential of being practical as well. The
randomized algorithm is based the general theme given above.

5. CONCLUSIONS

In this article we have surveyed known parallel algorithms for sorting and
selection on various models of computing. We have also identified some very
commonly used techniques for the design of such algorithms.

References

[1] A. Aggarwal and C. G. Plaxton, Optimal Parallel Sorting in Multi-Level
Storage, Proc. Fifth Annual ACM Symposium on Discrete Algorithms,
1994, pp. 659-668.

[2] A. Aggarwal and J. S. Vitter, The Input/Output Complexity of Sorting
and Related Problems, Communications of the ACM31(9), 1988, pp.
1116-1127.

[3] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley Publishing Company, 1974.

[4] M. Ajtai, J. Komlós and E. Szemerédi, An O(n logn) Sorting Network,
Proc. 15th ACM Symposium on Theory of Computing, 1983, pp. 1-9.

[5] M. Ajtai, J. Komlós, W. Steiger, and E. Szemerédi, Optimal Parallel
Selection Has Complexity O(log log n), Journal of Computer and System
Science, 38, 1989, pp. 125-133.

[6] N. Alon and Y. Azar, The Average Complexity of Deterministic and
Randomized Parallel Comparison Sorting Algorithms, SIAM Journal of
Computing, 17, 1988, pp. 1178-1192.

[7] N. Alon, Y. Azar and U. Vishkin, Tight Complexity Bounds for Parallel
Comparison Sorting, Proc. of 29th IEEE Symposium on Foundations o
Computer Science, 1986, pp. 502-510.

[8] Y. Azar and N. Pippenger, Parallel Selection, Discrete Applied Mathe-
matics, 27, 1990, pp. 49-58.

[9] R. Barve, E. F. Grove, and J. S. Vitter, Simple Randomized Mergesort on
Parallel Disks, Parallel Computing23(4-5), 1997, pp. 601-631.

[10] K.E. Batcher, Sorting Networks and their Applications, Proc. 1968 Spring
Joint Computer Conference, vol. 32, AFIPS Press, 1968, pp. 307-314.

[11] P. Beame and J. Hastad, Optimal Bounds for Decision Problems on the
CRCW PRAM, Proc. 19th ACM Symposium on Theory Of Computing,
1987, pp. 83-93.

16 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

[12] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, The Power of
Reconfiguration, Journal of Parallel and Distributed Computing, 1991,
pp. 139-153.

[13] P. Berthomé, A. Ferreira, B.M. Maggs, S. Perennes, and C.G. Plaxton,
Sorting-Based Selection Algorithms for Hypercubic Networks, Proc. In-
ternational Parallel Processing Symposium, 1993, pp. 89-95.

[14] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J. Smith, M.
Zagha, A Comparison of Sorting Algorithms for the Connection Machine
CM-2, Proc. 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures, 1991, pp. 3-16.

[15] M. Blum, R. Floyd, V.R. Pratt, R. Rivest, and R. Tarjan, Time Bounds
for Selection, Journal of Computer and System Science, 7(4), 1972, pp.
448-461.

[16] R. Boppana, The Average-Case Parallel Complexity of Sorting, Informa-
tion Processing Letter, 33, 1989, pp. 145-146.

[17] J.C. Cogolludo and S. Rajasekaran, Permutation Routing on Reconfig-
urable Meshes, Proc. Fourth International Symposium on Algorithms and
Computation, Springer-Verlag Lecture Notes in Computer Science 762,
1993, pp. 157-166.

[18] R. Cole, Parallel Merge Sort, SIAM Journal on Computing, vol. 17, no. 4,
1988, pp. 770-785.

[19] R. Cole, An Optimally Efficient Selection Algorithm, Information Pro-
cessing Letters, 26, 1988, pp. 295-299.

[20] A. Condon and L. Narayanan, Upper and Lower Bounds for Selection on
the Mesh, Algorithmica, 30, 1998, pp. 1-30.

[21] R.E. Cypher and C.G. Plaxton, Deterministic Sorting in Nearly Log-
arithmic Time on the Hypercube and Related Computers, Proc. ACM
Symposium on Theory of Computing, 1990, pp. 193-203.

[22] D.P. Doctor and D. Krizanc, Three Algorithms for Selection on the Recon-
figurable Mesh, Technical Report TR-219, School of Computer Science,
Carleton University, February 1993.

