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The queue-read, queue-write (QRQW) parallel random access machine
(PRAM) model permits concurrent reading and writing to shared memory
locations, but at a cost proportional to the number of readers�writers to
any one memory location in a given step. The QRQW PRAM model reflects
the contention properties of most commercially available parallel
machines more accurately than either the well-studied CRCW PRAM or
EREW PRAM models, and can be efficiently emulated with only
logarithmic slowdown on hypercube-type noncombining networks.
This paper describes fast, low-contention, work-optimal, randomized
QRQW PRAM algorithms for the fundamental problems of load balancing,
multiple compaction, generating a random permutation, parallel hashing,
and distributive sorting. These logarithmic or sublogarithmic time
algorithms considerably improve upon the best known EREW PRAM

algorithms for these problems, while avoiding the high-contention
steps typical of CRCW PRAM algorithms. An illustrative experiment
demonstrates the performance advantage of a new QRQW random
permutation algorithm when compared with the popular EREW

algorithm. Finally, this paper presents new randomized algorithms for
integer sorting and general sorting. ] 1996 Academic Press, Inc.

1. INTRODUCTION

The parallel random access machine (pram) model of
computation is the most widely used model for the design
and analysis of parallel algorithms (see, e.g., [KR90,
Ja� J92, Rei93]). The pram model consists of a number of
processors operating in lock-step and communicating by
reading and writing locations in a shared memory. Standard
pram models can be distinguished by their rules regarding
contention for shared memory locations. These rules are
generally classified into the exclusive read�write rule in
which each location can be read or written by at most one
processor in each unit-time pram step, and the concurrent
read�write rule in which each location can be read or written

by any number of processors in each unit-time pram step.
These two rules can be applied independently to reads and
writes; the resulting models are denoted in the literature as
the erew, crew, ercw, and crcw pram models.

In a previous paper [GMR96a], we argued neither the
exclusive nor the concurrent rules accurately reflect the
contention capabilities of most commercial and research
machines, and we proposed a new pram contention rule, the
queue rule, that permits concurrent reading and writing, but
at an appropriate cost:

Queue read�write: Each location can be read or
written by any number of processors in each step.
Concurrent reads or writes to a location are serviced
one-at-a-time.

Thus the worst case time to read or write a location is linear
in the number of concurrent readers or writers to the same
location.

The queue rule more accurately reflects the contention
properties of machines with simple, noncombining inter-
connection networks than either the exclusive or concurrent
rules. The exclusive rule is too strict, and the concurrent rule
ignores the large performance penalty of high contention
steps. Indeed, for most existing machines, including the
CRAY T3D, IBM SP2, Intel Paragon, MasPar MP-1 and
MP-2 (global router), MIT J-Mchaine, nCUBE 2S,
Stanford DASH, Tera Computer, and Thinking Machines
CM-5 (data network), the contention properties of the
machine are well-approximated by the queue-read, queue-
write rule. For the Kendall Square KSR1, the contention
properties can be approximated by the concurrent-read,
queue-write rule.1
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1 In the KSR1, multiple requests ro read the same location are combined
in the network, so there is no penalty for high contention steps. Note that
caches have only a secondary effect on the contention rule; see [GMR96a]
for details.
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TABLE I

Fast, Efficiency Low-Contention Parallel Algorithms for Several Fundamental Problems.

Problem Previous result (erew) New result (qrqw)

Random permutation O(lg n) time, O(n log n) work [Hag91] O(lg n) time, linear work w.h.p.

O(lg n lg lg n) time, O \ n lg n
lg lg n+ work [AH92]

O \ lg1.5 n

- lg lg n+ time, O(n - lg n lg lg n) work [AH92]

O(n=) time, constant =>0, linear work [KRS90]

Multiple compaction Same as above O(lg n) time, linear work w.h.p.

Sorting from U(0, 1) Same as above O(lg n) time, linear work w.h.p.

Parallel hashing Same as above with lg* n slowdown [GMV91, MV95] O(lg n) time, linear work w.h.p.

Load balancing, max load L O(lg n) time, linear work [LF80] O(- lg n lg lg L+lg L) time, linear work w.h.p.

Note. For the first four problems above, we obtain work-optimal low-contention (qrqw pram) algorithms running in logarithmic time, whereas the
best known work-optimal zero-contention (erew pram) algorithms run in polynomial time. For load balancing, we improve upon the erew result
whenever the ratio of the maximum on the average load is not too large. The erew results shown are the best known for either deterministic or randomized
algorithms. The erew results for the first three problems are obtained by easy reductions to the integer sorting problem. The result for the fourth is
obtained using a crcw hashing algorithm and a general simulation of the crcw pram on the erew pram. The load balancing erew pram result is a simple
application of a prefix sums algorithm.

In [GMR96a] we defined the Queue-Read, Queue-Write
(qrqw) pram model, a model for the design and analysis of
coarsely synchronized parallel algorithms running on mimd

machines, and investigated some of its capabilities. In
particular, we showed that the qrqw pram can be effectively
emulated on the Bulk-Synchronous Parallel (bsp) model of
Valiant [Va90].

Theorem 1.1 [GMR96a]. A p-processor qrqw pram

algorithm running in time t can be emulated on a ( p�lg p)-
component standard bsp model 2 in O(t lg p) time with high
probability.

It follows from Valiant's work [Val90] and Theorem 1.1
that the qrqw pram can be emulated in a work-preserving
manner on hypercube-type, noncombining networks with
only logarithmic slowdown, even when latency, memory
granularity, and synchronization overheads are taken into
account. This matches the best known emulation for the
erew pram on these networks given in [Val90]; in contrast,
work-preserving emulations for the crcw pram on such
networks are only known with polynomial slowdown.3 We

refer the reader to [GMR96a] for further details relating
the qrqw pram to existing models and machines.

The qrqw pram is strictly more powerful than the erew

pram, while being as efficiently emulated on a bsp or a
hypercube-type, noncombining network, and it is also a
better match for real machines. Hence an important
theoretical and practical question is the extent to which
fast, work-optimal, low-contention (qrqw) algorithms can
be designed for problems for which there are no known fast,
work-optimal, zero-contention (erew) algorithms. This
paper considers five such problems��generating a random
permutation, multiple compaction, distributive sorting,
parallel hashing, and load balancing��and presents fast,
work-optimal qrqw pram algorithms for these fundamen-
tal problems. These results are summarized in Table I and
are contrasted with the best known erew pram algorithms
for the same problems. All of our algorithms are ran-
domized and are of the ``Las Vegas'' type; they always out-
put correct results and obtain the stated bounds with high
probability.

