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We survey parallel programming models and languages using six criteria to assess
their suitability for realistic portable parallel programming. We argue that an ideal
model should be easy to program, should have a software development
methodology, should be architecture-independent, should be easy to understand,
should guarantee performance, and should provide accurate information about the
cost of programs. These criteria reflect our belief that developments in parallelism
must be driven by a parallel software industry based on portability and efficiency.
We consider programming models in six categories, depending on the level of
abstraction they provide. Those that are very abstract conceal even the presence of
parallelism at the software level. Such models make software easy to build and
port, but efficient and predictable performance is usually hard to achieve. At the
other end of the spectrum, low-level models make all of the messy issues of parallel
programming explicit (how many threads, how to place them, how to express
communication, and how to schedule communication), so that software is hard to
build and not very portable, but is usually efficient. Most recent models are near
the center of this spectrum, exploring the best tradeoffs between expressiveness
and performance. A few models have achieved both abstractness and efficiency.
Both kinds of models raise the possibility of parallelism as part of the mainstream
of computing.
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INTRODUCTION

Parallel computing is about 20 years
old, with roots that can be traced back
to the CDC6600 and IBM360/91. In the
years since then, parallel computing has

permitted complex problems to be
solved and high-performance applica-
tions to be implemented both in tradi-
tional areas, such as science and engi-
neering, and in new application areas,
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such as artificial intelligence and fi-
nance. Despite some successes and a
promising beginning, parallel comput-
ing has not become a major methodol-
ogy in computer science, and parallel
computers represent only a small per-
centage of the computers sold over the
years. Parallel computing creates a rad-
ical shift in perspective, so it is perhaps
not surprising that it has yet to become
a central part of practical applications
of computing. Given that opinion over
the past 20 years has oscillated between
wild optimism (“whatever the question,
parallelism is the answer”) and extreme
pessimism (“parallelism is a declining
niche market”), it is perhaps a good
time to examine the state of parallel
computing. We have chosen to do this
by an examination of parallel program-
ming models. Doing so addresses both
software and development issues, and
hardware and performance issues.

We begin by discussing reasons why
parallel computing is a good idea, and
suggest why it has failed to become as
important and central as it might have
been. In Section 2, we review some basic
aspects of parallel computers and soft-
ware. In Section 3, we discuss the con-
cept of a programming model and list
some properties that we believe models
of parallel programming ought to have
if they are to be useful for software
development and also for effective im-
plementation. In Section 4, we assess a
wide spectrum of existing parallel pro-
gramming models, classifying them by
how well they meet the requirements
we have suggested.

Here are some reasons why parallel-
ism has been a topic of interest.

—The real world is inherently parallel,
so it is natural and straightforward to
express computations about the real
world in a parallel way, or at least in
a way that does not preclude parallel-
ism. Writing a sequential program of-
ten involves imposing an order on ac-
tions that are independent and could
be executed concurrently. The partic-
ular order in which they are placed is

arbitrary and becomes a barrier to
understanding the program, since the
places where the order is significant
are obscured by those where it is not.
Arbitrary sequencing also makes com-
piling more difficult, since it is much
harder for the compiler to infer which
code movements are safe. The nature
of the real world also often suggests
the right level of abstraction at which
to design a computation.

—Parallelism makes available more
computational performance than is
available in any single processor, al-
though getting this performance from
parallel computers is not straight-
forward. There will always be appli-
cations that are computationally
bounded in science (the grand chal-
lenge problems), and in engineering
(weather forecasting). There are also
new application areas where large
amounts of computation can be put to
profitable use, such as data mining
(extracting consumer spending pat-
terns from credit card data) and opti-
mization (just-in-time retail delivery).

—There are limits to sequential com-
puting performance that arise from
fundamental physical limits such as
the speed of light. It is always hard to
tell how close to such limits we are.
At present, the cost of developing
faster silicon and gallium arsenide
processors is growing much faster
than their performance and, for the
first time, performance increases are
being obtained by internal use of par-
allelism (superscalar processors), al-
though at a small scale. So it is
tempting to predict that performance
limits for single processors are near.
However, optical processors could pro-
vide another large jump in computa-
tional performance within a few de-
cades, and applications of quantum
effects to processors may provide an-
other large jump over a longer time
period.

—Even if single-processor speed im-
provements continue on their recent
historical trend, parallel computation
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is still likely to be more cost-effective
for many applications than using
leading-edge uniprocessors. This is
largely because of the costs of design-
ing and fabricating each new genera-
tion of uniprocessors, which are un-
likely to drop much until the newer
technologies, such as optical computa-
tion, mature. Because the release of
each new faster uniprocessor drives
down the price of previous genera-
tions, putting together an ensemble of
older processors provides cost-effec-
tive computation if the cost of the
hardware required to connect them is
kept within reasonable limits. Since
each new generation of processors
provides a decimal order of magni-
tude increase in performance, mod-
estly sized ensembles of older proces-
sors are competitive in terms of
performance. The economics of pro-
cessor design and production favor
replication over clever design. This
effect is, in part, responsible for the
popularity of networks of worksta-
tions as low-cost supercomputers.

Given these reasons for using parallel-
ism, we might expect it to have moved
rapidly into the mainstream of comput-
ing. This is clearly not the case. Indeed,
in some parts of the world parallel com-
puting is regarded as marginal. We turn
now to examining some of the problems
and difficulties of using parallelism that
explain why its advantages have not
(yet) led to its widespread use.

—Conscious human thinking appears to
us to be sequential, so that there is
something appealing about software
that can be considered in a sequential
way—a program is rather like the
plot of a novel, and we have become
used to designing, understanding,
and debugging it in this way. This
property in ourselves makes parallel-
ism seem difficult, although of course
much human cognition does take
place in a parallel way.

—The theory required for parallel com-
putation is immature and was devel-

oped after the technology. Thus the
theory did not suggest directions, or
even limits, for technology. As a re-
sult, we do not yet know much about
abstract representations of parallel
computations, logics for reasoning
about them, or even parallel algo-
rithms that are effective on real ar-
chitectures.

—It is taking a long time to understand
the balance necessary between the
performance of different parts of a
parallel computer and how this bal-
ance affects performance. Careful con-
trol of the relationship between pro-
cessor speed and communication
interconnect performance is necessary
for good performance, and this must
also be balanced with memory-hierar-
chy performance. Historically, paral-
lel computers have failed to deliver
more than a small fraction of their
apparently achievable performance,
and it has taken several generations
of using a particular architecture to
learn the lessons on balance.

—Parallel computer manufacturers
have designated high-performance
scientific and numerical computing as
their market, rather than the much
larger high-effectiveness commercial
market. The high-performance mar-
ket has always been small, and has
tended to be oriented towards mili-
tary applications. Recent world
events have seen this market dwin-
dle, with predictable consequences for
the profitability of parallel computer
manufacturers. The small market for
parallel computing has meant that
parallel computers are expensive, be-
cause so few of them are sold, and has
increased the risk for both manufac-
turers and users, further dampening
enthusiasm for parallelism.

—The execution time of a sequential
program changes by no more than a
constant factor when it is moved from
one uniprocessor to another. This is
not true for a parallel program, whose
execution time can change by an or-
der of magnitude when it is moved
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across architecture families. The fun-
damental nonlocal nature of a paral-
lel program requires it to interact
with a communication structure, and
the cost of each communication de-
pends heavily on how both program
and interconnect are arranged and
what technology is used to implement
the interconnect. Portability is there-
fore a much more serious issue in
parallel programming than in sequen-
tial. Transferring a software system
from one parallel architecture to an-
other may require an amount of work
up to and including rebuilding the
software completely. For fundamental
reasons, there is unlikely ever to be
one best architecture family, indepen-
dent of technological changes. There-
fore parallel software users must ex-
pect continual changes in their
computing platforms, which at the
moment implies continual redesign
and rebuilding of software. The lack
of a long-term growth path for paral-
lel software systems is perhaps the
major reason for the failure of parallel
computation to become mainstream.

Approaches to parallelism have been
driven either from the bottom, by the
technological possibilities, or from the
top, by theoretical elegance. We argue
that the most progress so far, and the
best hope for the future, lies in driving
developments from the middle, attack-
ing the problem at the level of the model
that acts as an interface between soft-
ware and hardware issues.

In the next section, we review basic
concepts of parallel computing. In Sec-
tion 3, we define the concept of a model
and construct a checklist of properties
that a model should have to provide an
appropriate interface between software
and architectures. In Section 4, we as-
sess a large number of existing models
using these properties, beginning with
those that are most abstract and work-
ing down to those that are very con-
crete. We show that several models
raise the possibility of both long-term
portability and performance. This sug-

gests a way to provide the missing
growth path for parallel software devel-
opment and hence a mainstream paral-
lel computing industry.

2. BASIC CONCEPTS OF PARALLELISM

In this section we briefly review some of
the essential concepts of parallel com-
puters and parallel software. We begin
by considering the components of paral-
lel computers.

Parallel computers consist of three
building blocks: processors, memory
modules, and an interconnection net-
work. There has been steady develop-
ment of the sophistication of each of
these building blocks, but it is their
arrangement that most differentiates
one parallel computer from another.
The processors used in parallel comput-
ers are increasingly exactly the same as
processors used in single-processor sys-
tems. Present technology, however,
makes it possible to fit more onto a chip
than just a single processor, so there is
considerable investigation into what
components give the greatest added
value if included on-chip with a proces-
sor. Some of these, such as communica-
tion interfaces, are relevant to parallel
computing.

The interconnection network connects
the processors to each other and some-
times to memory modules as well. The
major distinction between variants of
the multiple-instruction multiple-data
(MIMD) architectures is whether each
processor has its own local memory, and
accesses values in other memories using
the network; or whether the intercon-
nection network connects all processors
to memory. These alternatives are
called distributed-memory MIMD and
shared-memory MIMD, respectively and
are illustrated in Figure 1.

Distributed-memory MIMD architec-
tures can be further differentiated by
the total capacity of their interconnec-
tion networks, that is, the total volume
of data that can be in transit in the
network at any one time. For example,
an architecture whose processor-mem-
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ory pairs (sometimes called processing
elements) are connected by a mesh re-
quires the same number of connections
to the network for each processor, no
matter how large the parallel computer
of which it is a member. The total ca-
pacity of the network grows linearly
with the number of processors in the
computer. On the other hand, an archi-
tecture whose interconnection network
is a hypercube requires the number of
connections per processor to be a loga-
rithmic function of the total size of the
computer. The total network capacity
grows faster than linearly in the num-
ber of processors.

Another important style of parallel
computer is the single-instruction mul-
tiple-data (SIMD) class. Here a single
processor executes a single instruction
stream, but broadcasts each instruction
to be executed to a number of data
processors. These data processors inter-
pret the instruction’s addresses either
as local addresses in their own local
memories or as global addresses, per-
haps modified by adding a local base
address to them.

We now turn to the terminology of
parallel software. The code executing in
a single processor of a parallel computer
is in an environment that is quite simi-
lar to that of a processor running in a
multiprogrammed single-processor sys-
tem. Thus we speak of processes or
tasks to describe code executing inside
an operating-system-protected region of
memory. Because many of the actions of
a parallel program involve communicat-
ing with remote processors or memory

locations, which takes time, most pro-
cessors execute more than one process
at a time. Thus all of the standard tech-
niques of multiprogramming apply: pro-
cesses become descheduled when they
do something involving a remote com-
munication, and are made ready for ex-
ecution when a suitable response is re-
ceived. A useful distinction is between
the virtual parallelism of a program,
the number of logically independent
processes it contains, and the physical
parallelism, the number of processes
that can be active simultaneously
(which is, of course, equal to the num-
ber of processors in the executing paral-
lel computer).

Because of the number of communica-
tion actions that occur in a typical par-
allel program, processes are interrupted
more often than in a sequential en-
vironment. Process manipulation is
expensive in a multiprogrammed envi-
ronment so, increasingly, parallel com-
puters use threads rather than pro-
cesses. Threads do not have their own
operating-system-protected memory re-
gion. As a result there is much less
context to save when a context switch
occurs. Using threads is made safe by
making the compiler responsible for en-
forcing their interaction, which is possi-
ble because all of the threads come from
a single parallel program.

Processes communicate in a number
of different ways, constrained, of course,
by what is possible in the executing
architecture. The three main ways are
as follows.

Fig. 1. Distributed-memory MIMD and shared-memory MIMD architectures.
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—Message passing. The sending process
packages the message with a header
indicating to which processor and pro-
cess the data are to be routed, and
inserts them into the interconnection
network. Once the message has been
passed to the network, the sending
process can continue. This kind of
send is called a nonblocking send. The
receiving process must be aware that
it is expecting data. It indicates its
readiness to receive a message by ex-
ecuting a receive operation. If the ex-
pected data have not yet arrived, the
receiving process suspends (blocks)
until they do.

—Transfers through shared memory. In
shared-memory architectures, pro-
cesses communicate by having the
sending process place values in desig-
nated locations, from which the re-
ceiving process can read them. The
actual process of communication is
thus straightforward. What is diffi-
cult is detecting when it is safe either
to put a value into the location or to
remove it. Standard operating-system
techniques such as semaphores or
locks may be used for this purpose.
However, this is expensive and com-
plicates programming. Some architec-
tures provide full/empty bits associ-
ated with each word of shared
memory that provide a lightweight
and high-performance way of synchro-
nizing senders and receivers.

—Direct remote-memory access. Early
distributed-memory architectures re-
quired the processor to be interrupted
every time a request was received
from the network. This is poor use of
the processor and so, increasingly,
distributed-memory architectures use
a pair of processors in each processing
element. One, the application proces-
sor, does the program’s computation;
the other, the messaging processor,
handles traffic to and from the net-
work. Taken to the limit, this makes
it possible to treat message passing as
direct remote memory access to the
memories of other processors. This is

a hybrid form of communication in
that it applies to distributed-memory
architectures but has many of the
properties of shared memory.

These communication mechanisms need
not correspond directly to what the ar-
chitecture provides. It is straightfor-
ward to simulate message passing using
shared memory, and possible to simu-
late shared memory using message
passing (an approach known as virtual
shared memory).

