
Communication-Efficient Bitonic Sort on a Distributed Memory Pa~allel
Computer*

Yong Cheol Kim, Minsoo Jeon, Dongseung Kim Andrew Sohn
Dept. of Electrical Engineering

Korea University
Seoul, 136-701, Korea

dkint @classic.kot-ea.nc.kt-

Abstract

Sort can be speeded up on parallel computers by dividuig
and computing data individually in parallel. Bitonic sorting
can be parallelized however, a great portiovl of execution time
b consumed due to O(lo$P) time of data exchange of N/P
keys where P, N are the number of processors aid keys,
respectively.

7% paper presents an @cient way of data communication
in bitonic sort to minimize the interprocessor coinmunication
and computation time. Before actual data movement, each pair
processors exchange the minimum and marimum in its lbt of
keys to determine what keys are to be sent to its panner. Very
ojien no keys need to exkmge, or only a fraction of them are
exchanged At least 20% or greater of execution time could be
reduced on T3E computer in our experiments. We believe the
scheme is a good way to shorten the communication time in
similar applications.

1. Introduction

Sorting is one of the core computational algorithms used in
many scientific and engineering applications. Many sequential
sorts take o(MogN) time to sort N keys. Several parallel
sorting algorithms such as bitonic sort[11, sample sort[6,7],
column sort[5] and partitioned radix sort[lO,l4] have been
devised to shorten the execution time. Parallel sorts usually
need a fixed number of data exchange and merging operations.
The computation time decreases as the number of processors
grows. Since the time is dependent on the number of data each
processor has, good load balancing is important. In &tion, if
interprocessor communication cost is not low such as in
distributed memory computers, the amount of overall data to be
exchanged gives a great impact on the total execution time.

* The work was partially supported by KRF grant no.
KRF-99-04 1 -E00287.

Dept. of Computer & Information Science
New Jersey Institute of Technology

Newark, NJ 07102-1982, USA
sohn @ cis.rgit. d u

P d e l bitonic sort makes each processor maintain the
same number of keys, thus, it balances its workload perfectly in
each round. However, if it is implemented on a distributed
memory parallel computer, a great portion of overall execution
time should be paid for the interprocessor communication. It is
because the algorithm demands to exchange all the keys each
processor has throughout the merge-arzd-split steps. There have
been some researches that reduce the amount of data exchange
through remapping of keys in each processors by data layout[8],
or comparing a parity defined by the number of “1” bits in its
index[9]. But they can be applied only to shared-memory
computers. We have enhanced the parallel bitonic sort on
distributed memory computers by minimizing the number of
keys to exchange, hence reduce the total sort time.

The paper is organized as follows. In section 2, we present
the parallel bitonic sorting algorithm and the idea of efficient
communication. Section 3 reports experimental results based
on Cray T3E. The last section concludes this paper. Appendix
is attached for performance evaluation.

2. Parallel Bitonic Sort

Generic bi tonic sort

Bitonic sorting algorithm by Batcher [I] produces a sorted
sequence after a few iterations of bitonic merge which converts
two bitonic sequences of size in each to one monotonic
sequence of size 2m. A bitonic sequence is a sequence of
numbers a,, . . . , ai ,a,+,, ...,am-, with the property that there
exists an index i (O < i < m - l), where a, through ai is
monotonically increasing and a;+, through am-, is
monotonically decreasing, or there exists a cyclic shift of
indices so that the former condition is satisfied. Figure 1 shows
a bitonic sorting network for 8 keys. Each vertical segment
represents a 2-input 2-output comparator with its polarity
which performs the compare-and-exchange operation. A
comparator with downward (upward) arrow outputs the greater

0-7695-1 153-8/01 $10.00 0 2001 IEEE
165

staael stage2 stage3

Figure 1. Bitonic sorting network for sorting 8 keys

globally
sorted list

2, 13, 19, 34 p, 2, 13, 34, 50

p, (19, 40, 42, 55

8, 12, 20, 33 p, 8,12,48,56

locally step 1 step 1 step 2
sorted list

stage 1 stage 2

Figure 2. Parallel bitonic sort with 4 processors

value to its lower (upper) port, smaller to upper (lower). Bitonic
sort with m = 2' input keys can sort them in time of O(1og'rn)
by a network of m(1og m)(log m+1)/4 comparators.

Mapping of bitonic sort algorithm to parallel computers can
be done in a straightforward manner using the sorting network.
Each comparator is replaced by a pair of processors with a
merge-and-split operation, and data flow shown in the sorting
network directs processors for their interaction in each step.
Each processor is in charge of even number of ti = NIP keys,
maintaining a sorted list of them throughout the sorting
processes.