Another important question is the extent to which erew

pram algorithms can be replaced by qrqw pram algorithms
that are simpler and, therefore, perhaps more appealing for
implementation. In this context we would allow the
theoretical efficiency of the simpler qrqw pram algorithm to
be similar or even somewhat inferior to that of the erew

pram algorithms as long as the resulting algorithm is
simpler. This paper considers such algorithms for the
general sorting problem. It presents a qrqw pram algorithm
that is considerably simpler than the known erew pram

algorithms with comparable asymptotic performance. The
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2 We denote as the standard bsp model a particular case studied by
Valiant in which the model's throughput parameter, g, is taken to be a
constant and its periodicity parameter, L, is taken to be 3(lg p).

3 Note that the standard 3(lg p) time emulation of crcw on erew (see,
e.g., [KR90]) is not work-preserving, in that the erew performs 3(lg p)
times more work than the crcw it emulates. Hence, it cannot be used to
obtain erew pram algorithms, much less hypercube algorithms, with linear
or near-linear speedups. Similarly, the best known emulations for the crew

pram (or ercw pram) on the erew pram (or standard bsp or hypercube)
require logarithmic work overhead for logarithmic slowdown or,
alternatively, polynomial slowdown for constant work overhead.
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new algorithm is arguably as simple as the known crcw

pram algorithms.
All of the algorithms we present in this paper are

randomized, and many of results are obtained ``with high
probability'' (w.h.p.). A probabilistic event occurs with high
probability (w.h.p.), if, for any prespecified constant $>0, it
occurs with probability 1&1�n$, where n is the size of the
input. Thus, we say a randomized algorithm runs in O( f (n))
time w.h.p. if for every prespecified constant $>0 there is a
constant c such that for all n�1 the algorithm runs in
c } f (n) steps or less with probability at least 1&1�n$.

We provide next a summary of our algorithmic results
and point out a few technical issues that are relevant for
qrqw pram algorithms.

1.1. Summary of Results

Our first results are for the load balancing problem,
considered in Section 3. We present a linear work randomized
algorithm whose running time is O(- lg n lg lg L+lg L),
where L is the ratio of the maximum to the average load per
processor. Our load balancing algorithm is an adaptation of
a crcw pram algorithm by Gil [Gil94], which runs in
O(lg lg n) time w.h.p. Gil's algorithm uses as a subrouting
an algorithm for the so-called ``renaming'' problem. Our
low-contention implementation is essentially obtained by
substituting this subroutine with a qrqw pram algorithm
for linear compaction, presented in [GMR96a] and by
replacing concurrent read operations executed during
bookkeeping steps with local broadcasting steps.

For small values of L, our load balancing algorithm can
be much faster than the 3(lg n) time, prefix-sum-based
erew pram algorithm. However, for L=0(n=) with
constant =>0, the lg L term implies a running time of
O(lg n). In contrast, load balancing on n processors can be
performed on a crcw pram in O(lg* n) time4 w.h.p.,
independent of L [GMV91]. We show that the lg L term is
unavoidable by presenting a lower bound of0(lg L) expected
time on the qrqw pram for the load-balancing problem.
Our lower bound result is based on a reduction from the
broadcasting problem and using the lower bound for the
broadcasting presented in [GMR96a].

The load-balancing algorithm is a useful tool for
processor allocation. We use it to obtain an algorithm
that automatically handles processor allocation for any
algorithm that can be described within certain specifications
(such algorithms are called ``L-spawning algorithms''). We

use this general result in our work-optimal algorithms for
the multiple compaction problem and for the problem of
generating a random cyclic permutation.

In Section 4 we consider the multiple compaction
problem, which has an important application in a crcw

pram algorithm for integer sorting [RR89]. We present a
linear work, O(lg n) time randomized qrqw pram

algorithm, which is quite different than the known crcw

pram algorithms for the problem. Some parts of the
algorithm follow a general strategy used in a crcw pram

algorithm that runs in O(lg* n) time [GMV91], and in
particular the log-star paradigm [Mat92]. The qrqw pram

algorithm for multiple compaction has applications for
qrqw or crqw algorithms for integer sorting, general
sorting, and sorting from U(0, 1).

The problem of generating a random permutation is
considered in Section 5. We present a linear work, o(lg n)
time randomized qrqw pram algorithm that is essentially
the same as the O(lg lg n) time crcw pram algorithm of
[Gil94], analyzed for the qrqw metric. Two algorithms are
presented for the problem of generating random cyclic
permutations. A linear work, O(lg n lg* n�lg lg n) time
randomized algorithm is adapted (with some modifications)
from an O(lg* n) time crcw pram algorithm of [MV91a].
A faster qrqw pram algorithm, which takes O(- lg n) time
w.h.p. but uses n processors, is based on the linear compac-
tion algorithm presented in [GMR96a]. The idea behind
the algorithm is to use to relatively large array into
which processors are ``compacted,'' so that the number of
processors accessing the same array location is not too
large.

We also demonstrate in Section 5 the efficiency of a qrqw

pram low-contention random permutation algorithm,
compared with the popular erew algorithm, through
several experiments on The MasPar MP-1 parallel machine
[Mas91]. Recently, the qrqw random permutation
algorithm was also implemented on a cray j90 and was
shown to be considerably faster than the best known
(sorting-based) erew algorithm [BGMZ95].

In Section 6 we present a linear work, O(lg n) time
randomized qrqw pram algorithm for constructing a hash
table and for parallel membership queries into the table.
Our algorithm is based on an O(lg lg n) time crcw

algorithm of [GM94b], which uses an oblivious execution
technique to keep to minimum the required ``bookkeeping''
operations. In order to obtain a fast, efficient qrqw

algorithm, we replace the polynomial hash functions used in
the crcw algorithm by hash functions [DM90] which have
collision behavior that looks quite random. To implement
an efficient access to these hash functions, we devise a low-
contention qrqw pram algorithm which is based on the
following simple, yet useful, idea: If a program variable is to
be read by k (a priori unknown) processors, then we replace
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4 Note that the standard 3(lg p) time emulation of crcw on erew (see,
e.g., [KR90]) is not work-preserving, in that the erew performs 3(lg p)
times more work than the crcw it emulates. Hence, it cannot be used to
obtain erew pram algorithms, much less hypercube algorithms, with linear
or near-linear speedups. Similarly, the best known emulations for the crew

prem (or ercw pram) on the erew pram (or standard bsp or hypercube)
require logarithmic work overhead for logarithmic slowdown or, alter-
natively, polynomial slowdown for constant work overhead.
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the program variable with k copies of the same value; we
then let each of the k processors select one of the copies at
random and read the selected copy.