The interconnection network of a par-
allel computer is the mechanism that
allows processors to communicate with
one another and with memory modules.
The topology of this network is the com-
plete arrangement of individual links
between processing elements. It is natu-
rally represented as a graph. The diam-
eter of the interconnection network’s to-
pology is the maximum number of links
that must be traversed between any
pair of processing elements. It forms a
lower bound for the worst-case latency
of the network, that is, the longest time
required for any pair of processing ele-
ments to communicate. In general, the
observed latency is greater than that
implied by the topology because of con-
gestion in the network itself.

The performance of a parallel pro-
gram is usually expressed in terms of
its execution time. This depends on the
speed of the individual processors, but
also on the arrangement of communica-
tion and the ability of the interconnec-
tion network to deliver it. When we
speak of the cost of a program, we usu-
ally mean its execution-time cost. How-
ever, in the context of software develop-
ment, cost may also include the
resources necessary to develop and
maintain a program.

3. MODELS AND THEIR PROPERTIES

A model of parallel computation is an
interface separating high-level proper-
ties from low-level ones. More con-
cretely, a model is an abstract machine
providing certain operations to the pro-
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gramming level above and requiring im-
plementations for each of these opera-
tions on all of the architectures below.
It is designed to separate software-de-
velopment concerns from effective par-
allel-execution concerns and provides
both abstraction and stability. Abstrac-
tion arises because the operations that
the model provides are higher-level
than those of the underlying architec-
tures, simplifying the structure of soft-
ware and reducing the difficulty of its
construction. Stability arises because
software construction can assume a
standard interface over long time
frames, regardless of developments in
parallel computer architecture. At the
same time, the model forms a fixed
starting point for the implementation
effort (transformation system, compiler,
and run-time system) directed at each
parallel computer. The model therefore
insulates those issues that are the con-
cern of software developers from those
that are the concern of implementers.
Furthermore, implementation decisions,
and the work they require, are made
once for each target rather than once for
each program.

Since a model is just an abstract ma-
chine, models exist at many different
levels of abstraction. For example, every
programming language is a model in
our sense, since each provides some
simplified view of the underlying hard-
ware. This makes it hard to compare
models neatly because of the range of
levels of abstraction involved and be-
cause many high-level models can be
emulated by other lower-level models.
There is not even a one-to-one connec-
tion between models: a low-level model
can naturally emulate several different
higher-level ones, and a high-level
model can be naturally emulated by dif-
ferent low-level ones. We do not explic-
itly distinguish between programming
languages and more abstract models
(such as asynchronous order-preserving
message passing) in what follows.

An executing parallel program is an
extremely complex object. Consider a
program running on a 100-processor

system, large but not unusual today.
There are 100 active threads at any
given moment. To conceal the latency of
communication and memory access,
each processor is probably multiplexing
several threads, so the number of active
threads is several times larger (say,
300). Any thread may communicate
with any of the other threads, and this
communication may be asynchronous or
may require a synchronization with the
destination thread. So there are up to
3002 possible interactions “in progress”
at any instant. The state of such a pro-
gram is very large. The program that
gives rise to this executing entity must
be significantly more abstract than a
description of the entity itself if it is to
be manageable by humans. To put it
another way, a great deal of the actual
arrangement of the executing computa-
tion ought to be implicit and capable of
being inferred from its static description
(the program), rather than having to be
stated explicitly. This implies that mod-
els for parallel computation require
high levels of abstraction, much higher
than for sequential programming. It is
still (just) conceivable to construct mod-
estly sized sequential programs in as-
sembly code, although the newest se-
quential architectures make this
increasingly difficult. It is probably im-
possible to write a modestly sized
MIMD parallel program for 100 proces-
sors in assembly code in a cost-effective
way.

Furthermore, the detailed execution
behavior of a particular program on an
architecture of one style is likely to be
very different from the detailed execu-
tion on another. Thus abstractions that
conceal the differences between archi-
tecture families are necessary.

On the other hand, a model that is
abstract is not of great practical interest
if an efficient method for executing pro-
grams written in it cannot be found.
Thus models must not be so abstract
that it is intellectually, or even compu-
tationally, expensive to find a way to
execute them with reasonable efficiency
on a large number of parallel architec-
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tures. A model, to be useful, must ad-
dress both issues, abstraction and effec-
tiveness, as summarized in the
following set of requirements [Skillicorn
1994b]. A good model of parallel compu-
tation should have the following proper-
ties.

(1) Easy to Program. Because an exe-
cuting program is such a complex object,
a model must hide most of the details
from programmers if they are to be able
to manage, intellectually, the creation
of software. As much as possible of the
exact structure of the executing pro-
gram should be inserted by the transla-
tion mechanism (compiler and run-time
system) rather than by the program-
mer. This implies that a model should
conceal the following.

—Decomposition of a program into par-
allel threads. The program must be
divided up into the pieces that will
execute on distinct processors. This
requires separating the code and data
structures into a potentially large
number of pieces.

—Mapping of threads to processors.
Once the program has been divided
into pieces, a choice must be made
about which piece is placed on which
processor. The placement decision is
often influenced by the amount of
communication taking place between
each pair of pieces, ensuring that
pieces that communicate a lot are
placed near each other in the inter-
connection network. It may also be
necessary to ensure that particular
pieces are mapped to processors that
have some special hardware capabil-
ity, for example, a high-performance
floating-point functional unit.

—Communication among threads.
Whenever nonlocal data are required,
a communication action of some kind
must be generated to move the data.
Its exact form depends heavily on the
designated architecture, but the pro-
cesses at both ends must arrange to
treat it consistently so that one pro-
cess does not wait for data that never
come.

—Synchronization among threads.
There will be times during the compu-
tation when a pair of threads, or even
a larger group, must know that they
have jointly reached a common state.
Again the exact mechanism used is
target-dependent. There is enormous
potential for deadlock in the interac-
tion between communication and syn-
chronization.

Optimal decomposition and mapping
are known to be exponentially expen-
sive to compute. The nature of commu-
nication also introduces complexity.
Communication actions always involve
dependencies, because the receiving end
must be prepared to block and the
sender often does too. This means that a
chain of otherwise unexceptional com-
munications among n processes can be
converted to a deadlocked cycle by the
actions of a single additional process
(containing, say, a receiving action from
the last process in the chain before a
sending action to the first). Hence cor-
rectly placing communication actions
requires awareness of an arbitrarily
large fraction of the global state of the
computation. Experience has shown
that deadlock in parallel programs is
indeed easy to create and difficult to
remove. Requiring humans to under-
stand programs at this level of detail
effectively rules out scalable parallel
programming.

Thus models ought to be as abstract
and simple as possible. There should be
as close a fit as possible between the
natural way in which to express the
program and that demanded by the pro-
gramming language. For many pro-
grams, this may mean that parallelism
is not even made explicit in the program
text. For applications that are naturally
expressed in a concurrent way, it im-
plies that the apparent parallel struc-
ture of the program need not be related
to the actual way in which parallelism
is exploited at execution.

(2) Software Development Methodol-
ogy. The previous requirement implies a
large gap between the information pro-
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vided by the programmer about the se-
mantic structure of the program, and
the detailed structure required to exe-
cute it. Bridging it requires a firm se-
mantic foundation on which transforma-
tion techniques can be built. Ad hoc
compilation techniques cannot be ex-
pected to work on problems of this com-
plexity.

There is another large gap between
specifications and programs that must
also be addressed by firm semantic
foundations. Existing sequential soft-
ware is, with few exceptions, built using
standard building blocks and algo-
rithms. The correctness of such pro-
grams is almost never properly estab-
lished; rather they are subjected to
various test regimes, designed to in-
crease confidence in the absence of di-
sastrous failure modes. This methodol-
ogy of testing and debugging does not
extend to portable parallel program-
ming for two major reasons: the new
degree of freedom created by partition-
ing and mapping hugely increases the
state space that must be tested—debug-
ging thus requires interacting with this
state space, in which even simple check-
points are difficult to construct; and the
programmer is unlikely to have access
to more than a few of the designated
architectures on which the program will
eventually execute, and therefore can-
not even begin to test the software on
other architectures. There are also a
number of more mundane reasons: for
example, reproducibility on systems
whose communication networks are ef-
fectively nondeterministic, and the
sheer volume of data that testing gener-
ates. Verification of program properties
after construction also seems too un-
wieldy for practical use. Thus only a
process aiming to build software that is
correct by construction can work in the
long term. Such calculational ap-
proaches have been advocated for se-
quential programming, and they are not
yet workable in the large there. Never-
theless, they seem essential for parallel
programming, even if they must remain

goals rather than practice in the me-
dium term.

A great deal of the parallel software
produced so far has been of a numerical
or scientific kind, and development
methodology issues have not been a pri-
ority. There are several reasons for this.
Much numerical computing is essen-
tially linear algebra, and so program
structures are often both regular and
naturally related to the mathematics
from which they derive. Thus such soft-
ware is relatively simpler than newer
commercial applications. Second, long-
term maintainability is emphasized less
because of the research nature of such
software. Many programs are intended
for short-term use, generating results
that make themselves obsolete by sug-
gesting new problems to be attacked
and new techniques to be used. By con-
trast, most commercial software must
repay its development costs out of the
business edge it creates.

(3) Architecture-Independent. The
model should be architecture-indepen-
dent, so that programs can be migrated
from parallel computer to parallel com-
puter without having to be redeveloped
or indeed modified in any nontrivial
way. This requirement is essential to
permit a widespread software industry
for parallel computers.

Computer architectures have compar-
atively short life spans because of the
speed with which processor and inter-
connection technology are developing.
Users of parallel computing must be
prepared to see their computers re-
placed, perhaps every five years. Fur-
thermore, it is unlikely that each new
parallel computer will much resemble
the one that it replaces. Redeveloping
software more or less from scratch
whenever this happens is not cost-effec-
tive, although this is usually what hap-
pens today. If parallel computation is to
be useful, it must be possible to insulate
software from changes in the underly-
ing parallel computer, even when these
changes are substantial.

This requirement means that a model
must abstract from the features of any
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particular style of parallel computer.
Such a requirement is easy to satisfy in
isolation, since any sufficiently abstract
model satisfies it, but is more difficult
with the other requirements.

(4) Easy to Understand. A model
should be easy to understand and to
teach, since otherwise it is impossible to
educate existing software developers to
use it. If parallelism is to become a
mainstream part of computing, large
numbers of people have to become profi-
cient in its use. If parallel programming
models are able to hide the complexities
and offer an easy interface they have a
greater chance of being accepted and
used. Generally, easy-to-use tools with
clear goals, even if minimal, are prefer-
able to complex ones that are difficult to
use.

These properties ensure that a model
forms an effective target for software
development. However, this is not use-
ful unless, at the same time, the model
can be implemented effectively on a
range of parallel architectures. Thus we
have some further requirements.

(5) Guaranteed Performance. A model
should have guaranteed performance
over a useful variety of parallel archi-
tectures. Note that this does not mean
that implementations must extract ev-
ery last ounce of performance out of a
designated architecture. For most prob-
lems, a level of performance as high as
possible on a given architecture is un-
necessary, especially if obtained at the
expense of much higher development
and maintenance costs. Implementa-
tions should aim to preserve the order
of the apparent software complexity and
keep constants small.

Fundamental constraints on architec-
tures, based on their communication
properties, are now well understood. Ar-
chitectures can be categorized by their
power in the following sense: an archi-
tecture is powerful if it can execute an
arbitrary computation with the ex-
pected performance, given the text of
the program and basic properties of the
designated architecture. The reason for
reduced performance, in general, is con-

gestion, which arises not from individ-
ual actions of the program but from the
collective behavior of these actions.
Powerful architectures have the re-
sources, in principle at least, to handle
congestion without having an impact on
program performance; less powerful
ones do not.

The most powerful architecture class
consists of shared-memory MIMD com-
puters and distributed-memory MIMD
computers whose total interconnection
network capacity grows faster than the
number of processors, at least as fast as
p log p, where p is the number of pro-
cessors. For such computers, an arbi-
trary computation with parallelism p
taking time t can be executed in such a
way that the product pt (called the
work) is preserved [Valiant 1990b]. The
apparent time of the abstract computa-
tion cannot be preserved in a real imple-
mentation since communication (and
memory access) imposes latencies, typi-
cally proportional to the diameter of the
interconnection network. However, the
time dilation that this causes can be
compensated for by using fewer proces-
sors, multiplexing several threads of the
original program onto each one, and
thus preserving the product of time and
processors. There is a cost to this imple-
mentation, but it is an indirect one—
there must be more parallelism in the
program than in the designated archi-
tecture, a property known as parallel
slackness.

Architectures in this richly connected
class are powerful, but do not scale well
because an increasing proportion of
their resources must be devoted to in-
terconnection network hardware. Worse
still, the interconnection network is typ-
ically the most customized part of the
architecture, and therefore by far the
most expensive part.

The second class of architectures are
distributed-memory MIMD computers
whose total interconnection network ca-
pacity grows only linearly with the
number of processors. Such computers
are scalable because they require only a
constant number of communication
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links per processor (and hence the local
neighborhoods of processors are unaf-
fected by scaling) and because a con-
stant proportion of their resources is
devoted to interconnection network
hardware. Implementing arbitrary com-
putations on such machines cannot be
achieved without loss of performance
proportional to the diameter of the in-
terconnection network. Computations
taking time t and p processors have an
actual work cost of ptd (where d is the
diameter of the interconnection net-
work). What goes wrong in emulating
arbitrary computations on such archi-
tectures is that, during any step, each of
the p processors could generate a com-
munication action. Since there is only
total capacity proportional to p in the
interconnection network, these commu-
nications use its entire capacity for the
next d steps in the worst case. Commu-
nication actions attempted within this
window of d steps can be avoided only if
the entire program is slowed by a factor
of d to compensate. Thus this class nec-
essarily introduces reduced perfor-
mance when executing computations
that communicate heavily. Architec-
tures in this class are scalable, but they
are not as powerful as those in the
previous class.

The third class of architectures are
SIMD machines which, though scalable,
emulate arbitrary computations poorly.
This is because of their inability to do
more than a small constant number of
different actions on each step [Skillicorn
1990].

Thus scalable architectures are not
powerful and powerful architectures are
not scalable. To guarantee performance
across many architectures, these results
imply that

—the amount of communication allowed
in programs must be reduced by a
factor proportional to the diameter of
realistic parallel computers (i.e., by a
factor of log p or =p); and

—computations must be made more reg-
ular, so that processors do fewer dif-
ferent operations at each moment, if

SIMD architectures are considered as
viable designated architectures.