[23] H. ElGindy and P. Wegrowicz, Selection on the Reconfigurable Mesh,
Proc. International Conference on Parallel Processing, 1991, Vol. III, pp.
26-33.

[24] R.W. Floyd and R.L. Rivest, Expected Time Bounds for Selection, Com-
munications of the ACM, 18(3), 1975, pp. 165-172.

[25] W.D. Frazer and A.C. McKellar, Samplesort: A Sampling Approach to
Minimal Storage Tree Sorting, Journal of the ACM, 17(3), 1970, pp.
496-507.

Random Sampling: Sorting and Selection 17

[26] T. Hagerup and R. Raman, An Optimal Parallel Algorithm for Selection,
Proc. 5th Annual ACM Symposium on Parallel Algorithms and Architec-
tures, 1993, pp. 346-355.

[27] E. Hao, P.D. McKenzie and Q.F. Stout, Selection on the Reconfigurable
Mesh, Proc. Frontiers of Massively Parallel Computation, 1992, pp. 38-
45.

[28] W.L. Hightower, J.F. Prins, J.H. Reif, Implementation of Randomized
Sorting on Large Parallel Machines, Proc. 4th Annual ACM Symposium
on Parallel Algorithms and Architectures, 1992, pp. 158-167.

[29] C.A.R. Hoare, Quicksort, The Computer Journal, 5, 1962, pp. 10-15.

[30] E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms, W.H.
Freeman Press, 1998.

[31] D.F. Hsu, D.S.L. Wei, Permutation Routing and Sorting on Directed de
Bruijn Networks, Technical Report, University of Aizu, Japan, 1994.

[32] J. Jang, H. Park, and V.K. Prasanna, A Fast Algorithm for Computing His-
tograms on a Reconfigurable Mesh, Proc. Frontiers of Massively Parallel
Computing, 1992, pp. 244-251.

[33] J. Jang and V.K. Prasanna, An Optimal Sorting Algorithm on Reconfig-
urable Mesh, Proc. International Parallel Processing Symposium, 1992,
pp. 130-137.

[34] C. Kaklamanis and D. Krizanc, Optimal Sorting on Mesh-Connected Pro-
cessor Arrays, Proc. 4th Annual ACM Symposium on Parallel Algorithms
and Architectures, 1992, pp. 50-59.

[35] C. Kaklamanis, D. Krizanc, L. Narayanan, and Th. Tsantilas, Randomized
Sorting and Selection on Mesh Connected Processor Arrays, Proc. 3rd
Annual ACM Symposium on Parallel Algorithms and Architectures, 1991,
pp. 17-28.

[36] M. Kaufmann, S. Torsten, and J. Sibeyn, Derandomizing Algorithms for
Routing and Sorting on Meshes, Proc. 5th Annual ACM-SIAM Symposium
on Discrete Algorithms, 1994, pp. 669-679.

[37] D. Krizanc, Time-Randomness Tradeoffs in Parallel Computation, Jour-
nal of Algorithms, 20, 1996, pp. 1-19.

[38] D. Krizanc, and L. Narayanan, Optimal Algorithms for Selection on a
Mesh-Connected Processor Array, Proc. IEEE Symposium on Parallel
and Distributed Processing, 1992, pp. 70-76.

[39] D. Krizanc and L. Narayanan, Multi-packet Selection on a Mesh-
Connected Processor Array, Proc. International Parallel Processing Sym-
posium, 1992, pp. 602-605.

18 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

[40] D. Krizanc, L. Narayanan and R. Raman, Fast Deterministic Selection on
a Mesh-Connected Processor Array, Algorithmica, 15, 1996, pp. 319-332.

[41] D. Krizanc, S. Rajasekaran, and S. Shende, A Comparison of Meshes
with Static Buses and Unidirectional Wrap-Arounds, Parallel Processing
Letters, 3, 1993, pp. 119-114.

[42] V.K.P. Kumar and C.S. Raghavendra, Array Processor with Multiple
Broadcasting, Journal of Parallel and Distributed Computing, 4, 1987,
pp. 173-190.

[43] M. Kunde, Concentrated Regular Data Streams on Grids: Sorting and
Routing Near to the Bisection Bound, Proc. IEEE Symposium on Foun-
dations of Computer Science, 1991, pp. 141-150.

[44] M. Kunde, Block Gossiping on Grids and Tori: Sorting and Routing Match
the Bisection Bound Deterministically, Proc. European Symposium on
Algorithms, 1993, pp. 272-283.