Our sorting algorithms are given in Section 7. We present
linear work, O(lg n) time randomized algorithms for sorting
from U(0, 1) on the qrqw pram, and for integer sorting on
the crqw pram. We use the latter result in a fast, efficient
emulation of the powerful fetch6add pram on the crqw

pram. In addition, we adapt the - n-sample sort crew pram

algorithm of Reischuk [Rei85] to obtain a simple, work-
optimal qrqw pram algorithm for general sorting. The
qrqw algorithm employs a novel binary search fat-tree data
structure;5 the added fatness over a traditional binary
search tree ensures that, with high probability, each step of
the search encounters low contention.

1.2. Techniques for QRQW PRAM Algorithms

Important technical issues arise in designing algorithms
for the queue models that are present in neither the
concurrent nor the exclusive pram models. For example,
much of the effort in designing algorithms for the qrqw

models is in estimating the maximum contention in a step
and occasionally identifying the number of processors that
try to access the same memory address. As one high conten-
tion step can dominate the running time of the algorithm,
we cannot afford to underestimate the contentions
significantly.

There are several techniques for replacing a high
contention step with a sequence of a few low contention
steps. One such technique is to replace concurrent read
operations by local broadcasting steps, as done in the
algorithms for load balancing, multiple compaction, and
random permutation. Another technique is using larger
arrays into which processors are ``compacted,'' so as to
reduce the size of collision sets; this is used in the linear
compaction algorithm in [GMR96a], as well as in an algo-
rithm for random cyclic permutation. A third important
technique is that of duplicating the contents of one or more
program variables and, then, having each processor access
a random copy of such a variable, thereby reducing conten-
tion. Algorithms that use this technique include the hashing
and the general sorting algorithms.

Some qrqw pram algorithms consist of iterations that
include a random scatter step, in which processors access a
random cell in a linear size array; this is an example of
the duplication scheme mentioned above. The maximum
contention in such steps is 3(lg n�lg lg n) w.h.p., implying
that to obtain O(lg n) time the number of iterations must
not exceed O(lg lg n). Indeed, some of the O(lg n) time
qrqw pram algorithms are based on ``highly parallel'' crcw

pram randomized algorithms, whose running time on the
crcw is w.h.p. O(lg lg n) or O(lg* n) [Mat92]. Algorithms
that use the ``doubly-logarithmic paradigm'' include those
for load balancing, random permutation, and hashing.
Algorithms that use the ``log-star paradigm'' include those
for multiple compaction and random cyclic permutation.

It appears that coordination among processors may
occasionally be quite expensive on the qrqw pram, as
implied by the lower bounds for broadcasting [GMR96a]
and load balancing, and should be avoided if at all possible.
Fast crcw pram algorithms tend to have very little such
coordination, which makes them good candidates as basis
for adaptation to qrqw pram algorithms. Indeed, one of the
main features in the O(lg lg n) time crcw pram hashing
algorithm [GM94b] which is the basis for our qrqw pram

algorithm is the ``oblivious execution'' technique, which
allows the computation to proceed without coordination
among processors. By contrast, an O(lg n) time crcw pram

hashing algorithm [MV91b] makes extensive use of (semi-)
sorting for processor coordination, which on the qrqw

pram would be both slow and inefficient.
Finally, we remark on the role that randomization plays

for our qrqw pram algorithms. We recall that the power of
the qrqw pram model, in comparison with the erew pram

model, is in the fact that it is not necessary to schedule the
memory accesses explicitly so as to avoid concurrent access.
There are two natural ways to leverage on this power. One
way is the use of irregular small contention (deterministic)
memory accesses, as illustrated in [GMR96a] in the
context of the 2-compaction problem. Another way is to use
randomization as a technique for random assignment of
resources, be it read operations as in the hashing algorithm
and in the fat-tree data structure, or write operations as in
the linear compaction, multiple compaction, load balancing,
and random permutation algorithms. This technique has
been essentially used in all the algorithms presented in this
paper and has proved to be a simple and effective tool for
low-contention parallel algorithms.

The rest of this paper is organized as follows. In Section 2
we review the definition of the qrqw model and some
previous results for the model. Then, as indicated above,
Sections 3�7 consider load balancing, multiple compaction,
generating a random permutation, hashing, and sorting.
Finally, Section 8 contains concluding remarks.

The results in this paper appeared in preliminary form in
[GMR93, GMR94a, GMR94b].

2. PRELIMINARIES

2.1. The QRQW PRAM Model

We begin by reviewing the definition of the qrqw pram

model [GMR96a].
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5 The function lg( j )( } ) is defined as the j th iterate of lg: lg(1) x#lg x, and
for j>1, lg( j ) x#lg lg( j&1) x. The function lg*( } ) is defined as lg* x#

min[j : lg( j ) x�2].
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Definition 2.1. Consider a single step of a pram,
consisting of a read substep, a compute substep, and a
write substep. The maximum contention of the step is the
maximum, over all locations x, of the number of processors
reading x or the number of processors writing x. For
simplicity in handling a corner case, a step with no reads or
writes is defined to have maximum contention ``one.''

Definition 2.2. The QRQW PRAM model consists of
a number of processors, each with its own private memory,
communicating by reading and writing locations in a shared
memory. Processors execute a sequence of synchronous
steps, each consisting of the following three substeps:

1. Read substep. Each processor i reads ri shared
memory locations, where the locations are known at the
beginning of the substep.

2. Compute substep. Each processor i performs ci RAM

operations, involving only its private state and private
memory.

3. Write substep. Each processor i writes to wi shared
memory locations (where the locations and values written
are known at the beginning of the substep).

Concurrent reads and writes to the same location are
permitted in a step. In the case of multiple writes to a
location x, an arbitrary write to x succeeds in writing the
value present in x at the end of the step.

Definition 2.3. Consider a qrqw pram step with maxi-
mum contention }, and let m=maxi[ri , ci , wi] for the step,
i.e., the maximum over all processors i of its number of
reads, computes, and writes. Then the time cost for the step
is max[m, }]. The time of a qrqw pram algorithm is the
sum of the time costs for its steps. The work of a qrqw pram

algorithm is its processor�time product.

This cost measure models, for example, a mimd machine
such as the Tera Computer [ACC+90], in which each
processor can have multiple reads�writes in progress at a
time, and reads�writes to a location queue up and are
serviced one at a time. Note that, as a pure shared memory
model, the qrqw pram model is independent of the particular
layout of memory on the machine, e.g., the number of
memory modules, and can be used to model even cache-
based (coma) machines, e.g., the KSR1 [FBR93], in which
the mapping of memory cells to machine nodes varies
dynamically as the computation proceeds.