The amount of communication that a
program carries out can be reduced in
two ways: either by reducing the num-
ber of simultaneous communication ac-
tions, or by reducing the distance that
each travels. It is attractive to think
that distance could always be reduced
by clever mapping of threads to proces-
sors, but this does not work for arbi-
trary programs. Even heuristic algo-
rithms whose goal is placement for
maximum locality are expensive to exe-
cute and cannot guarantee good results.
Only models that limit the frequency of
communication, or are restricted
enough to make local placement easy to
compute, can guarantee performance
across the full range of designated par-
allel computers.

(6) Cost Measures. Any program’s de-
sign is driven, more or less explicitly, by
performance concerns. Execution time
is the most important of these, but oth-
ers such as processor utilization or even
cost of development are also important.
We describe these collectively as the
cost of the program.

The interaction of cost measures with
the design process in sequential soft-
ware construction is a relatively simple
one. Because any sequential machine
executes with speed proportional to any
other, design decisions that change the
asymptotic complexity of a program can
be made before any consideration of the
computer on which it will eventually
run. When a target decision has been
made, further changes can be made, but
they are of the nature of tuning, rather
than algorithm choice. In other words,
the construction process has two phases:
decisions are made about algorithms
and the asymptotic costs of the program
are affected; and decisions are made
about arrangements of program text
and only the constants in front of the
asymptotic costs are affected [Knuth
1976].

This neat division cannot be made for
parallel software development, because
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small changes in program text and
choice of designated computer are both
capable of affecting the asymptotic cost
of a program. If real design decisions
are to be made, a model must make the
cost of its operations visible during all
stages of software development, before
either the exact arrangement of the pro-
gram or the designated computer has
been decided. Intelligent design deci-
sions rely on the ability to decide that
Algorithm A is better than Algorithm B
for a particular problem.

This is a difficult requirement for a
model, since it seems to violate the no-
tion of an abstraction. We cannot hope
to determine the cost of a program with-
out some information about the com-
puter on which it will execute, but we
must insist that the information re-
quired be minimal (since otherwise the
actual computation of the cost is too
tedious for practical use). We say that a
model has cost measures if it is possible
to determine the cost of a program from
its text, minimal designated computer
properties (at least the number of pro-
cessors it has), and information about
the size, but not the values, of its input.
This is essentially the same view of cost
that is used in theoretical models of
parallel complexity such as the PRAM
[Karp and Ramachandran 1990]. This
requirement is the most contentious of
all of them. It requires that models pro-
vide predictable costs and that compil-
ers do not optimize programs. This is
not the way in which most parallel soft-
ware is regarded today, but we reiterate
that design is not possible without it.
And without the ability to design, paral-
lel software construction will remain a
black art rather than an engineering
discipline.

A further requirement on cost mea-
sures is that they be well behaved with
respect to modularity. Modern software
is almost always developed in pieces by
separate teams and it is important that
each team need only know details of the
interface between pieces. This means
that it must be possible to give each
team a resource budget such that the

overall cost goal is met if each team
meets its individual cost allocation. This
implies that the cost measures must be
compositional, so that the cost of the
whole is easily computable from the cost
of its parts, and convex, so that it is not
possible to reduce the overall cost by
increasing the cost of one part. Naive
parallel cost measures fail to meet ei-
ther of these requirements.

3.1 Implications

These requirements for a model are
quite demanding and several subsets of
them are strongly in tension with each
other. For example, abstract models
make it easy to build programs but hard
to compile them to efficient code,
whereas low-level models make it hard
to build software but easy to implement
it efficiently. We use these require-
ments as a metric by which to classify
and assess models.

The level of abstraction that models
provide is used as the primary basis for
categorizing them. It acts as a surrogate
for simplicity of the model, since in an
abstract model less needs to be said
about details of thread structure and
points at which communication and syn-
chronization take place. Level of abstrac-
tion also correlates well with quality of
software development methodology since
calculations on programs are most pow-
erful when their semantics is clean.

The extent to which the structure of
program implementations is con-
strained by the structure of the program
text is closely related to properties such
as guaranteed performance and cost
measures. There are three levels of con-
straint on program structure.

—Models that allow dynamic process or
thread structure cannot restrict com-
munication. Because any new thread
can generate communication, even
models that restrict communication
within a particular syntactic block
cannot limit it over the whole pro-
gram. Thus such models cannot guar-
antee that the communication gener-
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ated by a program will not overrun
the total communication capacity of a
designated parallel computer. Be-
cause dynamic process creation in-
volves decisions by the run-time sys-
tem, it is also impossible to define
cost measures that can be used dur-
ing design. (This does not mean, of
course, that it is impossible to write
efficient programs in models with dy-
namic process structure, or that it is
impossible to improve efficiency by
good design or clever compilation
techniques. All it means is that some
programs that can be written in the
model will perform poorly, and it is
not straightforward to detect which
ones. Such programs could potentially
be avoided by a programming disci-
pline, but they cannot be ruled out on
the model’s own terms.)

—Models that have a static process or
thread structure but do not impose
syntactic limits on communication
permit programs to be written that
can perform badly because of commu-
nication overruns. On the other hand,
it is usually possible to define cost
measures for them, since the overruns
can be statically predicted from the
program structure.

—Models that have a static process or
thread structure can guarantee per-
formance by suitably limiting the fre-
quency with which communication ac-
tions can be written in the program.
It follows that it is also possible to
define cost measures for them.

In summary, only when the structure
of the program is static, and the amount
of communication is bounded, does a
model both guarantee performance and
allow that performance to be predicted
by cost measures.

We use control of structure and com-
munication as the secondary basis for
categorizing models. This choice of pri-
orities for classification reflects our
view that parallel programming should
aim to become a mainstream part of
computing. In specialized areas, some of
these requirements may be less impor-

tant. For example, in the domain of
high-performance numerical computing,
program execution times are often qua-
dratic or even worse in the size of the
problem. In this setting, the perfor-
mance penalty introduced by execution
on a distributed-memory MIMD com-
puter with a mesh topology, say, may be
insignificant compared to the flexibility
of an unrestricted-communication model.
There will probably never be a model
that satisfies all potential users of par-
allelism. However, models that satisfy
many of the preceding requirements are
good candidates for general-purpose
parallelism, the application of parallel-
ism across wide problem domains [Mc-
Coll 1993a].

4. OVERVIEW OF MODELS

We now turn to assessing existing mod-
els according to the criteria outlined in
the previous section. Most of these mod-
els were not developed with the ambi-
tious goal of general-purpose parallel-
ism, so it is not a criticism to say that
some of them fail to meet all of the
requirements. Our goal is to provide a
picture of the state of parallel program-
ming today, but from the perspective of
seeing how far towards general-purpose
parallelism it is reasonable to get.

We have not covered all models for
parallel computation, but we have tried
to include those that introduce signifi-
cant ideas, together with some sense of
the history of such models. We do not
give a complete description of each
model, but instead concentrate on the
important features and provide compre-
hensive references. Many of the most
important papers on programming mod-
els and languages have been reprinted
in Skillicorn and Talia [1994].

Models are presented in decreasing
order of abstraction, in the following
categories.

(1) Models that abstract from parallel-
ism completely. Such models de-
scribe only the purpose of a program
and not how it is to achieve this
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purpose. Software developers do not
even need to know if the program
they build will execute in parallel.
Such models are necessarily ab-
stract and relatively simple, since
programs need be no more complex
than sequential ones.

(2) Models in which parallelism is made
explicit, but decomposition of pro-
grams into threads is implicit (and
hence so is mapping, communica-
tion, and synchronization). In such
models, software developers are
aware that parallelism will be used
and must have expressed the poten-
tial for it in programs, but they do
not know how much parallelism will
actually be applied at run-time.
Such models often require programs
to express the maximal parallelism
present in the algorithm and then
the implementation reduces that de-
gree of parallelism to fit the desig-
nated architecture, at the same time
working out the implications for
mapping, communication, and syn-
chronization.

(3) Models in which parallelism and de-
composition must both be made ex-
plicit, but mapping, communication,
and synchronization are implicit.
Such models require decisions to be
made about the breaking up of
available work into pieces, but they
relieve the software developer of the
implications of such decisions.

(4) Models in which parallelism, decom-
position, and mapping are explicit,
but communication and synchroni-
zation are implicit. Here the soft-
ware developer must not only break
the work up into pieces, but must
also consider how best to place the
pieces on the designated processor.
Since locality often has a marked
effect on communication perfor-
mance, this almost inevitably re-
quires an awareness of the desig-
nated processor’s interconnection
network. It becomes hard to make
such software portable across differ-
ent architectures.

(5) Models in which parallelism, decom-
position, mapping, and communica-
tion are explicit, but synchroniza-
tion is implicit. Here the software
developer is making almost all of
the implementation decisions, ex-
cept that fine-scale timing decisions
are avoided by having the system
deal with synchronization.

(6) Models in which everything is ex-
plicit. Here software developers
must specify all of the detail of the
implementation. As we noted ear-
lier, it is extremely difficult to build
software using such models, because
both correctness and performance
can only be achieved by attention to
vast numbers of details.

Within each of these categories, we
present models according to their de-
gree of control over structure and com-
munication, in these categories:

—models in which thread structure is
dynamic;

—models in which thread structure is
static but communication is not lim-
ited; and

—models in which thread structure is
static and communication is limited.

Within each of these categories we
present models based on their common
paradigms. Figures 2 and 3 show a clas-
sification of models for parallel compu-
tation in this way.

4.1 Nothing Explicit

The best models of parallel computation
for programmers are those in which
they need not be aware of parallelism at
all. Hiding all the activities required to
execute a parallel computation means
that software developers can carry over
their existing skills and techniques for
sequential software development. Of
course, such models are necessarily ab-
stract, which makes the implementer’s
job difficult since the transformation,
compilation, and run-time systems must
infer all of the structure of the eventual
program. This means deciding how the
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specified computation is to be achieved,
dividing it into appropriately sized
pieces for execution, mapping those
pieces, and scheduling all of the commu-
nication and synchronization among
them.

At one time it was widely believed
that automatic translation from ab-
stract program to implementation
might be effective starting from an ordi-
nary sequential imperative language.
Although a great deal of work was in-
vested in parallelizing compilers, the
approach was defeated by the complex-
ity of determining whether some aspect
of a program was essential or simply an

artifact of its sequential expression. It
is now acknowledged that a highly auto-
mated translation process is only practi-
cal if it begins from a carefully chosen
model that is both abstract and expres-
sive.

Inferring all of the details required
for an efficient and architecture-inde-
pendent implementation is possible, but
it is difficult and, at present, few such
models can guarantee performance.

We consider models at this high level
of abstraction in subcategories: those
that permit dynamic process or thread
structure and communication, those
that have static process or thread struc-

Nothing Explicit, Parallelism Implicit
Dynamic Structure

Higher-order Functional-Haskell
Concurrent Rewriting—OBJ, Maude
Interleaving—Unity
Implicit Logic Languages—PPP, AND/OR,

REDUCE/OR, Opera, Palm, concurrent
constraint languages

Static Structure
Algorithmic Skeletons—P3L, Cole,

Darlington
Static and Communication-Limited Structure

Homomorphic Skeletons—Bird-Meertens
Formalism

Cellular Processing Languages—Cellang,
Carpet, CDL, Ceprol

Crystal
Parallelism Explicit, Decomposition Implicit

Dynamic Structure
Dataflow—Sisal, Id
Explicit Logic Languages—Concurrent

Prolog, PARLOG, GHC, Delta-Prolog,
Strand

Multilisp
Static Structure

Data Parallelism Using Loops—Fortran
variants, Modula 3*

Data Parallelism on Types—pSETL, parallel
sets, match and move, Gamma, PEI, APL,
MOA, Nial and AT

Static and Communication-Limited Structure
Data-Specific Skeletons—scan, multiprefix,

paralations, dataparallel C, NESL,
CamlFlight

Decomposition Explicit, Mapping Implicit
Dynamic Structure
Static Structure

BSP, LogP
Static and Communication-Limited Structure.

Mapping Explicit, Communication Implicit
Dynamic Structure

Coordination Languages—Linda, SDL
Non-message Communication Languages—

ALMS, PCN, Compositional C11
Virtual Shared Memory
Annotated Functional Languages—Paralf
RPC—DP, Cedar, Concurrent CLU, DP

Static Structure
Graphical Languages—Enterprise, Parsec,

Code
Contextual Coordination Languages—Ease,

ISETL-Linda, Opus
Static and Communication-Limited Structure

Communication Skeletons
Communication Explicit, Synchronization

Implicit
Dynamic Structure

Process Networks—Actors, Concurrent
Aggregates, ActorSpace, Darwin

External OO—ABCL/1, ABCL/R, POOL-T,
EPL, Emerald, Concurrent Smalltalk

Objects and Processes—Argus, Presto, Nexus
Active Messages—Movie

Static Structure
Process Networks—static dataflow
Internal OO—Mentat

Static and Communication-Limited Structure
Systolic Arrays—Alpha

Everything Explicit
Dynamic Structure

Message Passing—PVM, MPI
Shared Memory—FORK, Java, thread

packages
Rendezvous—Ada, SR, Concurrent C

Static Structure
Occam

PRAM

Figure 2. Classification of models of parallel computation.
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ture but unlimited communication, and
those that also limit the amount of com-
munication in progress at any given mo-
ment.

4.1.1 Dynamic Structure. A popular
approach to describing computations in
a declarative way, in which the desired
result is specified without saying how
that result is to be computed, is to use a
set of functions and equations on them.
The result of the computation is a solu-
tion, usually a least fixed point, of these
equations. This is an attractive frame-
work in which to develop software, for
such programs are both abstract and
amenable to formal reasoning by equa-
tional substitution. The implementation
problem is then to find a mechanism to
solve such equations.

Higher-order functional programming
treats functions as l-terms and com-
putes their values using reduction in
the l-calculus, allowing them to be
stored in data structures, passed as ar-
guments, and returned as results. An
example of a language that allows higher-
order functions is Haskell [Hudak and
Fasel 1992]. Haskell also includes sev-
eral typical features of functional pro-
gramming such as user-defined types,
lazy evaluation, pattern matching, and
list comprehensions. Furthermore,
Haskell has a parallel functional I/O
system and provides a module facility.