[45] T. Leighton, Tight Bounds on the Complexity of Parallel Sorting, IEEE
Transactions on Computers, C34(4), 1985, pp. 344-354.

[46] T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays–Trees–Hypercube, Morgan-Kaufmann Publishers, 1992.

[47] H. Li and Q. Stout, Reconfigurable Massively Parallel Computers,
Prentice-Hall Publishers, 1991.

[48] R. Lin, S. Olariu, J. Schwing, and J. Zhang, A VLSI-optimal Constant
Time Sorting on Reconfigurable Mesh, Proc. European Workshop on
Parallel Computing, 1992, pp. 16-27.

[49] Y. Ma, S. Sen, and D. Scherson, The Distance Bound for Sorting on
Mesh Connected Processor Arrays is Tight, Proc. IEEE Symposium on
Foundations of Computer Science, 1986, pp. 255-263.

[50] N. Meggido, Parallel Algorithms for Finding the Maximum and the Me-
dian Almost Surely in Constant Time, Technical Report, School of Com-
puter Science, Carnegie-Mellon University, Pittsburg, PA, Oct. 1982.

[51] A. Menn and A.K. Somani, An Efficient Sorting Algorithm for the Star
Graph Interconnection Network, Proc. International Conference on Par-
allel Processing, 1990, vol. 3, pp. 1-8.

[52] O. Menzilcioglu, H.T. Kung, and S.W. Song, Comprehensive Evaluation
of a Two-Dimensional Configurable Array, Proc. 19th Symposium on
Fault Tolerant Computing, 1989, pp. 93-100.

[53] J.I. Munro and M.S. Paterson, Selection and Sorting with Limited Storage,
Theoretical Computer Science, 12, 1980, pp. 315-323.

[54] K. Nakano, D. Peleg, and A. Schuster, Constant-time Sorting on a Recon-
figurable Mesh, Manuscript, 1992.

Random Sampling: Sorting and Selection 19

[55] D. Nassimi and S. Sahni, Parallel Permutation and Sorting Algorithms
and a New Generalized Connection Network, Journal of the ACM, 29(3),
1982, pp. 642-667.

[56] M. Nigam and S. Sahni, Sorting n
2 Numbers on n � n Meshes, Proc.

International Parallel Processing Symposium, 1993, pp. 73-78.

[57] M. Nigam and S. Sahni, Sorting n Numbers on n � n Reconfigurable
Meshes with Buses, Proc. International Parallel Processing Symposium,
1993, pp. 174-181.

[58] M. H. Nodine and J. S. Vitter, Large Scale Sorting in Parallel Memo-
ries, Proc. Third Annual ACM Symposium on Parallel Algorithms and
Architectures, 1990, pp. 29-39.

[59] V. S. Pai, A. A. Schaffer, and P. J. Varman, Markov Analysis of Multiple-
Disk Prefetching Strategies for External Merging, Theoretical Computer
Science, 128(2), 1994, pp. 211-239.

[60] M. D. Pearson, Fast Out-of-Core Sorting on Parallel Disk Systems, Tech-
nical Report
PCS-TR99-351, Dartmouth College, Computer Science, Hanover, NH,
June 1999, ftp://ftp.cs.dartmouth.edu/TR/TR99-351.ps.Z.

[61] C.G. Plaxton, Efficient Computation on Sparse Interconnection Networks,
Ph. D. Thesis, Department of Computer Science, Stanford University,
1989.

[62] F. Preparata, New Parallel Sorting Schemes, IEEE Transactions on Com-
puters, C27(7), 1978, pp. 669–673.

[63] S. Rajasekaran, Randomized Parallel Selection, Proc. Symposium on
Foundations of Software Technology and Theoretical Computer Science,
1990, pp. 215-224.

[64] S. Rajasekaran, Mesh Connected Computers with Fixed and Reconfig-
urable Buses: Packet Routing, Sorting, and Selection, Proc. First Annual
European Symposium on Algorithms, Springer-Verlag Lecture Notes in
Computer Science 726, 1993, pp. 309-320.

[65] S. Rajasekaran, k � k Routing, k � k Sorting, and Cut Through Routing
on the Mesh, Journal of Algorithms19, 1995, pp. 361-382.