Our previous paper also defined the simd-qrqw pram

model, a restricted version of the qrqw pram in which
ri=ci=wi=1 for all processors i at each step. This model
is suitable for simd machines such as the MasPar MP-1 or
MP-2, in which each processor can have at most one
read�write in progress at a time, reads�writes to a location
queue up and are serviced one at a time, and all processors
await the completion of the slowest read�write in the step

before continuing to the next step. Another variant is the
crqw pram, in which unlimited concurrent reading is
permitted; for this model, the maximum contention for a
step is defined to be the maximum over all locations of the
number of writers to the location. Several of our results in
Section 7 are for the qrqw pram.

2.2. Previous Results

In addition to defining the qrqw models, our previous
paper [GMR96a] presented a number of results charac-
terizing the power of the qrqw models relative to other
models. For two models, M1 and M2 , let M1 PM2 denote
that one step of M1 with time cost t�1 can be emulated in
O(t) time on M2 using the same number of processors. We
have:

Fact 2.1 [GMR96a]. erew pramPsimd-qrqw pram

Pqrqw pramPcrqw pramPcrcw pram.

Moreover, we have characterized the relative power of
these models as follows.

Theorem 2.2 [GMR96a]. The following relations hold:

1. There is an 0(- lg n) time separation between an erew

pram with arbitrarily many processors and an n-processor
simd-qrqw-pram.

2. A simd-qrqw pram can emulate a qrqw pram to
within constant time factors, given sufficiently many extra
processors.

3. There is an 0(lg n) time separation between a qrqw

pram with arbitrarily many processors and an n-processor
crqw pram.

4. There is an 0(lg n�lg lg n) time separation between a
deterministic crqw pram with arbitrarily many processors
and a deterministic n-processor crqw pram.

In the previous paper, we showed that the work-time
framework is well-suited to the qrqw pram. In the qrqw

work-time presentation, a parallel algorithm is described as
a sequence of steps, where each step may include any
number of concurrent read, compute, or write operations.
In this context, the work is defined to be the total number of
operations, and the time is defined to be the sum over all
steps of the maximum contention of the step. Then Brent's
scheduling principle [Bre74] can be applied to give a qrqw

pram algorithm running in O(work�p+time) time on p
processors.

Theorem 2.3 [GMR96a]. Assume processor allocation
is free. Any algorithm in the qrqw Work-time presentation
with x operations and t time (t is the sum of the maximum
contention at each step) runs in at most x�p+t time on a
p-processor qrqw pram.

421EFFICIENT LOW-CONTENTION PARALLEL ALGORITHMS
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We further showed a number of general scenarios under
which automatic techniques can be used to efficiently
handle processor allocation issues. Consider, for instance
geometric-decaying algorithms, in which the sequence of
work loads (i.e., operations per step), [wi], is upper
bounded by a decreasing geometric series, and each task at
step i was appointed by one task at the preceding step i&1.
For this scenario, we have shown a technique for automatic
processor allocation that yields the following result.

Theorem 2.4 [GMR96a]. Let A be a geometric-decaying
algorithm in a qrqw work-time presentation with time t
and work n. Then Algorithm A can be implemented on a
p-processor qrqw pram in time O(n�p) w.h.p. if p=
0(n�(t+- lg n lg lg n)).

For ease of exposition, most of the qrqw algorithms in
this paper are presented using the qrqw work-time
framework; Theorem 2.4 is used as appropriate.

Among the algorithmic results in our previous paper
[GMR96a] are sublogarithmic time randomized algo-
rithms on the queue-write pram model for two problems for
which the fastest algorithm known on the corresponding
exclusive-write pram model takes 3(lg n) time. The two
results are an O(lg n�lg lg n) time, linear work w.h.p. simd-
crqw pram algorithm for computing the or of n bits
and an O(- lg n) time, linear work w.h.p. simd-qrqw pram

algorithm for the linear compaction problem.
In addition, we present an 0(lg n) expected time lower

bound on a qrqw pram with an unbounded number of
processors for the problem of broadcasting the contents of
a given memory location to n memory location.

2.3. Probability Facts and Notations

A Las Vegas algorithm is a randomized algorithm that
always outputs a correct answer and obtains the stated
bounds with some stated probability. All of the randomized
algorithms in this paper are Las Vegas algorithms, obtain-
ing the stated qrqw pram bounds with high probability.
Recall that a probabilistic event occurs with high probability
(w.h.p.), if, for any prespecified constant $>0, it occurs with
probability 1&1�n$, where n is the size of the input. Thus,
we say a randomized algorithm runs in O( f (n)) time w.h.p.
if for every prespecified constant $>0, there is a constant c
such that for all n�1, the algorithm runs in c } f (n) steps or
less with probability at least 1&1�n$. Often, we can test
whether the algorithm has succeeded and, if not, repeat it. In
this case, it suffices to design an algorithm that succeeds
with probability 1&1�n= for some positive constant =, since
we can repeat the algorithm $�= times, if necessary, to boost
the algorithm success probability to the desired 1&1�n$.
With this in mind, we will freely use ``with high probability''
in this paper to refer to events or bounds that occur with
probability 1&1�n= for some positive constant =.

In the results that follow, we apply the following Chernoff
bound on the tail of a binomial random variable X [Lei92,
p. 168]:

Fact 2.5. Pr[X�;E[X]]�e(1&1�;&ln ;) ;E[X], for all
;>1.

A convenient corollary to this Chernoff bound is the
following (see, e.g., [GMR96a]).

Observation 2.6. Let X be a binomial random variable.
For all f =O(lg n), if E[X]�1�2 f, then X=O(lg n�f )
w.h.p. Furthermore, if E[X]�1 then X=O(lg n�lg lg n)
w.h.p.

3. LOAD BALANCING

Let m independent tasks be distributed among n virtual
processors, and let L be the maximum number of tasks (i.e.,
the maximum ``load'') on any of the processors. In the load
balancing problem, the input to each processor Pi consists of
mi , the number of tasks allocated to this processor (its
``load''), together with a pointer to an array of task represen-
tations; no other information about the global partition is
available, except for m and L. The load balancing problem
asks for a redistribution of the tasks among the processors
so that each processor has O(1+m�n) tasks.

Our load balancing algorithms will use a more general
representation for the tasks during the course of the
computation. In this representation, which we call the array
of arrays format, the tasks assigned to each processor are
specified by an array of pointers to arrays of tasks, so that
each task is in exactly one of those task arrays. The format
specified for the input to the load balancing problem is a
specific instance of the array of arrays format in which the
array of pointers contains only one element. Note that if the
input is specified in the more general array of arrays format,
then we can convert it into the prescribed input format in
O(lg L) times with O(m) work as follows. We convert the
task arrays into linked lists. We then link these linked lists
for the different arrays for a given processor into a single
linked list. Both of these steps can be performed in constant
time and O(m) work over all processors. We then perform
list ranking on the linked list for each processor, and
transfer the tasks in the linked list into an array of suitable
size. This can be performed in O(lg L) time and O(m) work.
In view of this conversion procedure, we assume, for
convenience, that the input is in the form prescribed above.