The actual technique used in higher-
order functional languages for comput-
ing function values is called graph re-
duction [Peyton-Jones and Lester 1992].
Functions are expressed as trees, with
common subtrees for shared subfunc-
tions (hence graphs). Computation rules
select graph substructures, reduce them
to simpler forms, and replace them in
the larger graph structure. When no
further computation rules can be ap-
plied, the graph that remains is the
result of the computation.

It is easy to see how the graph-reduc-
tion approach can be parallelized in
principle—rules can be applied to non-
overlapping sections of the graph inde-
pendently and hence simultaneously.

Thus multiple processors can search for
reducible parts of the graph indepen-
dently and in a way that depends only
on the structure of the graph (and so
does not have to be inferred by a com-
piler beforehand). For example, if the
expression (exp1 p exp2), where exp1
and exp2 are arbitrary expressions, is to
be evaluated, two threads may indepen-
dently evaluate exp1 and exp2, so that
their values are computed simulta-
neously.

Unfortunately, this simple idea turns
out to be quite difficult to make work
effectively. First, only computations
that contribute to the final result
should be executed, since doing others
wastes resources and alters the seman-
tics of the program if a nonessential
piece fails to terminate. For example,
most functional languages have some
form of conditional like

if b(x) then
f(x)

else
g(x)

Clearly exactly one of the values of f(x)
or g(x) is needed, but which one is not
known until the value of b(x) is known.
So evaluating b(x) first prevents redun-
dant work, but on the other hand
lengthens the critical path of the com-
putation (compared to evaluating f(x)
and g(x) speculatively). Things are even
worse if, say, f(x) fails to terminate, but
only for values of x for which b(x) is
false. Now evaluating f(x) speculatively
causes the program not to terminate,
whereas the other evaluation order does
not.

It is difficult to find independent pro-
gram pieces that are known to be re-
quired to compute the final result with-
out quite sophisticated analysis of the
program as a whole. Also, the actual
structure of the graph changes dramat-
ically during evaluation, so that it is
difficult to do load-balancing well and to
handle the spawning of new subtasks
and communication effectively. Parallel
graph reduction has been a limited suc-
cess for shared-memory distributed
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computers, but its effectiveness for dis-
tributed-memory computers is still un-
known.1 Such models are simple and
abstract and allow software develop-
ment by transformation, but they do not
guarantee performance. Much of what
happens during execution is determined
dynamically by the run-time system so
that cost measures (in our sense) cannot
practically be provided.

Concurrent rewriting is a closely re-
lated approach in which the rules for
rewriting parts of programs are chosen
in some other way. Once again, pro-
grams are terms describing a desired
result. They are rewritten by applying a
set of rules to subterms repeatedly until
no further rules can be applied. The
resulting term is the result of the com-
putation. The rule set is usually chosen
to be both terminating (there is no infi-
nite sequence of rewrites) and confluent
(applying rules to overlapping subterms
gets the same result in the end), so that
the order and position where rules are
applied makes no difference to the final
result. Some examples of such models
are OBJ [Goguen and Winkler 1988;
Goguen et al. 1993, 1994], a functional
language whose semantics is based on
equational logic, and Maude.2 An exam-
ple, based on one in Lincoln et al.
[1994], gives the flavor of this approach.
The following is a functional module for
polynomial differentiation, assuming
the existence of a module that repre-
sents polynomials and the usual actions
on them. The lines beginning with eq
are rewrite rules, which should be fa-
miliar from elementary calculus. The
line beginning with ceq is a conditional
rewrite rule.

fmod POLY-DER is
protecting POLYNOMIAL .
op der : Var Poly 3 Poly .
op der : Var Mon 3 Poly .
var A : Int .

var N : NzNat .
vars P Q : Poly .
vars U V : Mon .
eq der(P 1 Q) 5 der(P) 1 der(Q) .
eq der(U . V) 5 (der(U) . V) 1 (U .

der(V)) .
eq der(A p U) 5 A p der(U) .
ceq der(X ˆ N) 5 N p (X ˆ (N 2 1)) if

N . 1 .
eq der(X ˆ 1) 5 1 .
eq der(A) 5 0 .

endfm

An expression such as

der(X ˆ 5 1 3 p X ˆ 4 1 7 p X ˆ 2)

can be computed in parallel because
there are soon multiple places where a
rewrite rule can be applied. This simple
idea can be used to emulate many other
parallel computation models.

Models of this kind are simple and
abstract and allow software develop-
ment by transformation, but again they
cannot guarantee performance and are
too dynamic to allow useful cost mea-
sures.

Interleaving is a third approach that
derives from multiprogramming ideas
in operating systems via models of con-
currency such as transition systems. If
a computation can be expressed as a set
of subcomputations that commute, that
is, it can be evaluated in any order and
repeatedly, then there is considerable
freedom for the implementing system to
decide on the actual structure of the
executing computation. It can be quite
hard to express a computation in this
form, but it is made considerably easier
by allowing each piece of the computa-
tion to be protected by a guard, that is,
a Boolean-valued expression. Informally
speaking, the semantics of a program in
this form is that all the guards are
evaluated and one or more subprograms
whose guards are true are then evalu-
ated. When they have completed, the
whole process begins again. Guards
could determine the whole sequence of
the computation, even sequentializing it
by having guards of the form step 5 i,
but the intent of the model is rather to
use the weakest guards, and therefore,

1 See Darlington et al. [1987], Hudak and Fasel
[1992], Kelly [1989], Peyton-Jones et al. [1987],
Rabhi and Manson [1991], and Thompson [1992].
2 See Lechner et al. [1995], Meseguer [1992], Me-
seguer and Winkler [1991], and Winkler [1993].
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say, the least about how the pieces are
to be fit together.

This idea lies behind UNITY3 and an
alternative that considers independence
of statements more: action systems.4

UNITY (unbounded nondeterministic it-
erative transformations) is both a com-
putational model and a proof system. A
UNITY program consists of declaration
of variables, specification of their initial
values, and a set of multiple-assign-
ment statements. In each step of execu-
tion, some assignment statement is
selected nondeterministically and exe-
cuted. For example, the following pro-
gram,

Program P
initially x50
assign x:5 a(x) i x:5 b(x) i x:5 c(x)

end {P}

consists of three assignments that are
selected nondeterministically and exe-
cuted. The selection procedure obeys a
fairness rule: every assignment is exe-
cuted infinitely often.

Like rewriting approaches, interleav-
ing models are abstract and simple, but
guaranteed performance seems unlikely
and cost measures are not possible.

Implicit logic languages exploit the
fact that the resolution process of a logic
query contains many activities that can
be performed in parallel [Chassin de
Kergommeaux and Codognet 1994]. The
main types of inherent parallelism in
logic programs are OR parallelism and
AND parallelism. OR parallelism is ex-
ploited by unifying a subgoal with the
head of several clauses in parallel. For
instance, if the subgoal to be solved is
?-a(x) and the matching clauses are

a(x):- b(x). a(x):- c(x).

then OR parallelism is exploited by uni-
fying, in parallel, the subgoal with the
head of each of the two clauses. For an

introduction to logic programming, see
Lloyd [1984]. AND parallelism divides
the computation of a goal into several
threads, each of which solves a single
subgoal in parallel. For instance, if the
goal to be solved is

?- a(x), b(x), c(x).

The subgoals a(x), b(x), and c(x) are
solved in parallel. Minor forms of paral-
lelism are search parallelism and unifi-
cation parallelism where parallelism is
exploited, respectively, in the searching
of the clause database and in the unifi-
cation procedure.

Implicit parallel logic languages pro-
vide automatic decomposition of the ex-
ecution tree of a logic program into a
network of parallel threads. This is
done by the language support both by
static analysis at compile time and at
run-time. No explicit annotations of the
program are needed. Implicit logic mod-
els include PPP [Fagin and Despain
1990], the AND/OR process model [Con-
ery 1987], the REDUCE/OR model [Kale
1987], OPERA [Briat et al. 1991], and
PALM [Cannataro et al. 1991]. These
models differ in how they view parallel-
ism and their designated architectures
are varied, but they are mainly de-
signed to be implemented on distributed-
memory MIMD machines [Talia 1994].
To implement parallelism these models
use either thread-based or subtree-
based strategies. In thread-based mod-
els, each single goal is solved by start-
ing a thread. In subtree-based models,
the search tree is divided into several
subtrees, with one thread associated
with each subtree. These two different
approaches correspond to different
grain sizes: in thread-based models the
grain size is fine, whereas in the sub-
tree-based models the parallelism grain
size is medium or coarse.

Like other approaches discussed in
this section, implicit parallel logic lan-
guages are highly abstract. Thus it is
hard to guarantee performance, al-
though good performance may some-
times be achieved. Cost measures can-

3 See Bickford [1994], Chandy and Misra [1988],
Gerth and Pneuli [1989], and Radha and Muth-
ukrishnan [1992].
4 See Back [1989a,b] and Back and Sere [1989;
1990].
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not be provided because implicit logic
languages are highly dynamic.

Constraint logic programming is an
important generalization of logic pro-
gramming aimed at replacing the pat-
tern-matching mechanism of unification
by a more general operation called con-
straint satisfaction [Saraswat et al.
1991]. In this environment, a constraint
is a subset of the space of all possible
values that a variable of interest can
take. A programmer does not explicitly
use parallel constructs in a program,
but defines a set of constraints on vari-
ables. This approach offers a framework
for dealing with domains other than
Herbrand terms, such as integers and
Booleans [Lloyd 1984]. In concurrent
constraint logic programming, a compu-
tation progresses by executing threads
that concurrently communicate by plac-
ing constraints in a global store and
synchronizes by checking that a con-
straint is entailed by the store. The
communication patterns are dynamic,
so that there is no predetermined set of
threads with which a given thread in-
teracts. Moreover, threads correspond
to goal atoms, so they are activated
dynamically during program execution.
Concurrent constraint logic program-
ming models include cc [Saraswat et al.
1991], the CHIP CLP language [van
Hentenryek 1989], and CLP [Jaffar and
Lassez 1987]. As in other parallel logic
models, concurrent constraint lan-
guages are too dynamic to allow practi-
cal cost measures.

4.1.2 Static Structure. One way to
infer the structure to be used to com-
pute an abstract program is to insist
that the abstract program be based on
fundamental units or components
whose implementations are predefined.
In other words, programs are built by
connecting ready-made building blocks.
This approach has the following natural
advantages.

—The building blocks raise the level of
abstraction because they are the fun-
damental units in which program-

mers work. They can hide an arbi-
trary amount of internal complexity.

—The building blocks can be internally
parallel but composable sequentially,
in which case programmers need not
be aware that they are programming
in parallel.

—The implementation of each building
block needs to be done only once for
each architecture. The implementa-
tion can be done by specialists, and
time and energy can be devoted to
making it efficient.

In the context of parallel programming,
such building blocks have come to be
called skeletons [Cole 1989], and they
underlie a number of important models.
For example, a common parallel pro-
gramming operation is to sum the ele-
ments of a list. The arrangement of
control and communication to do this is
exactly the same as that for computing
the maximum element of a list and for
several other similar operations. Ob-
serving that these are all special cases
of a reduction provides a new abstrac-
tion for programmer and implementer
alike. Furthermore, computing the max-
imum element of an array or of a tree is
not very different from computing it for
a list, so that the concept of a reduction
carries over to other potential applica-
tions. Observing and classifying such
regularities is an important area of re-
search in parallel programming today.
One overview and classification of skel-
etons is the Basel Algorithm Classifica-
tion Scheme [Burkhart et al. 1993].

For the time being, we restrict our
attention to algorithmic skeletons, those
that encapsulate control structures. The
idea is that each skeleton corresponds
to some standard algorithm or algo-
rithm fragment, and that these skele-
tons can be composed sequentially. Soft-
ware developers select the skeletons
they want to use and put them together.
The compiler or library writer chooses
how each encapsulated algorithm is im-
plemented and how intra- and inter-
skeleton parallelism are exploited for
each possible target architecture.
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We briefly mention some of the most
important algorithmic skeleton ap-
proaches. The Pisa Parallel Program-
ming Language (P3L)5 uses a set of
algorithmic skeletons that capture com-
mon parallel programming paradigms
such as pipelines, worker farms, and
reductions. For example, in P3L worker
farms are modeled by means of the farm
constructor as follows.

farm P in (int data) out (int result)
W in (data) out (result)
result 5 f(data)
end

end farm

When the skeleton is executed, a num-
ber of workers W are executed in paral-
lel with the two P processes (the emitter
and the collector). Each worker executes
the function f¼ on its data partition.
Similar skeletons were developed by
Cole [1989, 1990, 1992, 1994], who also
computed cost measures for them on a
parallel architecture. Work of a similar
sort, using skeletons for reduce and
map over pairs, pipelines, and farms, is
also being done by Darlington’s group at
Imperial College [Darlington et al.
1993].

Algorithmic skeletons are simple and
abstract. However, because programs
must be expressed as compositions of
the skeletons provided, the expressive-
ness of the abstract programming lan-

guage is an open question. None of the
approaches previously described ad-
dresses this explicitly, nor is there any
natural way in which to develop algo-
rithmic skeleton programs, either from
some higher-level abstraction or di-
rectly at the skeleton level. On the other
hand, guaranteed performance for skel-
etons is possible if they are chosen with
care, and because of this, cost measures
can be provided.

4.1.3 Static and Communication-Lim-
ited Structure. Some skeleton ap-
proaches bound the amount of commu-
nication that takes place, usually
because they incorporate awareness of
geometric information.

One such model is homomorphic skel-
etons based on data types, an approach
that developed from the Bird–Meertens
formalism [Skillicorn 1994b]. The skele-
tons in this model are based on particu-
lar data types, one set for lists, one set
for arrays, one set for trees, and so on.
All homomorphisms on a data type can
be expressed as an instance of a single
recursive and highly parallel computa-
tion pattern, so that the arrangement of
computation steps in an implementa-
tion needs to be done only once for each
datatype.

Consider the pattern of computation
and communication shown in Figure 3.
Any list homomorphism can be com-
puted by appropriately substituting for
f and g, where g must be associative.

