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Abstract 

Sort can be speeded up on parallel computers by dividuig 
and computing data individually in parallel. Bitonic sorting 
can be parallelized however, a great portiovl of execution time 
b consumed due to O(lo$P) time of data exchange of N/P 
keys where P, N are the number of processors aid keys, 
respectively. 

7% paper presents an @cient way of data communication 
in bitonic sort to minimize the interprocessor coinmunication 
and computation time. Before actual data movement, each pair 
processors exchange the minimum and marimum in its lbt of 
keys to determine what keys are to be sent to its panner. Very 
ojien no keys need to exkmge, or only a fraction of them are 
exchanged At least 20% or greater of execution time could be 
reduced on T3E computer in our experiments. We believe the 
scheme is a good way to shorten the communication time in 
similar applications. 

1. Introduction 

Sorting is one of the core computational algorithms used in 
many scientific and engineering applications. Many sequential 
sorts take o(MogN) time to sort N keys. Several parallel 
sorting algorithms such as bitonic sort[ 11, sample sort[6,7], 
column sort[5] and partitioned radix sort[lO,l4] have been 
devised to shorten the execution time. Parallel sorts usually 
need a fixed number of data exchange and merging operations. 
The computation time decreases as the number of processors 
grows. Since the time is dependent on the number of data each 
processor has, good load balancing is important. In &tion, if 
interprocessor communication cost is not low such as in 
distributed memory computers, the amount of overall data to be 
exchanged gives a great impact on the total execution time. 
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P d e l  bitonic sort makes each processor maintain the 
same number of keys, thus, it balances its workload perfectly in 
each round. However, if it is implemented on a distributed 
memory parallel computer, a great portion of overall execution 
time should be paid for the interprocessor communication. It is 
because the algorithm demands to exchange all the keys each 
processor has throughout the merge-arzd-split steps. There have 
been some researches that reduce the amount of data exchange 
through remapping of keys in each processors by data layout[8], 
or comparing a parity defined by the number of “1” bits in its 
index[9]. But they can be applied only to shared-memory 
computers. We have enhanced the parallel bitonic sort on 
distributed memory computers by minimizing the number of 
keys to exchange, hence reduce the total sort time. 

The paper is organized as follows. In section 2, we present 
the parallel bitonic sorting algorithm and the idea of efficient 
communication. Section 3 reports experimental results based 
on Cray T3E. The last section concludes this paper. Appendix 
is attached for performance evaluation. 

2. Parallel Bitonic Sort 

Generic bi tonic sort 

Bitonic sorting algorithm by Batcher [I] produces a sorted 
sequence after a few iterations of bitonic merge which converts 
two bitonic sequences of size in each to one monotonic 
sequence of size 2m. A bitonic sequence is a sequence of 
numbers a,, . . . , ai ,a,+,, ...,am-, with the property that there 
exists an index i ( O < i < m - l  ), where a, through ai is 
monotonically increasing and a;+, through am-, is 
monotonically decreasing, or there exists a cyclic shift of 
indices so that the former condition is satisfied. Figure 1 shows 
a bitonic sorting network for 8 keys. Each vertical segment 
represents a 2-input 2-output comparator with its polarity 
which performs the compare-and-exchange operation. A 
comparator with downward (upward) arrow outputs the greater 
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Figure 1. Bitonic sorting network for sorting 8 keys 

globally 
sorted list 

2, 13, 19, 34 p, 2, 13, 34, 50 

p,  (19, 40, 42, 55 

8, 12, 20, 33 p, 8,12,48,56 

locally step 1 step 1 step 2 
sorted list 

stage 1 stage 2 

Figure 2. Parallel bitonic sort with 4 processors 

value to its lower (upper) port, smaller to upper (lower). Bitonic 
sort with m = 2' input keys can sort them in time of O(1og'rn) 
by a network of m(1og m)(log m+1)/4 comparators. 

Mapping of bitonic sort algorithm to parallel computers can 
be done in a straightforward manner using the sorting network. 
Each comparator is replaced by a pair of processors with a 
merge-and-split operation, and data flow shown in the sorting 
network directs processors for their interaction in each step. 
Each processor is in charge of even number of ti = NIP keys, 
maintaining a sorted list of them throughout the sorting 
processes. 