We note the following property of the array representa-
tion for tasks. Given the array representation for tasks for
each processor as specified above for the input, a given
processor Pi can acquire a block of k tasks assigned to
processor Pj starting at a given location r in Pj 's task
representation in constant time, given the values of i, k, and
r. If Pj 's task representation is the array of arrays format,
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then Pi can access a block of k tasks starting at position r of
the s th array of Pi in constant time, given the values of i, k,
r, and s.

We will assume that m�2n, and that L�n. This assump-
tion is justified below, by showing a constant time reduction
from the general load-balancing problem.

Consider a general load-balancing problem. The tasks at
each processor Pi can be grouped into super-tasks of Wm�nX

tasks each, with possibly one smaller super-task. The
number of super-tasks per processor is Wmi �Wm�nXX.
Therefore, the total number of super-tasks is �n

i=1 Wmi�
Wm�nXX�2n and the maximum load per processor is Wmi �
Wm�nXX�n. A load balancing algorithm for the super-
tasks will allocate a constant number of super-tasks per
processor. Therefore, the number of tasks allocated per
processor will be O(Wm�nX), as required. We refer to the
maximum load in the new input, Wmi �Wm�nXX as the
normalized maximum load.

In this section we show that 0(lg L) time is required to
solve the load balancing problem with maximum load L on
a qrqw pram. We then present a qrqw pram algorithm for
this problem on n processors with m=O(n) tasks that runs
in time O(lg L+- lg n } lg lg L). The - lg n term in the time
bound arises from the use of an algorithm for the ``linear
compaction'' problem, for which we use the qrqw pram

algorithm in [GMR96a], which runs in O(- lg n) time
w.h.p. In the case when m=|(n) our load balancing
algorithm continues to have the time bound of O(lg L+
- lg n } lg lg L), but the output representation of tasks will
be an array of ``super-task,'' each of size Wm�nX, where each
super-tasks is represented by a pointer into the input task
arrays.

3.1. A Lower Bound

In this section we show that the load balancing problem
requires 0(lg L) times on the qrqw pram, where L is the
maximum load on any processor. The lower bound uses the
following lower bound on the ``broadcasting'' problem,
which is given in [GMR96a].

Theorem 3.1 [GMR96a]. Any deterministic or ran-
domized algorithm that broadcasts the value of a bit to any
subset of k processors in a qrqw pram requires expected time
0(lg k), regardless of the number of processors used.

We now present our lower bound for the load balancing
problem.

Theorem 3.2; Any deterministic or probabilistic qrqw

pram algorithm for the load balancing problem with maxi-
mum initial load L requires 0(lg L) time regardless of the
number of processors used.

Proof. Let the load balancing algorithm guarantee that
each processor has at most c(1+m�n) tasks, for a suitable

constant c�1. Our proof is based on showing a constant
time erew pram reduction from the problem of broadcast-
ing the value of a bit to any subset of (1�c) } L processors out
of a total of n processors to the following load balancing
problem: one processor P has L tasks, and the remaining
n&1 processors have 0 tasks. If the value of the bit to be
broadcast is 0 then the L tasks are located in an array
starting at memory location n+1; if the value of the bit to
be broadcast is 1 then the L tasks are located in an array
starting at memory location 2n+1. All of the tasks are
``dummy'' tasks, with constant size representation. This
reduction can be implemented in constant time by having
the i th processor enter the task representation for the i th
dummy task to the array starting at location n+1 and to
the array starting at location 2n+1. Processor P initializes
the pointer to the array of task representations to n+1 or
2n+1, depending on whether its bit value is 0 or 1, and sets
its load to be L.

The solution to the above load-balancing problem
consists of a subset S of at least L�c processors, each
receiving a pointer to a subarray consisting of at most c
tasks. These subarrays are either in the block of memory
between n+1 and 2n or between 2n+1 and 3n. Depending
on which range the pointer lies, each of the processors in S
can determine whether the value b of the bit in processor P
is 0 or 1. Hence by Theorem 3.1 it follows that the load
balancing problem requires 0((1�c) } lg L) expected time,
i.e., 0(lg L) expected time. K

3.2. An Algorithm

Let Tlb(n, L, M) be the time needed to solve the load
balancing problem of size n with maximum normalized load
L, using linear work on a model M. By Theorem 3.2, if M
is a qrqw pram, then Tlb(n, L, M)=0(lg L).

A problem related to load balancing is the previously
studied linear compaction problem: Consider an array of
size n with k nonempty cells, with k known. The linear
compaction problem is to move the contents of the non-
empty cells to an output array of O(k) cells. Let Tlc(n, M)
be the time for solving the linear compaction problem of size
n, using n processors on a model M. Our load balancing
algorithm is primarily based on repeated applications of a
linear compaction algorithm:

Lemma 3.3. Let M be a model at least as strong as the
erew pram. Then

Tlb(n, L, M)=O(lg L+Tlc(n, M) } lg lg L).

Proof. Assume first that the number of available
processors is 2n. We later show how to reduce the number
of processors to n�Tlb(n, L, M), as required.

423EFFICIENT LOW-CONTENTION PARALLEL ALGORITHMS



File: 571J 146508 . By:CV . Date:12:12:96 . Time:12:34 LOP8M. V8.0. Page 01:01
Codes: 6395 Signs: 5246 . Length: 56 pic 0 pts, 236 mm

Our algorithm is based on a crcw load balancing
algorithm by [Gil91], which consists of O(lg lg L) applica-
tions of a dispersal stage. Each dispersal stage uses a linear
compaction algorithm as a main building block.

Let u0 , u1 , . . . be a sequence defined by ui+1=2 - ui and
u0=- L. It is straightforward verify by induction on i that
ui=22&1�2i&1L2&(i+1)

for i�1, and hence uk becomes
constant for i=O(lg lg n). For simplicity, we will assume
that the numbers - ui, i=0, 1, ..., as well as other outcomes
of calculations below, are integers; it is straightforward,
albeit somewhat tedious, to adapt the setting of parameters
and the analysis to handle the general case.

As an invariant, we let u2
i be an upper bound on the

maximum load among the processors at the beginning of
the (i+1)th dispersal stage. A processor is said to be
overloaded if it has at least 2ui tasks. The (i+1)th dispersal
stage reduces the upper bound on the maximum load per
processor to u2

i+1=4ui , as follows:

Step 1. The overloaded processors are injectively
mapped into an auxiliary array of size 2n�ui .

Step 2. For each cell of the auxiliary array there is a team
of ui processors standing by: each of them adopts up to 2ui

tasks of the overloaded processor that was mapped into this
cell, thereby freeing the overloaded processor from all its
tasks. Each processor has now at most 2ui old tasks and at
most 2ui new tasks. Therefore, the upper bound on the max-
imum load among the processors becomes 4ui=u2

i+1 , as
required.