5 See Baiardi et al. [1991] and Danelutto et al.
[1991a,b; 1990].

Figure 3. A skeleton for computing arbitrary list homomorphisms.
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For example,

sum
maximum
length

sort

f 5 id, g 5 1

f 5 id, g 5 binary max
f 5 K1, g 5 1~where K1 is

the function that
always returns 1!

f 5 id, g 5 merge

Thus a template for scheduling the indi-
vidual computations and communica-
tions can be reused to compute many
different list homomorphisms by replac-
ing the operations that are done as part
of the template. Furthermore, this tem-
plate can also be used to compute homo-
morphisms on bags (multisets), with
slightly weaker conditions on the opera-
tions in the g slots—they must be com-
mutative as well as associative.

The communication required for such
skeletons is deducible from the struc-
ture of the data type, so each implemen-
tation needs to construct an embedding
of this communication pattern in the
interconnection topology of each desig-
nated computer. Very often the commu-
nication requirements are mild; for ex-
ample, it is easy to see that list
homomorphisms require only the exis-
tence of a logarithmic-depth binary tree
in the designated architecture intercon-
nection network. All communication can
then take place with nearest neighbors
(and hence in constant time). Homomor-
phic skeletons have been built for most
of the standard types: sets and bags
[Skillicorn 1994b], lists [Bird 1987; Mal-
colm 1990; Spivey 1989], trees [Gibbons
1991], arrays [Banger 1992, 1995], mol-
ecules [Skillicorn 1994a], and graphs
[Singh 1993].

The homomorphic skeleton approach
is simple and abstract, and the method
of construction of data type homomor-
phisms automatically generates a rich
environment for equational transforma-
tion. The communication pattern re-
quired for each type is known as the
standard topology for that type. Imple-
mentations with guaranteed perfor-
mance can be built for any designated

computers into whose interconnection
topologies the standard topology can be
embedded. Because the complete sched-
ule of computation and communication
is determined in advance by the imple-
menter, cost measures can be provided
[Skillicorn and Cai 1995].

Cellular processing languages are
based on the execution model of cellular
automata. A cellular automaton con-
sists of a possibly infinite n-dimensional
lattice of cells. Each cell is connected to
a limited set of adjacent cells. A cell has
a state chosen from a finite alphabet.
The state of a cellular automaton is
completely specified by the values of the
variables at each cell. The state of a
single cell is a simple or structured vari-
able that takes values in a finite set.
The states of all cells in the lattice are
updated simultaneously in discrete time
steps. Cells update their values by us-
ing a transition function that takes as
input the current state of the local cell
and some limited collection of nearby
cells that lie within some bounded dis-
tance, known as a neighborhood. Simple
neighborhoods of a cell (C) in a 2-D
lattice are

N
N
C
N

N
N
N
N

N
C
N

N
N
N

N

N
C

N

N

Cellular processing languages, such
as Cellang [Eckart 1992], CARPET
[Spezzano and Talia 1997], CDL, and
CEPROL [Seutter 1985], allow cellular
algorithms to be described by defining
the state of cells as a typed variable, or
a record of typed variables, and a tran-
sition function containing the evolution
rules of an automaton. Furthermore,
they provide constructs for the defini-
tion of the pattern of the cell neighbor-
hood. These languages implement a cel-
lular automaton as an SIMD or SPMD
program, depending on the designated
architecture. In the SPMD (single pro-
gram, multiple data) approach, cellular
algorithms are implemented as a collec-
tion of medium-grain processes mapped
onto different processing elements.
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Each process executes the same pro-
gram (the transition function) on differ-
ent data (the state of cells). Thus all the
processes obey, in parallel, the same
local rule, which results in a global
transformation of the whole automaton.
Communication occurs only among
neighboring cells, so the communication
pattern is known statically. This allows
scalable implementations with guaran-
teed performance, both on MIMD and
SIMD parallel computers [Cannataro et
al. 1995]. Moreover, cost measures can
be provided.

Another model that takes geometric
arrangement explicitly into account is
Crystal.6 Crystal is a functional lan-
guage with added data types called in-
dex domains to represent geometry,
that is, locality and arrangement. The
feature distinguishing Crystal from
other languages with geometric annota-
tions is that index domains can be
transformed and the transformations
reflected in the computational part of
programs. Crystal is simple and ab-
stract, and possesses a transformation
system based both on its functional se-
mantics and transformations of index
domains. Index domains are a flexible
way of incorporating target interconnec-
tion network topology into derivations,
and Crystal provides a set of cost mea-
sures to guide such derivations. A more
formal approach that is likely to lead to
interesting developments in this area is
Jay’s [1995] shapely types.

The key to an abstract model is that
the details of the implementation must
somehow be implicit in the text of each
program. We have seen two approaches.
The first relies on the run-time system
to find and exploit parallelism and the
second relies on predefined building
blocks, knowledge of which is built into
the compiler so that it can replace the
abstract program operations by imple-
mentations, piece by piece.

4.2 Parallelism Explicit

The second major class of models is that
in which parallelism is explicit in ab-
stract programs, but software develop-
ers do not need to be explicit about how
computations are to be divided into
pieces and how those pieces are mapped
to processors and communicate. The
main strategies for implementing de-
composition both depend on making de-
composition and mapping computation-
ally possible and effective. The first is to
renounce temporal and spatial locality
and assume low-cost context switch, so
that the particular decomposition used
does not affect performance much. Be-
cause any decomposition is effective, a
simple algorithm can be used to com-
pute it. The second is to use skeletons
that have a natural mapping to desig-
nate processor topologies, skeletons
based on the structure of the data that
the program uses.

4.2.1 Dynamic Structure. Dataflow
[Herath et al. 1987] expresses computa-
tions as operations, which may in prin-
ciple be of any size but are usually
small, with explicit inputs and results.
The execution of these operations de-
pends solely on their data dependen-
cies—an operation is computed after all
of its inputs have been computed, but
this moment is determined only at run-
time. Operations that do not have a
mutual data dependency may be com-
puted concurrently.

The operations of a dataflow program
are considered to be connected by paths,
expressing data dependencies, along
which data values flow. They can be
considered, therefore, as collections of
first-order functions. Decomposition is
implicit, since the compiler can divide
the graph representing the computation
in any way. The cut edges become the
places where data move from one pro-
cessor to another. Processors execute
operations in an order that depends
solely on those that are ready at any
given moment. There is therefore no
temporal context beyond the execution
of each single operation, and hence no

6 See Creveuil [1991] and Yang and Choo [1991;
1992a,b].
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advantage to temporal locality. Because
operations with a direct dependence are
executed at widely different times, pos-
sibly even on different processors, there
is no advantage to spatial locality either.
As a result, decomposition has little di-
rect effect on performance (although
some caveats apply). Decomposition can
be done automatically by decomposing
programs into the smallest operations
and then clustering to get pieces of ap-
propriate size for the designated archi-
tecture’s processors. Even random allo-
cation of operations to processors
performs well on many dataflow sys-
tems.

Communication is not made explicit
in programs. Rather, the occurrence of a
name as the result of an operation is
associated, by the compiler, with all of
those places where the name is the in-
put of an operation. Because there are
really no threads (threads contain only
a single instruction), communication is
effectively unsynchronized.

Dataflow languages have taken differ-
ent approaches to expressing repetitive
operations. Languages such as Id [Eka-
nadham 1991] and Sisal [McGraw et al.
1985; McGraw 1993; Skedzielewski 1991]
are first-order functional (or single as-
signment) languages. They have syntac-
tic structures looking like loops that
create a new context for each execution
of the “loop body” (so that they seem
like imperative languages except that
each variable name may be assigned to
only once in each context). For example,
a Sisal loop with single-assignment se-
mantics can be written as follows.

for i in 1, N
x :5 A[i] 1 B[i]
returns value of sum x

end for

Sisal is the most abstract of the data-
flow languages, because parallelism is
only visible in the sense that its loops
are expected to be opportunities for par-
allelism. In this example, all of the loop
bodies could be scheduled simulta-
neously and then their results collected.

Dataflow languages are abstract and

simple, but they do not have a natural
software development methodology.
They can provide guaranteed perfor-
mance; indeed, Sisal performs competi-
tively with the best FORTRAN compil-
ers on shared-memory architectures
[McGraw 1993]. However, performance
on distributed-memory architectures is
still not competitive. Because so much
scheduling is done dynamically at run-
time, cost measures are not possible.

Explicit logic languages are those in
which programmers must specify the
parallelism explicitly [Shapiro 1989].
They are also called concurrent logic
languages. Examples of languages in
this class are PARLOG [Gregory 1987],
Delta-Prolog [Pereira and Nasr 1984],
Concurrent Prolog [Shapiro 1986], GHC
[Ueda 1985], and Strand [Foster and
Taylor 1990].

Concurrent logic languages can be
viewed as a new interpretation of Horn
clauses, the process interpretation. Ac-
cording to this interpretation, an atomic
goal 4 C can be viewed as a process, a
conjunctive goal 4 C1, . . . , Cn as a
process network, and a logic variable
shared between two subgoals can be
viewed as a communication channel be-
tween two processes. The exploitation of
parallelism is achieved through the en-
richment of a logic language like Prolog
with a set of mechanisms for the anno-
tation of programs. One of these mecha-
nisms, for instance, is the annotation of
shared logical variables to ensure that
they are instantiated by only one sub-
goal. For example, the model of parallel-
ism utilized by PARLOG and Concur-
rent Prolog languages is based on the
CSP (communicating sequential pro-
cesses) model. In particular, communi-
cation channels are implemented in
PARLOG and Concurrent Prolog by
means of logical variables shared be-
tween two subgoals (e.g., p(X,Y), q(Y,Z)).
Both languages use the guard concept
to handle nondeterminism in the same
way as it is used in CSP to delay com-
munication between parallel processes
until a commitment is reached.
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A program in a concurrent logic lan-
guage is a finite set of guarded clauses,

H 4 G1, G2, . . . , Gn u B1, B2, . . . , Bm.
n,m $ 0,

where H is the clause head, the set Gi is
the guard, and Bi is the body of the
clause. Operationally the guard is a test
that must be successfully evaluated
with the head unification for the clause
to be selected. The symbol u, the commit
operator, is used as a conjunction be-
tween the guard and the body. If the
guard is empty, the commit operator is
omitted.

The declarative reading of a guarded
clause is: H is true if both Gi and Bi are
true. According to the process interpre-
tation, to solve H it is necessary to solve
the guard Gi, and if its resolution is
successful, B1, B2, . . . , Bm are solved
in parallel.

These languages require program-
mers to explicitly specify, using annota-
tions, which clauses can be solved in
parallel [Talia 1993]. For example, in
PARLOG the ‘.’ and ‘;’ clause separators
control the search for a candidate
clause. Each group of ‘.’ separated
clauses are tried in parallel. The clauses
following a ‘;’ are tried only if all the
clauses that precede the ‘;’ have been
found to be noncandidate clauses. For
instance, suppose that a relation is de-
fined by a sequence of clauses

C1. C2; C3.

The clauses C1 and C2 are tested for
candidacy in parallel, but the clause C3
is tested only if both C1 and C2 are
found to be noncandidate clauses. Al-
though concurrent logic languages ex-
tend the application areas of logic pro-
gramming from artificial intelligence to
system-level applications, program an-
notations require a different style of
programming. They weaken the declar-
ative nature of logic programming by
making the exploitation of parallelism
the responsibility of the programmer.
From the point of view of our classifica-
tion, concurrent logic programs such as

PARLOG programs define parallel exe-
cution explicitly by means of annota-
tions. Furthermore, PARLOG allows dy-
namic creation of threads to solve
subgoals but, because of the irregular
structure of programs, it does not limit
communication among threads.

Another symbolic programming lan-
guage in which parallelism is made ex-
plicit by the programmer is Multilisp.
The Multilisp [Halstead 1986] language
is an extension of Lisp in which oppor-
tunities for parallelism are created using
futures. In the language implementa-
tion, there is a one-to-one correspon-
dence between threads and futures. The
expression (future X) returns a suspen-
sion for the value of X and immediately
creates a new process to evaluate X,
allowing parallelism between the pro-
cess computing a value and the process
using that value. When the value of X is
computed, the value replaces the future.
Futures give a model that represents
partially computed values; this is espe-
cially significant in symbolic processing
where operations on structured data oc-
cur often. An attempt to use the result
of a future suspends until the value has
been computed. Futures are first-class
objects and can be passed around re-
gardless of their internal status. The
future construct creates a computation
style much like that found in the data-
flow model. In fact, futures allow eager
evaluation in a controlled way that fits
between the fine-grained eager evalua-
tion of dataflow and the laziness of
higher-order functional languages. By
using futures we have dynamic thread
creation, and hence programs with dy-
namic structure; moreover, the commu-
nication of values among expressions is
not limited.

4.2.2 Static Structure. Turning to
models with static structure, the skele-
ton concept appears once more, but this
time based around single data struc-
tures. At first glance it would seem that
monolithic operations on objects of a
data type, doing something to every
item of a list or array, is a programming
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model of limited expressiveness. How-
ever, it turns out to be a powerful way
of describing many interesting algo-
rithms.

Data parallelism arose historically
from the attempt to use computational
pipelines. Algorithms were analyzed for
situations in which the same operation
was applied repeatedly to different data
and the separate applications did not
interact. Such situations exploit vector
processors to dramatically reduce the
control overhead of the repetition, since
pipeline stalls are guaranteed not to
occur because of the independence of
the steps. With the development of
SIMD computers, it was quickly real-
ized that vectorizable code is also SIMD
code, except that the independent com-
putations proceed simultaneously in-
stead of sequentially. SIMD code can be
efficiently executed on MIMD comput-
ers as well, so vectorizable code situa-
tions can be usefully exploited by a wide
range of parallel computers.

Such code often involves arrays and
can be seen more abstractly as in-
stances of maps, the application of a
function to each element of a data struc-
ture. Having made this abstraction, it is
interesting to ask what other operations
might be useful to consider as applied
monolithically to a data structure. Thus
data parallelism is a general approach
in which programs are compositions of
such monolithic operations applied to
objects of a data type and producing
results of that same type.

We distinguish two approaches to de-
scribing such parallelism: one based on
(parallel) loops and the other based on
monolithic operations on data types.

Consider FORTRAN with the addition
of a ForAll loop, in which iterations of
the loop body are conceptually indepen-
dent and can be executed concurrently.
For example, a ForAll statement such
as

ForAll (I 5 1:N, J 5 1:M)
A(I,J) 5 I p B(J)

on a parallel computer can be executed
in parallel. Care must be taken to en-

sure that the loops do not reference the
same locations; for example, by indexing
the same element of an array via a
different index expression. This cannot
be checked automatically in general, so
most FORTRAN dialects of this kind
place the responsibility on the program-
mer to make the check. Such loops are
maps, although not always over a single
data object.