[66] S. Rajasekaran, Mesh Connected Computers with Fixed and Reconfig-
urable Buses: Packet Routing and Sorting, IEEE Transactions on Com-
puters, 45(5), 1996, pp. 529-539.

[67] S. Rajasekaran, A Framework For Simple Sorting Algorithms On Parallel
Disk Systems, Proc. 10th Annual ACM Symposium on Parallel Algorithms
and Architectures, 1998, pp. 88-97.

20 HANDBOOK ON RANDOMIZED COMPUTING, VOLUME I

[68] S. Rajasekaran, Selection Algorithms for the Parallel Disk Systems, Proc.
International Conference on High Performance Computing, 1998, pp.
103-110.

[69] S. Rajasekaran, Selection on Mesh Connected Computers with Fixed and
Reconfigurable Buses, Journal of Algorithms, 29, 1998, pp. 68-81.

[70] S. Rajasekaran, W. Chen, and S. Yooseph, Unifying Themes for Paral-
lel Selection, Proc. Fourth International Symposium on Algorithms and
Computation, Springer-Verlag Lecture Notes in Computer Science 834,
1994, pp. 92-100.

[71] S. Rajasekaran and X. Jin, A Practical Realization of Parallel Disks, to
appear in Proc. International Workshop on High Performance Scientific
and Engineering Computing with Applications, 2000.

[72] S. Rajasekaran and T. McKendall, Permutation Routing and Sorting on
the Reconfigurable Mesh, Technical Report MS-CIS-92-36, Department
of Computer and Information Science, University of Pennsylvania, May
1992.

[73] S. Rajasekaran and J.H. Reif, Optimal and Sub-Logarithmic Time Ran-
domized Parallel Sorting Algorithms, SIAM Journal on Computing, 18(3),
1989, pp. 594-607.

[74] S. Rajasekaran and J.H. Reif, Derivation of Randomized Sorting and
Selection Algorithms, in Parallel Algorithm Derivation and Program
Transformation, Edited by R. Paige, J.H. Reif, and R. Wachter, Kluwer
Academic Publishers, 1993, pp. 187-205.

[75] S. Rajasekaran, and S. Sen, Random Sampling Techniques and Parallel
Algorithms Design, in Synthesis of Parallel Algorithms, Editor: J.H. Reif,
Morgan-Kaufman Publishers, 1993, pp. 411-451.

[76] S. Rajasekaran and D.S.L. Wei, Selection, Routing, and Sorting on the
Star Graph, Proc. International Parallel Processing Symposium, 1993,
pp. 661-665.

[77] J.H. Reif and L.G. Valiant, A Logarithmic Time Sort for Linear Size
Networks, Journal of the ACM, 34(1), 1987, pp. 60-76.

[78] R. Reischuk, Probabilistic Parallel Algorithms for Sorting and Selection,
SIAM Journal of Computing, 14(2), 1985, pp. 396-409.

[79] C. Schnorr and A. Shamir, An Optimal Sorting Algorithm for Mesh-
Connected Computers, Proc. ACM Symposium on Theory of Computing,
1986, pp. 255-263.

[80] J.F. Sibeyn, M. Kaufmann, and R. Raman, Randomized Routing on
Meshes with Buses, Proc. European Symposium on Algorithms, 1993,
pp. 333-344.

Random Sampling: Sorting and Selection 21

[81] T.M. Stricker, Supporting the Hypercube Programming Model on Mesh
Architectures (A Fast Sorter for iWarp Tori), Proc. 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, 1992, pp. 148-157.

[82] X. Thibault, D. Comte, and P. Siron, A Reconfigurable Optical Intercon-
nection Network for Highly Parallel Architecture, Proc. Symposium on
the Frontiers of Massively Parallel Computation, 1988, pp. 437-442.

[83] C.D. Thompson and H.T. Kung, Sorting on a Mesh Connected Parallel
Computer, Communications of the ACM, 20(4), 1977, pp. 263-271.

[84] L. G. Valiant, Parallelism in Comparison Problems, SIAM Journal of
Computing, 4, 1975, pp. 348-355.

[85] J. S. Vitter and E. A. M. Shriver, Algorithms for Parallel Memory I:
Two-Level Memories, Algorithmica12(2-3), 1994, pp. 110-147.

[86] B.F. Wang, G.H. Chen, and F.C. Lin, Constant Time Sorting on a Processor
Array with a Reconfigurable Bus System, Information Processing Letters,
34(4), 1990, pp. 187-192.