Clearly, after i*=lg lg L stages, ui* is reduced to a
constant, and we are done.

Implementation of Step 1. An injective mapping is
obtained by using a linear compaction algorithm, in
O(Tlc(n, M)) time. Note that since the total number of tasks
is at most 2n, there are at most n�ui overloaded processors.
The contribution of step 1 to the entire algorithm is
therefore O(Tlc(n, M) lg lg L) time.

Implementation of Step 2. Each processor Pj keeps an
array of pointers Qj to the arrays of tasks which currently
belong to the processor. In each stage, the size of this
pointer array at most doubles, so in the i th stage, the size of
this pointer array is no more than wi= g } 2i, where g is the
initial size of the pointer array. Since the initial size of the
pointer array is 1 (by our convention for the input represen-
tation), the size of this array in the ith stage is bounded by
2i for each processor.

Processor Pj also keeps an additional array Tj which
represents the prefix sums Tj[l]=�l

k=1 tj, k , 1�l�wi ,
there tj, k is the number of tasks in the k th task array of
processor Pj . The tasks of the l th subarray of an overloaded
processor Pj are to be adopted by Wtj, l �ui X processors. The

pointer to the l th subarray of Pj is broadcast together with
Tj[l&1] and Tj[l] to processorsPv , v # [WTj[l&1]�uiX+1, ...,
WTj[l]�uiX], in the team which is allocated to Pj (here v is
the numbering of processors within the team). Each
processor can infer from this information the pointer(s) to
the subarray(s) of tasks it needs to adopt and hence perform
the appropriate updates. Note that an overloaded processor
Pj may also be part of a team allocated to another over-
loaded processor. Therefore, before the above update takes
place, each overloaded processor Pj updates both its
pointers array Qj and its prefix sums array Tj to null.

The time for step 2 is dominated by the broadcasting
substep and the time needed to compute the prefix sums on
the array of pointers Qj as well as to construct the array of
pointers Qj+1 for the next stage. It is straightforward to see
that the broadcasting substep can be implemented in
O(lg ui) time, and the computations on array Qj can be
performed in O(lg wi) time. The overall time for the i th
stage is O(lg ui) as long as ui�wi , which holds for all but
the last 3(lg lg lg L) stages of the algorithm. Let i+=
lg lg L&lg lg lg L. The time taken by the first i+ steps of the
algorithm is (to within a constant factor)

:
i+&1

i=1

lg ui= :
i+ &1

i=0

lg(22&1�2i&1L2&(i+1)
)

< :
i+&1

i=0

(2+2&(i+1) lg L)<lg L+2i+,

which is O(lg L). The total running time for the first i+

stages of the algorithm is therefore O(lg L+Tlc(n, M)_
lg lg L), using n processors.

It is not difficult to see that at the end of step i+,
ui+=O(lg L) and wi+ =O(lg L�lg lg L)=O(lg L). Since
each processor has a total of O(lg L) tasks arranged in a
collection of wi+ =O(lg L) arrays, each processor can
sequentially collect together all of the tasks in all if its tasks
arrays into a single task array in O(lg L) time. Now we have
a new load balancing problem on n processors with maxi-
mum load O(lg L). We apply steps 1 and 2 repeatedly to this
problem until the load balancing is completed. This second
phase clearly takes no more time than the first phase.
Hence, the overall running time of the algorithm is
O(lg L+Tlc(n, M) lg lg L), using n processors.

Finally, each processor can convert its task representa-
tion from the array of array format to the single array
format in constant time since it has only a constant number
of tasks assigned to it at the end of the algorithm.

Reducing the Number of Processors. It remains to show
how to implement the above algorithm (which assumes 2n
virtual processors) on p�n processors with an additive
time overhead of O(n�p).
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The 2n virtual processors are partitioned into p groups of
g=2n�p processors each, and the jth group is assigned to
the j th physical processor, 1� j�p. We will combine the
tasks in the virtual processors into ``super-tasks'' that
contain g original tasks (with possibly a few smaller super-
tasks) and perform load balancing on these super-tasks. For
this, the j th real processor Pj will perform the following
computation on the virtual processors in the j th group,
1� j�p:

1. Designate the virtual processors in the j th group
whose load is at least g=2n�p as ``heavy processors'' and the
remaining processors in the j th group as ``light processors.''

2. For each heavy processor Hi, j in the j th group, let its
load be mi . Combine its tasks into super-tasks of size g, with
possibly one smaller super-task by setting its new load to be
Wmi �(2n�p)X , and setting its ``normalizing'' factor to be g.

3. Perform load balancing on the super-tasks in the
heavy processors using the linear processor algorithm given
earlier. This is load balancing problem on p processors with
O( p) super-tasks and an initial maximum load of O(L)
super-tasks per processor.

4. At this stage each physical processor has O(g2)
original tasks consisting of a constant number of super-
tasks (of size g) from heavy processors and tasks from up to
g light processors, each of which has at most g tasks. These
tasks are organized in a pointer array of size O(g). Each
physical processor processes this pointer array and its
array(s) of tasks so that the tasks are once again grouped
into super tasks of size g (and possibly one smaller
super-task in the j th group) and such that a chunk of r
super-tasks, starting with the l th super-task, can be
retrieved in constant time, given r and l. This preprocessing
can be performed in O(g) time sequentially by each physical
processor.

5. We now have a load balancing problem on O( p)
super-tasks using p processors, with an initial maximum
load of O(g) super-tasks per physical processor and with the
initial size of each pointer array being w0=O(g). We solve
this problem in O(lg lg g) stages using the linear processor
algorithm given earlier. Since the initial pointer array is as
large as the maximum load per processor, we need to be
careful about the processing of the pointer arrays and the
task distribution step in order to stay within the time and
work bounds. We perform this computation as follows: We
add the pointer array for each new set of tasks added to a
processor as a separate pointer array, and the processors in
the team assigned to distribute the tasks in this processor
will search serially through the different pointer arrays in
this processor to determine the ones that contain its collec-
tion of tasks. Since we have at most O(- g) processors in a
team and 2lg lg g=O(lg g) different pointer arrays in any
processor at any stage, this step can be performed in

O(- g } lg g) time per stage leading to a total of O(- g }
lg g } lg lg g), which is O(g) time for processing the pointer
arrays through all stages of the algorithm. At the end of this
step, each physical processor has O(g) tasks as required.