Many FORTRAN dialects such as
FORTRAN-D [Tseng 1993] and High
Performance Fortran (HPF) [High Per-
formance FORTRAN Language Specifi-
cation 1993; Steele 1993] start from this
kind of parallelism and add more direct
data parallelism by including constructs
for specifying how data structures are to
be allocated to processors, and opera-
tions to carry out other data-parallel
operations, such as reductions. For ex-
ample, HPF, a parallel language based
on FORTRAN-90, FORTRAN D, and
SIMD FORTRAN, includes the Align di-
rective to specify that certain data are
to be distributed in the same way as
certain other data. For instance

!HPF$ Align X (:,:) with D (:,:)

aligns X with D, that is, ensures that
elements of X and D with the same
indices are placed on the same proces-
sor. Furthermore, the Distribute direc-
tive specifies a mapping of data to pro-
cessors; for example,

!HPF$ Distribute D2 (Block, Block)

specifies that the processors are to be
considered a two-dimensional array and
the points of D2 are to associate with
processors in this array in a blocked
fashion. HPF also offers a directive to
inform the compiler that operations in a
loop can be executed independently (in
parallel). For example, the following
code asserts that A and B do not share
memory space.

!HPF$ Independent
Do I 5 1, 1000
A(I) 5 B(I)
end Do
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Other related languages are Pandore
II [André et al. 1994; Andre and
Thomas 1989; Jerid et al. 1994] and C**
[Larus et al. 1992]. This work is begin-
ning to converge with skeleton ap-
proaches: for example, Darlington’s
group has developed a FORTRAN ex-
tension that uses skeletons [Darlington
et al. 1995]. Another similar approach is
the latest language in the Modula fam-
ily, Modula 3* [Heinz 1993]. Modula 3*
supports forall-style loops over data
types in which each loop body executes
independently and the loop itself ends
with a barrier synchronization. It is
compiled to an intermediate language
that is similar in functionality to HPF.

Data-parallel languages based on
data types other than arrays have also
been developed. Some examples are:
parallel SETL [Flynn-Hummel and
Kelly 1993; Hummel et al. 1991], paral-
lel sets [Kilian 1992a,b], match and
move [Sheffler 1992], Gamma [Banâtre
and LeMetayer 1991; Creveuil 1991;
Mussat 1991], and PEI [Violard 1994].
Parallel SETL is an imperative-looking
language with data-parallel operations
on bags. For example, the inner state-
ment of a matrix multiplication looks
like

c(i,j) :5 1/{a(i,k) p b(k,j) : k over {1..n}}.

The outer set of braces is a bag compre-
hension, generating a bag containing
the values of the expression before the
colon for all values of k implied by the
text after the colon. The 1/ is a bag
reduction or fold, summing these val-
ues. Gamma is a language with data-
parallel operations on finite sets. For
example, the code to find the maximum
element of a set is

maxM :5 x:M, y:M 3 x:M 4 x $ y

which specifies that any pair of ele-
ments x and y may be replaced in a set
by the element x, provided the value in
x is larger than the value in y.

There are also models based on arrays
but which derive from APL rather than
FORTRAN. These include Mathematics

of Arrays (MOA) [Mullin 1988], and
Nial and Array Theory [More 1986].

Data-parallel languages simplify pro-
gramming because operations that re-
quire loops in lower-level parallel lan-
guages can be written as single
operations (which are also more reveal-
ing to the compiler since it does not
have to try to infer the pattern intended
by the programmer). With a sufficiently
careful choice of data-parallel opera-
tions, some program transformation ca-
pability is often achieved. The natural
mapping of data-parallel operations to
architectures, at least for simple types,
makes guaranteed performance, and
also cost measures, possible.

4.2.3 Static and Communication-Lim-
ited Structure. The data-parallel lan-
guages of the previous section were de-
veloped primarily with program
construction in mind. There is another
set of similar languages whose inspira-
tion was primarily architectural fea-
tures. Because of these origins, they
typically pay more attention to the
amount of communication that takes
place in computing each operation.
Thus their thread structures are fixed,
communication takes place at well-de-
fined points, and the size of data in-
volved in communications is small and
fixed.

A wide variety of languages was de-
veloped whose basic operations were da-
ta-parallel list operations, inspired by
the architecture of the Connection Ma-
chine 2. These often included a map
operation, some form of reduction, per-
haps using only a fixed set of operators,
and later scans (parallel prefixes) and
permutation operations. In approxi-
mately chronological order, these mod-
els are: scan [Blelloch 1987], multiprefix
[Ranade 1989], paralations [Goldman
1989; Sabot 1989], the C* data-parallel
language [Hatcher and Quinn 1991;
Quinn and Hatcher 1990], the scan-vec-
tor model and NESL [Blelloch 1990,
1993, 1996; Blelloch and Sabot 1988,
1990; Blelloch and Greiner 1994], and
CamlFlight [Hains and Foisy 1993]. As

148 • D. B. Skillicorn and D. Talia

ACM Computing Surveys, Vol. 30, No. 2, June 1998



for other data-parallel languages, these
models are simple and fairly abstract.
For instance, C* is an extension of the C
language that incorporates features of
the SIMD parallel model. In C*, data
parallelism is implemented by defining
data of a parallel kind. C* programs
map variables of a particular data type,
defined as parallel by the keyword poly,
to separate processing elements. In this
way, each processing element executes,
in parallel, the same statement for each
instance of the specified data type. At
least on some architectures, data-paral-
lel languages provide implementations
with guaranteed performance and have
accurate cost measures. Their weakness
is that the choice of operations is made
on the basis of what can be efficiently
implemented, so that there is no basis
for a formal software development
methodology.

4.3 Decomposition Explicit

Models of this kind require abstract pro-
grams to specify the pieces into which
they are to be divided, but the place-
ment of these pieces on processors and
the way in which they communicate
need not be described so explicitly.

4.3.1 Static Structure. The only ex-
amples in this class are those that re-
nounce locality, which ensures that
placement does not matter to perfor-
mance.

Bulk synchronous parallelism (BSP)7

is a model in which interconnection net-
work properties are captured by a few
architectural parameters. A BSP ab-
stract machine consists of a collection of
p abstract processors, each with local
memory, connected by an interconnec-
tion network whose only properties of
interest are the time to do a barrier
synchronization (l) and the rate at
which continuous randomly addressed
data can be delivered (g). These BSP
parameters are determined experimen-
tally for each parallel computer.

A BSP (abstract) program consists of
p threads and is divided into supersteps.
Each superstep consists of: a computa-
tion in each processor, using only locally
held values; a global message transmis-
sion from each processor to any set of
the others; and a barrier synchroniza-
tion. At the end of a superstep, the
results of global communications be-
come visible in each processor’s local
environment. A superstep is shown in
Figure 4. If the maximum local compu-
tation on a step takes time w and the
maximum number of values sent by or
received by any processor is h, then the
total time for a superstep is given by

t 5 w 1 hg 1 l

7 See McColl [1994a,b; 1993a], Skillicorn et al.
[1996], and Valiant [1989; 1990a,b].

Figure 4. A BSP superstep.
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(where g and l are the network parame-
ters), so that it is easy to determine the
cost of a program. This time bound de-
pends on randomizing the placement of
threads and using randomized or adap-
tive routing to bound communication
time.

Thus BSP programs must be decom-
posed into threads, but the placement of
threads is then done automatically.
Communication is implied by the place-
ment of threads, and synchronization
takes place across the whole program.
The model is simple and fairly abstract,
but lacks a software construction meth-
odology. The cost measures give the real
cost of a program on any architecture
for which g and l are known.

The current implementation of BSP
uses an SPMD library that can be called
from C and FORTRAN. The library pro-
vides operations to put data into the
local memory of a remote process, to get
data from a remote process, and to syn-
chronize. We illustrate with a small pro-
gram to compute prefix sums:

int prefixsums(int x) {
int i, left, right;
bsp pushregister(&left,sizeof(int));
bsp sync¼;
right 5 x;
for (i51;i,bsp nprocs¼;ip52) {

if (bsp pid¼1i , bsp nprocs¼)
bsp put(bsp pid¼1i,&right,&left,

0,sizeof(int));
bsp sync¼;
if (bsp pid¼.5i) right 5 left 1

right;
}
bsp popregister(&left);
return right;

}

The bsp-pushregister and bsp-popregis-
ter calls are needed so that each process
can refer to variables in remote pro-
cesses by name, even though they might
have been allocated in heap or stack
storage.

Another related approach is LogP
[Culler et al. 1993], which uses similar
threads with local contexts, updated by
global communications. However, LogP
does not have an overall barrier syn-

chronization. The LogP model is in-
tended as an abstract model that can
capture the technological reality of par-
allel computation. LogP models parallel
computations using four parameters:
the latency (L), overhead (o), band-
width (g) of communication, and the
number of processors (P). A set of pro-
gramming examples has been designed
with the LogP model and implemented
on the CM-5 parallel machine to evalu-
ate the model’s usefulness. However,
the LogP model is no more powerful
than BSP [Bilardi et al. 1996], so BSP’s
simpler style is perhaps to be preferred.

4.4 Mapping Explicit

Models in this class require abstract
programs to specify how programs are
decomposed into pieces and how these
pieces are placed, but they provide some
abstraction for the communication ac-
tions among the pieces. The hardest
part about describing communication is
the necessity of labeling the two ends of
each communication action to say that
they belong together, and of ensuring
that communication actions are prop-
erly matched. Given the number of com-
munications in a large parallel pro-
gram, this is a tedious burden for
software developers. All of the models in
this class try to reduce this burden by
decoupling the ends of the communica-
tion from each other, by providing high-
er-level abstractions for patterns of
communication, or by providing better
ways of specifying communication.

4.4.1 Dynamic Structure. Coordina-
tion languages simplify communication
by separating the computation aspects
of programs from their communication
aspects and providing a separate lan-
guage in which to specify communica-
tion. This separation makes the compu-
tation and communication orthogonal to
each other, so that a particular coordi-
nation style can be applied to any se-
quential language.

The best known example is Linda
[Ahuja et al., 1994; Carriero 1987; Car-
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riero and Gelernter 1988, 1993], which
replaces point-to-point communication
with a large shared pool into which data
values are placed by processes and from
which they are retrieved associatively.
This shared pool is known as a tuple
space. The Linda communication model
contains three communication opera-
tions: in, which removes a tuple from
tuple space, based on its arity and the
values of some of its fields, filling in the
remaining fields from the retrieved
tuple; read (rd), which does the same
except that it copies the tuple from
tuple space; and out, which places a
tuple in tuple space. For example, the
read operation

rd(“Canada”, ?X, “USA”)

searches the tuple space for tuples of
three elements, first element “Canada,”
last element “USA,” and middle element
of the same type as variable X. Besides
these three basic operations, Linda pro-
vides the eval(t) operation that implic-
itly creates a new process to evaluate
the tuple and insert it in the tuple
space.

The Linda operations decouple the
send and receive parts of a communica-
tion—the “sending” thread does not
know the “receiving” thread, not even if
it exists. Although the model for finding
tuples is associative matching, imple-
mentations typically compile these
away, based on patterns visible at com-
pile time. The Linda model requires
programmers to manage the threads of
a program, but reduces the burden im-
posed by managing communication. Un-
fortunately, a tuple space cannot neces-
sarily be implemented with guaranteed
performance, so that the model cannot
provide cost measures—worse, Linda
programs can deadlock. Another impor-
tant issue is a software development
methodology. To address this issue a
high-level programming environment,
called the Linda Program Builder
(LPB), has been implemented to support
the design and development of Linda
programs [Ahmed 1994]. The LPB envi-
ronment guides a user through program

design, coding, monitoring, and execu-
tion of Linda software.

Nonmessage communication lan-
guages reduce the overheads of manag-
ing communication by disguising com-
munication in ways that fit more
naturally into threads. For example,
ALMS [Arbeit et al. 1993; Peierls and
Campbell 1991] treats message passing
as if the communication channels were
memory-mapped. Reference to certain
message variables in different threads
behaves like a message transfer from
one to the others. PCN [Foster et al.
1992, 1991; Foster and Tuecke 1991]
and Compositional C11 also hide com-
munication by single-use variables. An
attempt to read from one of these vari-
ables blocks the thread if a value has
not already been placed in it by another
thread. These approaches are similar to
the use of full/empty bits on variables,
an old idea coming back to prominence
in multithreaded architectures.

In particular, the PCN (program com-
position notation) language is based on
two simple concepts, concurrent compo-
sition and single-assignment variables.
In PCN, single-assignment variables
are called definitional variables. Con-
current composition allows parallel exe-
cution of statement blocks to be speci-
fied, without specifying, in the
concurrent composition, how each of the
pieces of the composition is mapped to
processors. Processes that share a defi-
nitional variable can communicate with
each other through it. For instance, in
the parallel composition

{ i producer(X), consumer(X)}

the two processes producer and con-
sumer can use X to communicate regard-
less of their location on the parallel
computer. In PCN, the mapping of pro-
cesses to processors is specified by the
programmer either by annotating pro-
grams with location functions or by de-
fining mappings of virtual to physical
topologies.

The logical extension of mapping com-
munication to memory is virtual shared
memory, in which the abstraction pro-
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vided to the program is of a single,
shared address space, regardless of the
real arrangement of memory. This re-
quires remote memory references either
to be compiled into messages or to be
effected by messages at run-time. So
far, results have not suggested that this
approach is scalable, but it is an ongo-
ing research area.8

Annotated functional languages make
the compiler’s job easier by allowing
programmers to provide extra informa-
tion about suitable ways to partition the
computation into pieces and place them
[Kelly 1989]. The same reduction rules
apply, so that the communication and
synchronization induced by this place-
ment follow in the same way as in pure
graph reduction.

An example of this kind of language is
Paralf [Hudak 1986]. Paralf is a func-
tional language based on lazy evalua-
tion; that is, an expression is evaluated
on demand. However, Paralf allows a
user to control the evaluation order by
explicit annotations. In Paralf, commu-
nication and synchronization are im-
plicit, but it provides a mapping nota-
tion to specify which expressions are to
be evaluated on which processor. An
expression followed by the annotation
$on proc is evaluated on the processor
identified by proc. For example, the ex-
pression

(f(x) $on ($self11)) p (h(x) $on ($self))

denotes the computation of the f(x) sub-
expression on a neighbor processor in
parallel with the execution of h(x).