Each pair of processors performs merge-and-split 
operations in every step, in which two sorted sequences are 

admitted, merged into one monotonic sorted list, then, bisected 
into two (lower and higher) sequences. They correspond to the 
compare-and-exchange operations in the sorting network. After 
the merge-and-split, the two processors will keep the lower n 
and higher it keys respectively according to their polarity in the 
step. 

Figure 2 illustrates the process of parallel bitonic sort of 16 
keys with 4 processors. Initially each processor locally 
generates a sorted list of 4 keys. Then, parallel sort performs 
three steps of merge-and-split operations to complete. Each 
pair processors exchanges their lists, merges into one, then 
stores only a half to be used in the next step. 

Execution time of the parallel sort can be analyzed below, 
where th',I is the time for the initial sort to make a sorted list, 
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Figure 3. Merge-and-split for the partial exchange pattern 
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Figure 4. Hold and swap patterns 

rco,np represents the time for merging two lists into a one, and merges them, then bisects into two list, one in upper range and 
t,,,, is the interprocessor communication time to exchange another lower. It keeps only one of them for next 
their lists in a merge-and-split step. merge-and-split depending on its polarity, and discards the 

before the exchange. A processor may not need the whole ri 
keys from its partner since it eventually keeps the smallest (or 

3 other. Note that each of the two lists has been already sorted (log- P+log P) 
[‘comm +'camp 1 2 ‘roto1 =‘loC*l+ 

The point where we enhance the bitonic sort performance is 
the inefficient interprocessor communication in merge-and 
-split steps. At every merge-and-split step, a processor is 
supposed to receive a list of rz keys from its partner processor to 
genemte a newly sorted list of ri  keys. Instead of exchanging 
the whole rz keys, our method reduces the number dmstically 
by including only necessary keys. Detailed scheme is described 
below. 

For a merge-and-split operation, a processor first accepts 
two sorted lists with ri keys each from the paired processor, 

. .  
pair of prccessors to interact for merge-and-split. The pair 
processors exchange their boundary (max, minj keys initially. 
The maximum key (15) of the list in PO lies between 8 and 24 
of the list of PI, and the minimum (8) of P I  is between 1 and 15 
of Po. Then, their right positions in the lists are found by binary 
search (indicated in Figure 3a). Now, only the keys in the 
overlapped intervals (shaded area in Figure 3bj are transmitted 
to their partners. Merging is done in both processors to generate 
their combined lists. Now PO will select the smallest 8 keys 
whereas P 1 will keep the biggest 8 (Figure 3dj. In this example, 
POand PI send only 5(=3+2) keys to their respective partners, 
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instead of 16 (=8+8) for the case of generic bitonic sort. In 
summary, only the keys lying in the overlapped intervals are 
sent to their paired processors. This process is called partid 
e,chmge. The intervals are found by binary search using the 
boundary keys. 

In the above process two exceptional cases occur that are 
dealt differently: 1) if there is no interval overlapped in the 
ranges of the two lists, the content of each list will not change. 
There may be no change of keys in both processors even after 
the merge-and-split, or 2) the two lists are completely switched 
to their partners. The former is the case of hold, where, once it 
is identified, no data are exchanged. In the latter case, rather 
than moving the whole lists, the owner's indexes (processor 
ids) are swapped, which is called udex swap. The ids of 
swapped processors should be notified to other processors that 
will communicate with them in later stepdstages. Figure 4 
shows an example of hold and index swap, redrawn from 
Figure 2 for convenience. 

The enhancement of this sort can be achieved if the 
accumulated overhead does not exceed the gain due to the 
reduction in communication time. The scheme has to send 
boundary keys to each paired processor at each step, and a 
broadcast is needed for each occurrence of index swapping. If 
the size of the list is fine grained, the reduction of keys to be 
exchanged may not contribute to shorten the execution time. 
Thus, our scheme is effective when the number of keys is not 
too small to overcome the overhead. 

3. Experimental Results 

We have implemented the sorting algorithm in C language 
with MPI message passing library. The experiments have been 
performed on the distributed-memory CRAY T3E 
supercomputer that consists of 450 MHz Alpha 21164 
processors and 3-D torus network. Keys are generated 
synthetically in each processor. The performance may differ 
depending on the distribution of keys. Three distribution 
functions are employed: un$urm, gauss, stagger [ 141. Multiple 
processors (P) up to 64 processors are used, and the size of 
input (N) ranges from 4K to 2M integers. Figures 5 and 6 show 
the improvement of the proposed parallel sort (optimized) over 
the generic bitonic sort (generic) with various key distributions. 
It is observed that the enhancement gets better as the number of 
processors grows, and is not very sensitive to key distribution. 
Sort of less than 8K keys results in no improvement on T3E 
due to too small size of input as mentioned before. 