It is straightforward to see that the above algorithm runs in
time O(lg L+Tlc(P, M) } lg lg L) (for step 3) +O(lg g+
Tlc(P, M) } lg lg g+ g) (for step 5), which is O(lg L+
Tlc(n, M) } lg lg L+n�p). Finally, if needed, each physical
processor Pj can distribute its O(g) tasks in O(g=n�p) time
to the 2n�p virtual processors in its group by a sequential
algorithm.

By using the linear compaction algorithm given in
[GMR96a], where for M being a simd-qrqw pram

Tlc(n, M=O(- lg n) w.h.p., we obtain

Theorem 3.4. The load-balancing problem with maxi-
mum normalized load L can be solved by a p-processor
simd-qrqw pram in O(- lg n lg lg L+lg L) times and linear
work w.h.p.

In particular,

Corollary 3.5. The load-balancing problem with maxi-
mum normalized load L=2O(- lg n lg lg n) can be solved by a
p-processor simd-qrqw pram algorithm in O(- lg n lg lg n)
time and linear work w.h.p.

3.3. Application to Automatic Processor Allocation

As mentioned in Section 2, the paper [GMR96a] gave a
few examples of general classes of algorithms for which
automatic processor allocation techniques can be applied to
advantage. Such classes include geometric-decaying
algorithms, general task-decaying algorithms, and spawn-
ing algorithms. Processor allocation is done by a scheduling
scheme using an algorithm for linear compaction.

We show now that load balancing can be used to provide
automatic processor allocation to a more general class of
algorithms: the L-spawning algorithms. In an L-spawning
model, at each step each task can spawn at most L&1 more
tasks. The total number of tasks may increase or decrease at
each step. Thus, the L-spawning model generalizes the
spawning model (which is equivalent to the 2-spawning
model), as well as the models for task-decaying algorithms
and geometric-decaying algorithms. Let wi be the total
number of tasks at the beginning of step i of an L-spawning
algorithm A. Similarly to the task-decaying and to the
spawning models, an L-spawning algorithm A is predicted if
an approximate bound on the sequence of work loads [wi]
is known in advance. Specifically, if a sequence [ni] is given
such that for all i, ni�wi and �i ni=O(�i wi). Further-
more, it is required that for all i, ni�L } ni&1.

Theorem 3.6. Let A be an algorithm in the qrqw

work-time presentation obeying the L-spawning model with
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time t and work n, and let t$ be the number of parallel steps
in A. If Algorithm A is predicted then it can be implemented
on a p-processor qrqw pram to run in time O(n�p) if
p=O(n�(t+t$ } Tlb(n, L, M))), where M is the qrqw pram

model.

Proof. The processor allocation technique extends the
techniques for the 2-spawning model used in [Mat92] for
the crcw pram and in [GMR96a] for the qrqw pram. Let
p be the number of qrqw pram processors. Let wi be the
total number of tasks at the beginning of step i of Algorithm
A, and let ni be the approximate bounds on wi , as defined
above. Thus, �t$

i=1 wi=n and �t$
i=1 ni=O(n). In order to

get an O(n)-work implementation on the qrqw pram, we
keep the invariant that at each step the tasks are evenly
distributed among the p processors; i.e., the number of tasks
per processor at the beginning of step i is at most cni �p, for
some constant c>0.

Step i of Algorithm A is implemented as in the algorithm
of Theorem 2.3, using the p-processor qrqw pram. After
step i, each task may spawn at most L&1 new tasks. There-
fore, the total number of tasks, ni+1 , becomes at most Lni ,
and the number of tasks per processor becomes at most
cLni�p. A load balancing algorithm is used to redistribute
the tasks among the processors so that the number of tasks
per processor becomes at most cni+1 �p. If ni+1�ni�2, then
the maximum normalized load is at most 2cL, and hence the
time for load balancing is at most Tlb( p, 2c, M), which is
O(Tlb( p, L, M)). So consider the general case where ni+1

may drop below ni �2. In such cases, we will add (for the sake
of analysis only) dummy tasks to increase ni+1 so that the
maximum normalized load is at most 2cL and then argue
that the addition of these dummy tasks increases the time
and work bounds by at most a factor of 2 over the original
algorithm.

In more detail, we partition the steps of Algorithm A into
phases, where a phase consists of a maximal subsequence of
steps for which the ni 's each decrease by more than a factor
of 2. Let +1=n1 , and for i=2, ..., t$, let +i=max[ni ,
+i&1 �2]. For each step i, we add max[0, +i&ni] dummy
tasks. Consider any phase, comprised of steps j through k.
Then +j=nj , and +j , ..., +k constitute a decreasing geometric
series. Thus �k

i= j +i<2nj , so adding the dummy tasks
increases the time and work bounds for the algorithm by at
most a factor of 2.

By Theorem 2.3 and the invariant, the implementation of
all steps i, i=1, 2, ..., t$, when dummy tasks are included,
takes O(n�p+t) time. The implementation of all the load
balancing steps when dummy tasks are included adds an
additive overhead of O(t$, } Tlb( p, L, M)). Hence the
algorithm runs in time O(n�p) when p=O(n�(t+t$ }
Tlb( p, L, M)). The theorem follows. K

By Theorem 3.4 we obtain:

Corollary 3.7. Algorithm A in Theorem 3.6 can be
implemented on a p-processor qrqw pram to run in time
O(n�p) w.h.p. when p=O(n�(t+t$ - lg n lg lg L+t$ lg L)).

In particular,

Corollary 3.8. Let A be an algorithm in the qrqw

work-time presentation obeying the L-spawning model with
time t and work n, and let t$ be the number of parallel steps
in A. Then, if L=2O(- lg n lg lg n) and Algorithm A is predicted,
then A can be implemented on a p-processor qrqw pram to
run in time O(n�p) w.h.p. when p=O(n�(t+t$ } - lg n lg lg L)).

An application of Corollary 3.8 is given in the next
section.

The above results can be extended to algorithms obeying
the L-spawning model that are not predicted, if the crqw

pram model is used. Specifically, consider a crqw work-
time presentation, which is defined to be the same as the
qrqw work-time presentation, except that time is accounted
for using the crqw metric instead of the qrqw metric. An
algorithm A in the crqw work-time presentation obeying
the L-spawning model with time t, work n, and number
of parallel steps t$ can be implemented on a p-processor
crqw pram to run in time O(n�p) when p=O(n�(t+t$ }
Tlb(n, L, M))), where M is the crqw pram model. The
proof is similar to the proof of Theorem 3.6, and is omitted.

4. MULTIPLE COMPACTION

In this section we present a logarithmic time, linear work
qrqw pram algorithm for the multiple compaction problem.
We start by recalling the definitions of the compaction and
linear compaction problems, which we studied in the context
of the qrqw pram in [GMR96a].

Compaction Problem. Given an array A[1..n] with k
nonzero cells, where k is known but the positions of the k
nonzero cells are not known, move the contents of the non-
zero cells to the first k locations of array A.