The remote procedure call (RPC)
mechanism is an extension of the tradi-
tional procedure call. An RPC is a pro-
cedure call between two different pro-
cesses, the caller and the receiver.
When a process calls a remote proce-
dure on another process, the receiver
executes the code of the procedure and
passes back to the caller the output
parameters. Like rendezvous, RPC is a

synchronous cooperation form. During
the execution of the procedure, the
caller is blocked and is reactivated by
the arrival of the output parameters.
Full synchronization of RPC might limit
the exploitation of a high degree of par-
allelism among the processes that com-
pose a concurrent program. In fact,
when a process P calls a remote proce-
dure r of a process T, the caller process
P remains idle until the execution of r
terminates, even if P could execute
some other operation during the execu-
tion of r. To partially limit this effect,
most new RPC-based systems use light-
weight threads. Languages based on the
remote procedure call mechanism are
DP [Hansen 1978], Cedar [Swinehart et
al. 1985], and Concurrent CLU [Cooper
and Hamilton 1988].

4.4.2 Static Structure. Graphical lan-
guages simplify the description of com-
munication by allowing it to be inserted
graphically and at a higher, structured
level. For example, the language Enter-
prise [Lobe et al. 1992; Szafron et al.
1991] classifies program units by type
and generates some of the communica-
tion structure automatically based on
type. The metaphor is of an office, with
some program units communicating
only through a “secretary,” for example.
Parsec [Feldcamp and Wagner 1993] al-
lows program units to be connected us-
ing a set of predefined connection pat-
terns. Code [Newton and Browne 1992]
is a high-level dataflow language in
which computations are connected to-
gether graphically and a firing rule and
result-passing rule are associated with
each computation. Decomposition in
these models is still explicit, but com-
munication is both more visible and
simpler to describe. The particular com-
munication patterns available are cho-
sen for applicability reasons rather than
efficiency, so performance is not guar-
anteed, nor are cost measures.

Coordination languages with contexts
extend the Linda idea. One of the weak-
nesses of Linda is that it provides a
single global tuple space and thus pre-

8 See Chin and McColl [1994], Li and Hudak
[1989], Raina [1990], and Wilkinson et al. [1992].
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vents modular development of software.
A model that extends Linda by includ-
ing ideas from Occam is the language
Ease [Zenith 1991a,b,c, 1992]. Ease pro-
grams have multiple tuple spaces,
which are called contexts and may be
visible to only some threads. Because
those threads that access a particular
context are known, contexts take on
some of the properties of Occam-like
channels. Threads read and write data
to contexts as if they were Linda tuple
spaces, with associative matching for
reads and inputs. However, they can
also use a second set of primitives that
move data to a context and relinquish
ownership of the data, or retrieve data
from a context and remove them from
the context. Such operations can use
pass-by-reference since they guarantee
that the data will be referenced by only
one thread at a time. Ease has many of
the same properties as Linda, but
makes it easier to build implementa-
tions with guaranteed performance.
Ease also helps with decomposition by
allowing process structuring in the style
of Occam.

Another related language is ISETL-
Linda [Douglas et al. 1995], which is an
extension to the SETL paradigm of com-
puting with sets as aggregates. It adds
Linda-style tuple spaces as a data type
and treats them as first-class objects. To
put it another way, ISETL-Linda resem-
bles a data-parallel language in which
bags are a data type and associative
matching is a selection operation on

bags. Thus ISETL-Linda can be seen as
extending SETL-like languages with a
new data type or as extending Linda-
like languages with skeletons.

A language of the same kind derived
from FORTRAN is Opus [Mehrotra and
Haines 1994], which has both task and
data parallelism, but communication is
mediated by shared data abstractions.
These are autonomous objects that are
visible to any subset of tasks but are
internally sequential; that is, only one
method within each object is active at a
time. They are a kind of generalization
of monitors.

4.4.3 Static and Communication-Lim-
ited Structure. Communication skele-
tons extend the idea of prestructured
building blocks to communication [Skil-
licorn 1996]. A communication skeleton
is an interleaving of computation steps,
which consist of independent local com-
putations, and communication steps,
which consist of fixed patterns of com-
munication in an abstract topology.
These patterns are collections of edge-
disjoint paths in an abstract topology,
each of which functions as a broadcast
channel. Figure 5 shows a communica-
tion skeleton using two computation
steps, interleaved with two different
communication patterns. This model is
a blend of ideas from BSP and from
algorithmic skeletons, together with
concepts such as adaptive routing and
broadcast that are supported by new
architectural designs. The model

Figure 5. A communication skeleton.
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is moderately architecture-independent
because communication skeletons can
be built assuming a weak topology tar-
get and then embedding results can be
used to build implementations for tar-
gets with richer interconnection topolo-
gies. It can provide guaranteed perfor-
mance and does have cost measures.

4.5 Communication Explicit

Models in this class require communica-
tion to be explicit, but reduce some of
the burden of synchronization associ-
ated with it. Usually this is done by
having an asynchronous semantics:
messages are delivered but the sender
cannot depend on the time of delivery,
and delivery of multiple messages may
be out of order.

4.5.1 Dynamic Structure. Process
nets resemble dataflow in the sense that
operations are independent entities that
respond to the arrival of data by com-
puting and possibly sending on other
data. The primary differences are that
the operations individually decide what
their response to data arrival will be,
and individually decide to change their
behavior. They therefore lack the global
state that exists, at least implicitly, in
dataflow computations.

The most important model in this
class is actors [Agha 1986; Baude 1991;
Baude and Vidal-Naquet 1991]. Actor
systems consist of collections of objects
called actors, each of which has an in-
coming message queue. An actor repeat-
edly executes the sequence: read the
next incoming message, send messages
to other actors whose identity it knows,
and define a new behavior that governs
its response to the next message.
Names of actors are first-class objects
and may be passed around in messages.
Messages are delivered asynchronously
and unordered. However, neither guar-
anteed performance nor cost measures
for actors is possible because the total
communication in an actor program
may not be bounded. Moreover, because
the Actor model is highly distributed,

compilers must serialize execution to
achieve execution efficiency on conven-
tional processors. One of the most effec-
tive compiler transformations is to elim-
inate creation of some types of actors
and to change messages sent to actors
on the same processor into function
calls [Kim and Agha 1995]. Thus the
actual cost of executing an actor pro-
gram is indeterminate without a specifi-
cation of how the actors are mapped to
processors and threads.

A different kind of process net is pro-
vided by the language Darwin [Eisen-
bach and Patterson 1993; Radestock
and Eisenbach 1994], which is based on
the p-calculus. The language provides a
semantically well founded configuration
subset for specifying how ordinary pro-
cesses are connected and how they com-
municate. It is more like a process net
than a configuration language since the
binding of the semantics of communica-
tion to connections is dynamic.

One of the weaknesses of the actor
model is that each actor processes its
message queue sequentially and this
can lead to bottlenecks. Two extensions
of the model that address this issue
have been proposed: Concurrent Aggre-
gates [Chien 1991; Chien and Dally
1990] and ActorSpace [Agha and
Callsen 1993]. Concurrent Aggregates
(CA) is an object-oriented language well
suited to exploit parallelism on fine-
grain massively parallel computers. In
it, unnecessary sources of serialization
have been avoided. An aggregate in CA
is a homogeneous collection of objects
(called representatives) that are grouped
together and referenced by a single ag-
gregate name. Each aggregate is multi-
access, so it may receive several mes-
sages simultaneously, unlike other
object-oriented languages such as the
actor model and ABCL/1. Concurrent
Aggregates incorporates many other in-
novative features such as delegation,
intra-aggregate addressing, first-class
messages, and user continuations. Dele-
gation allows the behavior of an aggre-
gate to be constructed incrementally
from that of many other aggregates. In-
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tra-aggregate addressing makes cooper-
ation among parts of an aggregate pos-
sible.

The ActorSpace model extends the ac-
tor model to avoid unnecessary serial-
izations. An actor space is a computa-
tionally passive container of actors that
acts as a context for matching patterns.
In fact, the ActorSpace model uses a
communication model based on destina-
tion patterns. Patterns are matched
against listed attributes of actors and
actor spaces that are visible in the actor
space. Messages can be sent to one arbi-
trary member of a group or broadcast to
all members of a group defined by a
pattern.

We now turn to external OO models.
Actors are regarded as existing regard-
less of their communication status. A
superficially similar approach, but one
which is quite different underneath, is
to extend sequential object-oriented lan-
guages so that more than one thread is
active at a time. The first way to do
this, which we have called external ob-
ject-orientation, is to allow multiple
threads of control at the highest level of
the language. Objects retain their tradi-
tional role of collecting code that logi-
cally belongs together. Object state can
now act as a communication mechanism
since it can be altered by a method
executed by one thread and observed by
a method executed as part of another
thread. The second approach, which we
call internal object orientation, encap-
sulates parallelism within the methods
of an object, but the top level of the
language appears sequential. It is thus
closely related to data-parallelism. We
return to this second case later; here we
concentrate on external OO models and
languages.

Some interesting external object-
based models are ABCL/1 [Yonezawa et
al. 1987], ABCL/R [Watanabe et al.
1988], POOL-T [America 1987], EPL
[Black et al. 1984], Emerald [Black et
al. 1987], and Concurrent Smalltalk
[Yokote et al. 1987]. In these languages,
parallelism is based on assigning a
thread to each object and using asyn-

chronous message passing to reduce
blocking. EPL is an object-based lan-
guage that influenced the design of Em-
erald. In Emerald, all entities are ob-
jects that can be passive (data) or
active. Each object consists of four
parts: a name, a representation (data), a
set of operations, and an optional pro-
cess that can run in parallel with invo-
cations of object operations. Active ob-
jects in Emerald can be moved from one
processor to another. Such a move can
be initiated by the compiler or by the
programmer using simple language con-
structs. The primary design principles
of ABCL/1 (an object-based concurrent
language) are practicality and clear se-
mantics of message passing. Three
types of message passing are defined:
past, now, and future. The now mode
operates synchronously, whereas the
past and future modes operate asyn-
chronously. For each of the three mes-
sage-passing mechanisms, ABCL/1 pro-
vides two distinct modes, ordinary and
express, which correspond to two differ-
ent message queues. To give an exam-
ple, past type message passing in ordi-
nary and express modes is, respectively,

[Obj ,5 msg] and [Obj ,,5 msg],

where Obj is the receiver object and msg
is the sent message.

In ABCL/1, independent objects can
execute in parallel but, as in the actor
model, messages are processed serially
within an object. Although message
passing in ABCL/1 programs may take
place concurrently, no more than one
message can arrive at the same object
simultaneously. This limits the parallel-
ism among objects. An extension of
ABCL/1 is ABCL/R where reflection has
been introduced.

Objects and processes exploit parallel-
ism in external object-oriented lan-
guages in two principal ways: using the
objects as the unit of parallelism by
assigning one or more processes to each
object, or defining processes as compo-
nents of the language. In the first ap-
proach, languages are based on active
objects and each process is bound to a
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particular object for which it is created.
In the latter approach, two different
kinds of entities are defined, objects and
processes. A process is not bound to a
single object, but is used to perform all
the operations required to satisfy an
action. Therefore, a process can execute
within many objects, changing its ad-
dress space when an invocation to an-
other object is made. Whereas the ob-
ject-oriented models discussed before
use the first approach, systems like Ar-
gus [Liskov 1987] and Presto [Bershad
et al. 1988] use the second approach. In
this case, languages provide mecha-
nisms for creating and controlling mul-
tiple processes external to the object
structure.

Argus supports coarse-grain and me-
dium-grain objects and dynamic process
creation. In Argus, guardians contain
data objects and procedures. A guardian
instance is created dynamically by a call
to a creator procedure and can be explic-
itly mapped to a processor:

guardianType$creator(parameters)
processor X.

The expense of dynamic process cre-
ation is reduced by maintaining a pool
of unused processes. A new group of
processes is created only when the pool
is emptied. In these models, parallelism
is implemented on top of the object or-
ganization and explicit constructs are
defined to ensure object integrity. It is
worth noticing that these models were
developed for programming coarse-grain
programs in distributed systems, not
tightly coupled, fine-grain parallel ma-
chines.

Active messages is an approach that
decouples communication and synchro-
nization by treating messages as active
objects rather than passive data. Essen-
tially a message consists of two parts: a
data part and a code part that executes
on the receiving processor when the
message has been transmitted. Thus a
message changes into a process when it
arrives at its destination. There is
therefore no synchronization with any
process at the receiving end, and hence

a message “send” does not have a corre-
sponding “receive.” This approach is
used in the Movie system [Faigle et al.
1993] and the language environments
for the J-machine [Chien and Dally
1990; Dally et al. 1992; Noakes and
Dally 1990].

4.5.2 Static Structure. Internal ob-
ject-oriented languages are those in
which parallelism occurs within single
methods. The Mentat Programming
Language (MPL) is a parallel object-
oriented system designed for developing
architecture-independent parallel appli-
cations. The Mentat system integrates a
data-driven computation model with the
object-oriented paradigm. The data-
driven model supports a high degree of
parallelism, whereas the object-oriented
paradigm hides much of the parallel
environment from the user. MPL is an
extension of C11 that supports both
intra- and interobject parallelism. The
compiler and the run-time support of
the language are designed to achieve
high performance. The language con-
structs are mapped to the macrodata-
flow model that is the computation
model underlying Mentat, which is a
medium-grain data-driven model in
which programs are represented as di-
rected graphs. The vertices of the pro-
gram graphs are computation elements
that perform some function. The edges
model data dependencies between the
computation elements. The compiler
generates code to construct and execute
data dependency graphs. Thus interob-
ject parallelism in Mentat is largely
transparent to the programmer. For ex-
ample, suppose that A, B, C, D, E, and
M are vectors and consider the state-
ments:

A 5 vect op.add (B,C);
M 5 vect op.add (A, vect op.add

(D,E));

The Mentat compiler and run-time sys-
tem detect that the two additions (B 1
C) and (D 1 E) are not data-dependent
on one another and can be executed in
parallel. Then the result is automati-
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cally forwarded to the final addition.
That result is forwarded to the caller
and associated with M. In this ap-
proach, the programmer makes granu-
larity and partitioning decisions using
Mentat class definition constructs, and
the compiler and the run-time support
manage communication and synchroni-
zation [Grimshaw 1993a,b, 1991; Grim-
shaw et al. 1991a, b].