The ratios of the total merge-and-split time of the proposed 
sort to that of generic algorithm are given in Figure 7. The 
performance tends to increase as the number of processors as 
well as the key size per p m s s o r  expands. The execution time 
is lowered by 3% (4 processors) to 43% (64 processors). 

We have observed that the improvement gets better as the 

number of processor increases. The chance of having the three 
time-saving communication pattems is higher as the number of 
lists grows, for the m g e  of key values are separated into many 
!;egments and more pairs of processors have their segments 
:;eparated (with no overlap) in their ranges. Results shown in 
ligures 8 and 9 support the effect of increasing the processors 
in the sort. On T3E with 61 processors, up to 48% of 
execution-time reduction is achieved. A limited analysis for the 
jxrformance is given in the appendix to estimate the maximum 
performance. 

4. Conclusion 

We have improved bitonic sort by optimizing the 
communication process of merge-and-split steps. Three 
communication pattems are identified to shorten the 
#communication and the associated computation times. We have 
.achieved a maximal reduction of 48% in total execution time 
when the input keys have uniform distribution, with 128M 
keys on 64-processor CRAY T3E. Also we have observed that 
the performance is not very sensitive to the key distribution. 
'The improvement is also insensitive to the input size with the 
same number of processors, however, better improvement can 
be achieved as the number of processor is increased. One 
restriction is given on the number of key counts per processor, 
since the overhead in detecting overlapped intervals and 
broadcasting processor ids can not be compensated for sorting 
'of too small number of keys. We expect the same idea can be 
applied to parallel implementation of similar merging 
algorithms. 

Appendix 

To estimate the performance of the new sorting method, 
merge-and-split steps are analyzed for the case of uri$urm key 
'distribution. At each merge-and-split step, keys are exchanged, 
then the residing list and the received list of keys are merged, 
whose times are t,,,,,(n) and tCo,,(tij, respectively. Point-to 
-point message passing uses the wormhole communication, 
which is modeled as follows [ 16,171: 

m 
1 =1, +- 

W 
where in is the size of a message, t, is startup time, and W is 
bandwidth. 

Merging of two lists of size IZ each takes a linear time in the 
worst case, which is written as follows: 

L r g e  = fco,np(24 + f c o m  (n) 

The parameters Ks are dependent on machine architecture. 

genetic bitonic sort is computed as follows: 
The time spent in the whole merge-and-split steps of the 
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Figure 6. Execution times (gauss) 
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tgrnrrrcg ,o,,(nr P )  = --log W o g  P + l){fcom ( n )  + tC,,(2n) 1 

=-log P ( l o g P + 1 ) ( 2 K 1 n +  K,n+ K , )  

The time spent in the whole merge-and-split steps of the 
optimized sorting method is estimated as follows. In the bitonic 
merge of the sort, the size of sorted list grows 2,4, 8, . .., 2‘ at 
stages 1, 2, 3, . . ., k, respectively. Merge stage p consists of p 
merge-and-split steps. With ruzifonn distribution, only the last 
step in each stage tends to have severe data communication, 
and the rest need at most 10% of the overall keys. Thus, the 
execution time is estimated as 

lop p 

tmhancedgson(n.P) = C(i-l)Itco”(O.ln)+fcomp(l.ln)} 
r=l 

+ logPlt,, ,(n)+t,, ,(2n)} 
Enhancement of the new method over the generic one is 

obtained as 
tmhnnced g s o n  

tgrncrlr g so,, 
E, m r r  = 

For large n, K3 can be ignored and the above equation can 
be simplified as follows: 

A l o g P + B  
LJm = C(l0g P +  1) 

With the parameters of T3E all the constants in the 
equation can be computed as below: 

t, = 18 VK, W = 167 M B / S K  

16 
- w  K ,  = 1 . 9 8 ~ 1 0 - ~ ,  K, = - = 9 . 6 ~ 1 0 - * ,  K , = 3 t s  =3 .6~10- ’  

A =0.55Kl  +0.05K2 = 1 . 1 4 ~ 1 0 - ~  
B=1.35K, +0.95K, = 3 . 7 8 ~ 1 0 - ~  

C =  K l + 0 . 5 K ,  = 2 . 4 6 ~ 1 0 - ~  

The equation says that if a number of processors are used in 
our parallel sort, the womcase improvement reaches at the 
constant (A /C = 0.46) determined by the communication and 
computation parameters of the computer. 