Each pair of processors performs merge-and-split
operations in every step, in which two sorted sequences are

admitted, merged into one monotonic sorted list, then, bisected
into two (lower and higher) sequences. They correspond to the
compare-and-exchange operations in the sorting network. After
the merge-and-split, the two processors will keep the lower n
and higher it keys respectively according to their polarity in the
step.

Figure 2 illustrates the process of parallel bitonic sort of 16
keys with 4 processors. Initially each processor locally
generates a sorted list of 4 keys. Then, parallel sort performs
three steps of merge-and-split operations to complete. Each
pair processors exchanges their lists, merges into one, then
stores only a half to be used in the next step.

Execution time of the parallel sort can be analyzed below,
where th',I is the time for the initial sort to make a sorted list,

166

Po P1 Po P1 Po P1 Po P1

17

24

c3 m

(a) location detection (b) overlapped intervals (c) afterdata

1
exchange

c3 1 1 20 19

10

11 24

(d) newlists

Figure 3. Merge-and-split for the partial exchange pattern

2, 13, 19, 34 P1 40,42.50, 8 , 12.20, 33

(a) hold (b) swap

Figure 4. Hold and swap patterns

rco,np represents the time for merging two lists into a one, and merges them, then bisects into two list, one in upper range and
t,,,, is the interprocessor communication time to exchange another lower. It keeps only one of them for next
their lists in a merge-and-split step. merge-and-split depending on its polarity, and discards the

before the exchange. A processor may not need the whole ri
keys from its partner since it eventually keeps the smallest (or

3 other. Note that each of the two lists has been already sorted (log- P+log P)
[‘comm +'camp 1 2 ‘roto1 =‘loC*l+

The point where we enhance the bitonic sort performance is
the inefficient interprocessor communication in merge-and
-split steps. At every merge-and-split step, a processor is
supposed to receive a list of rz keys from its partner processor to
genemte a newly sorted list of ri keys. Instead of exchanging
the whole rz keys, our method reduces the number dmstically
by including only necessary keys. Detailed scheme is described
below.

For a merge-and-split operation, a processor first accepts
two sorted lists with ri keys each from the paired processor,

. .
pair of prccessors to interact for merge-and-split. The pair
processors exchange their boundary (max, minj keys initially.
The maximum key (15) of the list in PO lies between 8 and 24
of the list of PI, and the minimum (8) of P I is between 1 and 15
of Po. Then, their right positions in the lists are found by binary
search (indicated in Figure 3a). Now, only the keys in the
overlapped intervals (shaded area in Figure 3bj are transmitted
to their partners. Merging is done in both processors to generate
their combined lists. Now PO will select the smallest 8 keys
whereas P 1 will keep the biggest 8 (Figure 3dj. In this example,
POand PI send only 5(=3+2) keys to their respective partners,

167

instead of 16 (=8+8) for the case of generic bitonic sort. In
summary, only the keys lying in the overlapped intervals are
sent to their paired processors. This process is called partid
e,chmge. The intervals are found by binary search using the
boundary keys.

In the above process two exceptional cases occur that are
dealt differently: 1) if there is no interval overlapped in the
ranges of the two lists, the content of each list will not change.
There may be no change of keys in both processors even after
the merge-and-split, or 2) the two lists are completely switched
to their partners. The former is the case of hold, where, once it
is identified, no data are exchanged. In the latter case, rather
than moving the whole lists, the owner's indexes (processor
ids) are swapped, which is called udex swap. The ids of
swapped processors should be notified to other processors that
will communicate with them in later stepdstages. Figure 4
shows an example of hold and index swap, redrawn from
Figure 2 for convenience.

The enhancement of this sort can be achieved if the
accumulated overhead does not exceed the gain due to the
reduction in communication time. The scheme has to send
boundary keys to each paired processor at each step, and a
broadcast is needed for each occurrence of index swapping. If
the size of the list is fine grained, the reduction of keys to be
exchanged may not contribute to shorten the execution time.
Thus, our scheme is effective when the number of keys is not
too small to overcome the overhead.

3. Experimental Results

We have implemented the sorting algorithm in C language
with MPI message passing library. The experiments have been
performed on the distributed-memory CRAY T3E
supercomputer that consists of 450 MHz Alpha 21164
processors and 3-D torus network. Keys are generated
synthetically in each processor. The performance may differ
depending on the distribution of keys. Three distribution
functions are employed: un$urm, gauss, stagger [141. Multiple
processors (P) up to 64 processors are used, and the size of
input (N) ranges from 4K to 2M integers. Figures 5 and 6 show
the improvement of the proposed parallel sort (optimized) over
the generic bitonic sort (generic) with various key distributions.
It is observed that the enhancement gets better as the number of
processors grows, and is not very sensitive to key distribution.
Sort of less than 8K keys results in no improvement on T3E
due to too small size of input as mentioned before.