4.5.3 Static and Communication-
Limited Structure. Systolic arrays are
gridlike architectures of processing ele-
ments or cells that process data in an
n-dimensional pipelined fashion. By
analogy with the systolic dynamics of
the heart, systolic computers perform
operations in a rhythmic, incremental,
and repetitive manner [Kung 1982] and
pass data to neighbor cells along one or
more directions. In particular, each
computing element computes an incre-
mental result and the systolic computer
derives the final result by interpreting
the incremental results from the entire
array. A parallel program for a systolic
array must specify how data are
mapped onto the systolic elements and
the data flow through the elements.
High-level programmable arrays allow
the development of systolic algorithms
by the definition of inter- and intracell
parallelism and cell-to-cell data commu-
nication. Clearly, the principle of rhyth-
mic communication distinguishes systolic
arrays from other parallel computers.
However, even if high-level programma-
bility of systolic arrays creates a more
flexible systolic architecture, penalties
can occur because of complexity and
possible slowing of execution due to the
problem of data availability. High-level
programming models are necessary for
promoting widespread use of program-
mable systolic arrays. One example is
the language Alpha [de Dinechin et al.
1995], where programs are expressed as
recurrence equations. These are trans-
formed into systolic form by regarding
the data dependencies as defining an
affine or vector space that can be geo-
metrically transformed.

4.6 Everything Explicit

The next category of models is those
that do not hide much detail of decom-
position and communication. Most of
the first-generation models of parallel
computation are at this level, designed
for a single architecture style, explicitly
managed.

4.6.1 Dynamic Structure. Most mod-
els provide a particular paradigm for
handling partitioning, mapping, and
communication. A few models have
tried to be general enough to provide
multiple paradigms, for example, Pi
[Dally and Wills 1989; Wills 1990], by
providing sets of primitives for each
style of communication. Such models
can have guaranteed performance and
cost measures, but they make the task
of software construction difficult be-
cause of the amount of detail that must
be given about a computation. Another
set of models of the same general kind
are the programming languages Orca
[Bal et al. 1990] and SR [Andrews and
Olsson 1993; Andrews et al. 1988]. Orca
is an object-based language that uses
shared data-objects for interprocess
communication. The Orca system is a
hierarchically structured set of abstrac-
tions. At the lowest level, reliable
broadcast is the basic primitive so that
writes to a replicated structure can take
effect rapidly throughout a system. At
the next level of abstraction, shared
data are encapsulated in passive objects
that are replicated throughout the sys-
tem. Parallelism in Orca is expressed
through explicit process creation. A new
process can be created through the fork
statement

fork proc name (params)[on
(cpu number)].

The on part optionally specifies the pro-
cessor on which to run the child process.
The parameters specify the shared data
objects used for communication between
the parent and the child processes.

Synchronizing Resources (SR) is
based on the resource concept. A re-
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source is a module that can contain
several processes. A resource is dynam-
ically created by the create command
and its processes communicate by the
use of semaphores. Processes belonging
to different resources communicate us-
ing only a restricted set of operations
explicitly defined in the program as pro-
cedures.

There is a much larger set of models
or programming languages based on a
single communication paradigm. We
consider three paradigms: message
passing, shared memory, and rendez-
vous.

Message passing is the basic commu-
nication technology provided on distrib-
uted-memory MIMD architectures, and
so message-passing systems are avail-
able for all such machines. The inter-
faces are low-level, using sends and re-
ceives to specify the message to be
exchanged, process identifier, and ad-
dress.

It was quickly realized that message-
passing systems look much the same for
any distributed-memory architecture, so
it was natural to build standard inter-
faces to improve the portability of mes-
sage-passing programs. The most recent
example of this is MPI (message passing
interface) [Dongarra et al. 1995; Mes-
sage Passing Interface Forum 1993],
which provides a rich set of messaging
primitives, including point-to-point
communication, broadcasting, and the
ability to collect processes in groups and
communicate only within each group.
MPI aims to become the standard mes-
sage-passing interface for parallel appli-
cations and libraries [Dongarra et al.
1996]. Point-to-point communications
are based on send and receive primitives

MPI Send (buf, bufsize, datatype,
dest, ..... )

MPI Recv (buf, bufsize, datatype,
source, ..... ).

Moreover, MPI provides primitives for
collective communication and synchro-
nization such as MPI Barrier, MPI B-
cast, and MPI Gather. In its first ver-

sion, MPI does not make provision for
process creation, but in the MPI2 ver-
sion additional features for active mes-
sages, process startup, and dynamic
process creation are provided.

More architecture-independent mes-
sage-passing models have been devel-
oped to allow transparent use of net-
works of workstations. In principle,
such networks have much unused com-
pute power to be exploited. In practice,
the large latencies involved in commu-
nicating among workstations make
them low-performance parallel comput-
ers. Models for workstation message-
passing include systems such as PVM,9

Parmacs [Hempel 1991; Hempel et al.
1992], and p4 [Butler and Lusk 1992].
Such models are exactly the same as
inter-multiprocessor message-passing
systems, except that they typically have
much larger-grain processes to help con-
ceal the latency, and they must address
heterogeneity of the processors. For ex-
ample, PVM (parallel virtual machine)
has gained widespread acceptance as a
programming toolkit for heterogeneous
distributed computing. It provides a set
of primitives for process creation and
communication that can be incorporated
into existing procedural languages in
order to implement parallel programs.
In PVM, a process is created by the
pvm spawn¼ call. For instance, the
statement

proc num 5 pvm spawn (“progr1”,
NULL, PVMTaskDefault, 0, n proc)

spawns n proc copies of the program
progr1. The actual number of processes
started is returned to proc num. Com-
munication between two processes can
be implemented by the primitives

pvm send (proc id, msg) and pvm rec
(proc id, msg).

For group communication and synchro-
nization the functions pvm bcast¼,

9 See Beguelin et al. [1993; 1995; 1994], Geist
[1993], and Sunderam [1990; 1992].
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pvm mcast¼, pvm barrier¼ can be
used.

Using PVM and similar models, pro-
grammers must do all of the decomposi-
tion, placement, and communication ex-
plicitly. This is further complicated by
the need to deal with several different
operating systems to communicate this
information to the messaging software.
Such models may become more useful
with the increasing use of optical inter-
connection and high-performance net-
works for connecting workstations.

Shared-memory communication is a
natural extension of techniques used in
operating systems, but multiprogram-
ming is replaced by true multiprocess-
ing. Models for this paradigm are there-
fore well understood. Some aspects
change in the parallel setting. On a
single processor it is never sensible to
busy-wait for a message, since this de-
nies the processor to other processes; it
might be the best strategy on a parallel
computer since it avoids the overhead of
two context switches. Shared-memory
parallel computers typically provide
communication using standard para-
digms such as shared variables and
semaphores. This model of computation
is an attractive one since issues of de-
composition and mapping are not im-
portant. However, it is closely linked to
a single style of architecture, so that
shared-memory programs are not porta-
ble.

An important shared-memory pro-
gramming language is Java [Lea 1996],
which has become popular because of its
connection with platform-independent
software delivery on the Web. Java is
thread-based, and allows threads to
communicate and synchronize using
condition variables. Such shared vari-
ables are accessed from within synchro-
nized methods. A critical section enclos-
ing the text of the methods is
automatically generated. These critical
sections are rather misleadingly called
monitors. However, notify and wait oper-
ations must be explicitly invoked within
such sections, rather than being auto-
matically associated with entry and

exit. There are many other thread pack-
ages available providing lightweight
processes with shared-memory commu-
nication.10

Rendezvous-based programming mod-
els are distributed-memory paradigms
using a particular cooperation mecha-
nism. In the rendezvous communication
model, an interaction between two pro-
cesses A and B takes place when A calls
an entry of B and B executes an accept
for that entry. An entry call is similar to
a procedure call and an accept state-
ment for the entry contains a list of
statements to be executed when the en-
try is called. The best known parallel
programming languages based on ren-
dezvous cooperation are Ada [Mundie
and Fisher 1986] and Concurrent C [Ge-
hani and Roome 1986]. Ada was de-
signed on behalf of the US Department
of Defense mainly to program real-time
applications both on sequential and par-
allel distributed computers. Parallelism
in the Ada language is based on pro-
cesses called tasks. A task can be cre-
ated explicitly or can be statically de-
clared. In this latter case, a task is
activated when the block containing its
declaration is entered. Tasks are com-
posed of a specification part and a body.
As discussed before, this mechanism is
based on entry declarations, entry calls,
and accept statements. Entry declara-
tions are allowed only in the specifica-
tion part of a task. Accept statements
for the entries appear in the body of a
task. For example, the following accept
statement executes the operation when
the entry square is called.

accept SQUARE (X: INTEGER; Y: out
INTEGER) do
Y :5 X p X;

end;

Other important features of Ada for
parallel programming are the use of the
select statement, which is similar to the

10 See Buhr and Stroobosscher [1990], Buhr et al.
[1991], Faust and Levy [1990], and Mukherjee et
al. [1994].
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CSP ALT command for expressing non-
determinism, and the exception-han-
dling mechanism for dealing with soft-
ware failures. On the other hand, Ada
does not address the problem of map-
ping tasks onto multiple processors and
does not provide conditions to be associ-
ated with the entry declarations, except
for some special cases such as protected
objects. Recent surveys of such models
can be found in Bal et al. [1989] and
Gottlieb et al. [1983a,b].

4.6.2 Static Structure. Most low-
level models allow dynamic process cre-
ation and communication. An exception
is Occam [Jones and Goldsmith 1988],
in which the process structure is fixed
and communication takes place along
synchronous channels. Occam programs
are constructed from a small number of
primitive constructs: assignment, input
(?), and output (!). To design complex
parallel processes, primitive constructs
can be combined using the parallel con-
structor

PAR
Proc1
Proc2

The two processes are executed in par-
allel and the PAR constructor termi-
nates only after all of its components
have terminated. An alternative con-
structor (ALT) implements nondetermin-
ism. It waits for input from a number of
channels and then executes the corre-
sponding component process. For exam-
ple, the following code

ALT
request ? data

DataProc
exec ? oper

ExecProc

waits to get a data request or an opera-
tion request. The process corresponding
to the selected guard is executed.

Occam has a strong semantic founda-
tion in CSP [Hoare 1985], so that soft-
ware development by transformation is
possible. However, it is so low-level that

this development process is only practi-
cal for small or critical applications.

4.7 PRAM

A final model that must be considered is
the PRAM model [Karp and Ramachan-
dran 1990], which is the basic model for
much theoretical analysis of parallel
computation. The PRAM abstract ma-
chine consists of a set of processors,
capable of executing independent pro-
grams but doing so synchronously, con-
nected to a shared memory. All proces-
sors can access any location in unit
time, but they are forbidden to access
the same location on the same step.

The PRAM model requires detailed
descriptions of computations, giving the
code for each processor and ensuring
that memory conflict is avoided. The
unit-time memory-access part of the
cost model cannot be satisfied by any
scalable real machine, so the cost mea-
sures of the PRAM model are not accu-
rate. Nor can they be made accurate in
any uniform way, because the real cost
of accessing memory for an algorithm
depends on the total number of accesses
and the pattern in which they occur.
One attempt to provide some abstrac-
tion from the PRAM is the language
FORK [Kessler and Seidl 1995].

A good overview of models aimed at
particular architectures can be found in
McColl [1993b].

5. SUMMARY

We have presented an overview of par-
allel programming models and lan-
guages, using a set of six criteria that
an ideal model should satisfy. Four of
the criteria relate to the need to use the
model as a target for software develop-
ment. They are: ease of programming
and the existence of a methodology for
constructing software that handles is-
sues such as correctness, independence
from particular architectures, and sim-
plicity and abstractness. The remaining
criteria address the need for execution
of the model on real parallel machines:
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guaranteed performance and the exis-
tence of costs that can be inferred from
the program. Together these ensure pre-
dictable performance for programs.

We have assessed models by how well
they satisfy these criteria, dividing
them into six classes, ranging from the
most abstract, which generally satisfy
software development criteria but not
predictable performance criteria, to
very concrete models, which provide
predictable performance but make it
hard to construct software.

The models we have described repre-
sent an extremely wide variety of ap-
proaches at many different levels. Over-
all, some interesting trends are visible.

—Work on low-level models, in which
the description of computations is
completely explicit, has diminished
significantly. We regard this as a good
thing, since it shows that an aware-
ness of the importance of abstraction
has spread beyond the research com-
munity.

—There is a concentration on models in
the middle range of abstraction, with
a great deal of ingenuity being ap-
plied to concealing aspects of parallel
computations while struggling to re-
tain maximum expressiveness. This is
also a good thing, since tradeoffs
among expressiveness, software de-
velopment complexity, and run-time
efficiency are subtle. Presumably a
blend of theoretical analysis and prac-
tical experimentation is the most
likely road to success, and this strat-
egy is being applied.

—There are some very abstract models
that also provide predictable and use-
ful performance on a range of parallel
architectures. Their existence raises
the hope that models satisfying all of
the properties with which we began
can eventually be constructed.

These trends show that parallel pro-
gramming models are leaving low-level
approaches and moving towards more
abstract approaches, in which lan-
guages and tools simplify the task of

designers and programmers. At the
same time these trends provide for more
robust parallel software with predict-
able performance.

This scenario brings many benefits
for parallel software development. Mod-
els, languages, and tools represent an
intermediate level between users and
parallel architectures and allow the
simple and effective utilization of paral-
lel computation in many application ar-
eas. The availability of models and lan-
guages that abstract from architecture
complexity has a significant impact on
the parallel software development pro-
cess and therefore on the widespread
use of parallel computing systems.

Thus we can hope that, within a few
years, there will be models that are easy
to program, providing at least moderate
abstraction, that can be used with a
wide range of parallel computers, mak-
ing portability a standard feature of
parallel programming, that are easy to
understand, and that can be executed
with predictably good performance. It
will take longer for software develop-
ment methods to come into general use,
but that should be no surprise because
we are still struggling with software
development for sequential program-
ming. Computing costs for programs is
possible for any model with predictable
performance, but integrating such costs
into software development in a useful
way is much more difficult.
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