References 

[ 13 K. E. Batcher, “Sorting networks and their applications”, Proc. 
AFIPS Con$. 1%8, pp. 307-314. 

[2] G. Baudet, and D, stevenson, “Optimal sorting algorithms for 
parallel computers”, IEEE Trans. Computers, vol. C-27, 1978, pp. 
8487. 

[3] G. E Blelloch, C. E. hiserson, B. M. Maggs, C. G. Plaxton, S. J. 
Smith, and M. zagha. “A comparison of sorting algorithm for the 
connection machine CM-2”, Proc. ACM Synposium on parallel 
Algorithm and Architecture, July 1991, pp. 3-16. 

[4] R. Diekmann, J. Gehring, R. L ling, B. Monien, M. N bel, and R. 

Wanka, “Sorting large data sets on a massively parallel system”, P m .  
6th IEEE Symposium on Parallel and Distributed Processing (SPDP) 
Con$, 1994, pp. 2-9. 

[5] A. C. Dussau, D. E. Culler, K. E. Schauser, and R. P. Mattin, 
“Fast parallel sorting under Lo#: experience with the (34-5”, IEEE 
Tram. Computers, Vol. 7, Aug. 19%. 

[6] D. R. Helman, D. A. Bader, and J. Jala, “Parallel algorithm for 
personalized communication and sorting with an experimental study”, 
Proc. ACM Symposium on Parallel Algorithms and Architecture, June 
19%, pp. 21 1-220. 

[7] J. S. Huang ad Y. C. Chow, “Parallel sorting and data partitioning 
by sampling”, Proc. 7th Gnnputer Sofrware and Applicarions Con$, 
NOV. 1983, pp. 627-631. 

[8] M. F. Ionescu and K. E. Schawer, “Optimizing pal le l  bitonic 
sort”, Proc. 11th Int’l Parallel Processing Symposium, 1997. 

[9] J. D. Lee and K E. Batcher, ‘Minimizing communication in the 
bitonic sort”, IEEE Tram. Pamllel and Distributed Systems, Vol. 11, 
No. 5, May 2OOO. 

[lo] S. J. Lee, M. S. Jeon, D. S. Kim, “Partitioned parallel radix sort”, 
Proc. Third International Symposium (ISHPC) 2000, Tokyo, Japan, 
Oct 16-18,2ooo. 

[ l l ]  E T. Leighton, ‘Tight Bounds on the Complexity of parallel 
sorting”, IEEE Tram. Computers, 1985, C-34 pp. 344-354. 

[ E ]  D. E. Muller and E P. hparata, “Bounds and complexities of 
networks for sorting and switching”, J. ACM, 1975, vo1.22(2), pp. 
195-201. 

[13] A. Sohn, Y. Kodama, M. Sato, H. Sakane, H. Yamada, S. Sakai, 
Y, Yamaguchi, “Identifying the capability of overlapping computing 
with communication”, Pmcs. ACMAEEE ParaUeI Archirecnrre and 
Compilation Technique, Oct 1996. 

[ 141 A. Sohn, Y. Kodama, “Load balanced parallel radix sort”, Proc 
12th ACM Int’l Con$ Super Computing, July 14-17, 1998. 

[15] B. Wang, G. Chen, and C, Hsu, 73itonic Sort with an Arbitrary 
Numbers of Keys”, Proc. 1991 lnt’l Conf Parallel Processing, 1991, 
Vol. 3, pp. 58-61. 

[16] L. M. Ni and P. K. McKinley, “A survey of wormhole routing 
techniques in direct networks”, IEEE Computer, Feb. 1993, Vol. 26, 
pp. 62-76. 

[17] R. Hockney, ‘‘Performance parameters and benchmarking of 
supercomputers”, Parallel Compwing, Dec. 1991, Vol. 17, No. 10 & 
11, pp. 11 11-1 130. 

170 