The ratios of the total merge-and-split time of the proposed
sort to that of generic algorithm are given in Figure 7. The
performance tends to increase as the number of processors as
well as the key size per p m s s o r expands. The execution time
is lowered by 3% (4 processors) to 43% (64 processors).

We have observed that the improvement gets better as the

number of processor increases. The chance of having the three
time-saving communication pattems is higher as the number of
lists grows, for the m g e of key values are separated into many
!;egments and more pairs of processors have their segments
:;eparated (with no overlap) in their ranges. Results shown in
ligures 8 and 9 support the effect of increasing the processors
in the sort. On T3E with 61 processors, up to 48% of
execution-time reduction is achieved. A limited analysis for the
jxrformance is given in the appendix to estimate the maximum
performance.

4. Conclusion

We have improved bitonic sort by optimizing the
communication process of merge-and-split steps. Three
communication pattems are identified to shorten the
#communication and the associated computation times. We have
.achieved a maximal reduction of 48% in total execution time
when the input keys have uniform distribution, with 128M
keys on 64-processor CRAY T3E. Also we have observed that
the performance is not very sensitive to the key distribution.
'The improvement is also insensitive to the input size with the
same number of processors, however, better improvement can
be achieved as the number of processor is increased. One
restriction is given on the number of key counts per processor,
since the overhead in detecting overlapped intervals and
broadcasting processor ids can not be compensated for sorting
'of too small number of keys. We expect the same idea can be
applied to parallel implementation of similar merging
algorithms.

Appendix

To estimate the performance of the new sorting method,
merge-and-split steps are analyzed for the case of uri$urm key
'distribution. At each merge-and-split step, keys are exchanged,
then the residing list and the received list of keys are merged,
whose times are t,,,,,(n) and tCo,,(tij, respectively. Point-to
-point message passing uses the wormhole communication,
which is modeled as follows [16,171:

m
1 =1, +-

W
where in is the size of a message, t, is startup time, and W is
bandwidth.

Merging of two lists of size IZ each takes a linear time in the
worst case, which is written as follows:

L r g e = fco,np(24 + f c o m (n)

The parameters Ks are dependent on machine architecture.

genetic bitonic sort is computed as follows:
The time spent in the whole merge-and-split steps of the

168

3

2.5

- 2

G 1.5
E
c 1

0.5

0

a, v) ’

._
c

.-
c

3

a optimized 2M (N)
Ogeneric 4M (N)
0 optimized 4M (N)
Ogeneric 8M (N)

4 8 16 32 64

processors (P)

I 25
I optimized 2M (N)
Ogeneric 4M (N)
0 optimized 4M (N)
Elgeneric 8M (N)
fl optimized 8M (N)

4 8 16 32 64
processors (P)

Figure 5. Execution times with uniform
distribution

Figure 6. Execution times (gauss)

100
90

2 80
70

._ E 60
50

K 40
30

2 20
10

a,

-
.-

0

Figure 7. ComDarison of execution times for sDlit-and-meraina staaes

50

40

30

20

10

0
4 8 16 32 64

p r o c e s s o r s (P)

Figure 8. Yo improvement versus the number
of processors

50

40 -
8
E 30

E : 20
0,

E 10

-
a,

R

0

-.._ ~-.-”.,.-”,,”-

32K 128K 512K 2M

k e y s p e r D r o c e s s o r (N/P)

Figure 9. % improvement versus keys per
processors

169

1
2
1
2

tgrnrrrcg ,o,,(nr P) = --log W o g P + l){fcom (n) + tC,,(2n) 1

=-log P (l o g P + 1) (2 K 1 n + K,n+ K ,)

The time spent in the whole merge-and-split steps of the
optimized sorting method is estimated as follows. In the bitonic
merge of the sort, the size of sorted list grows 2,4, 8, . .., 2‘ at
stages 1, 2, 3, . . ., k, respectively. Merge stage p consists of p
merge-and-split steps. With ruzifonn distribution, only the last
step in each stage tends to have severe data communication,
and the rest need at most 10% of the overall keys. Thus, the
execution time is estimated as

lop p

tmhancedgson(n.P) = C(i-l)Itco”(O.ln)+fcomp(l.ln)}
r=l

+ logPlt,, ,(n)+t,, ,(2n)}
Enhancement of the new method over the generic one is

obtained as
tmhnnced g s o n

tgrncrlr g so,,
E, m r r =

For large n, K3 can be ignored and the above equation can
be simplified as follows:

A l o g P + B
LJm = C(l0g P + 1)

With the parameters of T3E all the constants in the
equation can be computed as below:

t, = 18 VK, W = 167 M B / S K

16
- w K , = 1 . 9 8 ~ 1 0 - ~ , K, = - = 9 . 6 ~ 1 0 - * , K , = 3 t s =3 .6~10- ’

A =0.55Kl +0.05K2 = 1 . 1 4 ~ 1 0 - ~
B=1.35K, +0.95K, = 3 . 7 8 ~ 1 0 - ~

C = K l + 0 . 5 K , = 2 . 4 6 ~ 1 0 - ~

The equation says that if a number of processors are used in
our parallel sort, the womcase improvement reaches at the
constant (A /C = 0.46) determined by the communication and
computation parameters of the computer.

References

[13 K. E. Batcher, “Sorting networks and their applications”, Proc.
AFIPS Con$. 1%8, pp. 307-314.

[2] G. Baudet, and D, stevenson, “Optimal sorting algorithms for
parallel computers”, IEEE Trans. Computers, vol. C-27, 1978, pp.
8487.

[3] G. E Blelloch, C. E. hiserson, B. M. Maggs, C. G. Plaxton, S. J.
Smith, and M. zagha. “A comparison of sorting algorithm for the
connection machine CM-2”, Proc. ACM Synposium on parallel
Algorithm and Architecture, July 1991, pp. 3-16.

[4] R. Diekmann, J. Gehring, R. L ling, B. Monien, M. N bel, and R.

Wanka, “Sorting large data sets on a massively parallel system”, P m .
6th IEEE Symposium on Parallel and Distributed Processing (SPDP)
Con$, 1994, pp. 2-9.

[5] A. C. Dussau, D. E. Culler, K. E. Schauser, and R. P. Mattin,
“Fast parallel sorting under Lo#: experience with the (34-5”, IEEE
Tram. Computers, Vol. 7, Aug. 19%.

[6] D. R. Helman, D. A. Bader, and J. Jala, “Parallel algorithm for
personalized communication and sorting with an experimental study”,
Proc. ACM Symposium on Parallel Algorithms and Architecture, June
19%, pp. 21 1-220.

[7] J. S. Huang ad Y. C. Chow, “Parallel sorting and data partitioning
by sampling”, Proc. 7th Gnnputer Sofrware and Applicarions Con$,
NOV. 1983, pp. 627-631.

[8] M. F. Ionescu and K. E. Schawer, “Optimizing pal le l bitonic
sort”, Proc. 11th Int’l Parallel Processing Symposium, 1997.

[9] J. D. Lee and K E. Batcher, ‘Minimizing communication in the
bitonic sort”, IEEE Tram. Pamllel and Distributed Systems, Vol. 11,
No. 5, May 2OOO.

[lo] S. J. Lee, M. S. Jeon, D. S. Kim, “Partitioned parallel radix sort”,
Proc. Third International Symposium (ISHPC) 2000, Tokyo, Japan,
Oct 16-18,2ooo.

[l l] E T. Leighton, ‘Tight Bounds on the Complexity of parallel
sorting”, IEEE Tram. Computers, 1985, C-34 pp. 344-354.

[E] D. E. Muller and E P. hparata, “Bounds and complexities of
networks for sorting and switching”, J. ACM, 1975, vo1.22(2), pp.
195-201.

[13] A. Sohn, Y. Kodama, M. Sato, H. Sakane, H. Yamada, S. Sakai,
Y, Yamaguchi, “Identifying the capability of overlapping computing
with communication”, Pmcs. ACMAEEE ParaUeI Archirecnrre and
Compilation Technique, Oct 1996.

[141 A. Sohn, Y. Kodama, “Load balanced parallel radix sort”, Proc
12th ACM Int’l Con$ Super Computing, July 14-17, 1998.

[15] B. Wang, G. Chen, and C, Hsu, 73itonic Sort with an Arbitrary
Numbers of Keys”, Proc. 1991 lnt’l Conf Parallel Processing, 1991,
Vol. 3, pp. 58-61.

[16] L. M. Ni and P. K. McKinley, “A survey of wormhole routing
techniques in direct networks”, IEEE Computer, Feb. 1993, Vol. 26,
pp. 62-76.

[17] R. Hockney, ‘‘Performance parameters and benchmarking of
supercomputers”, Parallel Compwing, Dec. 1991, Vol. 17, No. 10 &
11, pp. 11 11-1 130.

170