Linear Compaction Problem. Given an input to the
compaction problem (i.e., an array A[1..n] with k nonzero
cells, where k is known but the positions of the k nonzero
cells are not known), move the contents of the nonzero cells
to an output array of size O(k).

In [GMR96a] we give a randomized algorithm for linear
compaction on the qrqw pram that, w.h.p., runs in
O(- lg n) time while performing linear work. The same
algorithm with an additional simple postprocessing step
solves the compaction problem in O(- lg n+lg k) time and
linear work, w.h.p.

The multiple compaction problem that we consider in this
section is a generalization of the linear compaction problem.
The input consists of n items given in an array A[1..n]; each
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item has a label, a count, and a pointer, all from [1..O(n)].
The labels partition the items into k sets 81 , ..., 8k , k�n,
where 8j is the set of items labeled with j. For simplicity we
will let k=n, and allow some of the 8j to be empty. The
count of an item belonging to 8j is an upper bound,
nj=count(8j), on the number of items in 8j , such that
�n

j=1 nj�c } n for some constant c>0. Also given is an
array B[1..c$n], where c$�4c is a constant. Array B is parti-
tioned into subarrays such that each set 8j has a private
subarray of size at least 4nj ; the subarrays are assigned in
some arbitrary order. The pointer of an item belonging to a
set 8j is the starting point in B of the subarray assigned
to 8j .

Multiple Compaction Problem. Given an input of the
form stated in the above paragraph, move each item in
array A into a private cell in the subarray for its set in
array B.

An important application of multiple compaction is in a
randomized crcw pram algorithm for integer sorting
[RR89]. In Section 7, we will use the algorithm for multiple
compaction given in this section to obtain a logarithmic
time, linear work crqw pram algorithm for integer sorting,
as well as to obtain efficient qrqw Or crqw algorithms for
general sorting and sorting from U(0, 1).

Our main result in this section is a qrqw pram algorithm
for multiple compaction that runs in O(lg n) time and linear
work w.h.p. as stated in the following theorem.

Theorem 4.1. The multiple compaction problem can be
solved by a qrqw pram algorithm in O(lg n) time and linear
work w.h.p.

Proof. We consider two special cases of the multiple
compaction problem: In the heavy multiple compaction
problem, the count of each set is at least : } lg2 n, for a
suitable constant :>0, and in the light multiple compaction
problem, the count of each set is at most : } lg2 n. In
Section 4.1 we describe our algorithm for heavy multiple
compaction and prove that it runs in O(lg n) time and linear
work w.h.p. on a qrqw pram (Lemma 4.2). Then in
Section 4.2 we describe our algorithm for light multiple
compaction, and prove that it also runs in O(lg n) time and
linear work w.h.p. on a qrqw pram (Lemma 4.4). To solve
the overall multiple compaction problem, it suffices to
perform one application each of the heavy and light multiple
compaction algorithms. Thus the theorem follows from
Lemma 4.2 and Lemma 4.4. K

4.1. The Heavy Multiple Compaction Algorithm

We follow the general strategy used in the multiple
compaction algorithm given in [GMV91] for the crcw

pram, and the log-star paradigm of [MV91a, Mat92]. To
highlight and distinguish the dependence of our algorithm

on the input of size n and show a Las Vegas algorithm that,
for any m, obtains its time bounds (which are a function of
n and m) with high probability in m (i.e., with probability
1&1�m$ for any constant $>0).

The log-start paradigm as adapted to our algorithm
consists of O(lg* n) basic rounds. An item is initially active
and becomes inactive when it is moved into a private cell in
the subarray for its set. The number of active items in set 8j

at the beginning of round i>1 is at most nj�(2i&1qi), where
[qi] is a sequence defined by

qi+1=min[2qi, : } lg m],

with q1 a sufficiently large constant. Round 1 is repeated
a constant number of times to establish the base case of
this invariant. The number of rounds is defined as i $=
min[i : qi=: lg m]. Round i consists of two steps:

(i) Allocation, where each active item in 8j is allocated
with a set of qi processors (a ``team'');

(ii) Deactivation, where a processor handling an active
item of a set 8j tries to get hold of a private cell in the
subarray assigned to 8j , by selecting a cell in the subarray
at random and writing its index into that cell. An active item
is deactivated if any of the processors assigned to it is able
to obtain a private cell for the item.

In each round, the number of processors trying to write to
the subarray for 8j (of size 4nj) is at most nj . A processor
fails in a write attempt if there is already a value written in
that location from a previous step. To simplify the analysis,
we will also consider a write attempt to be a failure if
another processor tries to write into the location in the same
step; this only increases the probability of failure. Then, the
failure probability of each processor is at most 1

2 ; moreover,
these probabilities are ``pseudo-independent'' in the sense
that the bound on the failure probability of an item is valid
no matter what happens with other items. If any of the
processors for an active item succeeds in claiming a cell,
then the item becomes inactive by selecting one of its
successful processors. Since qi processors are allocated to
each item, the probability that an entire team for an item
fails is at most 2&qi.

We claim that the number of active items in each set 8j

at the end of round i<i $ is at most max(nj�(2iqi+1), lg m)
w.h.p. in m. Assume inductively that at the end of round
i&1, the number of active items in each set 8j is at most
max(nj �(2i&1qi), lg m); the base case can be easily obtained
by repeating the first round for a constant number of times.
If nj �(2i&1qi)>lg m then the expected number of items that
fail is at most (nj �(2i&1qi)) } 2&qi. If this expected number is
0(lg m), then by Chernoff bounds (Fact 2.5), the number of
items that fail is O(nj�(qi } 2i&1qi+1)) w.h.p. in m, i.e., no
more than nj+(2iqi+1); if this expected number is o(lg m),
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then again by Chernoff bounds, the number of items that
fail is less than lg m w.h.p. in m. This establishes the claim on
the number of active items remaining at the end of each
round.

Thus at the beginning of round i $, the number of active
items in each set 8j is at most max(nj �(2i $&1qi $), lg m) w.h.p.
in m, i.e., at most nj+: lg m (recall that nj�: lg2 m). Since
qi $=: lg m processors are allocated to each item in round i $,
all active items succeed in this round w.h.p. in m. A Las
Vegas algorithm can be obtained by repeating this last
round on the remaining active items until all such items
have been placed.

Now we describe an implementation of this algorithm on
the qrqw pram. The algorithm can be easily implemented
on the L-spawning model of Section 3.3, taking L=qi $=
: lg m. Moreover, the L-spawning algorithm is predicted.
The number of parallel steps is t$=O(lg* n). The expected
contention at each deactivation step is less than 1, so by
Observation 2.6, the maximum contention at each deactiva-
tion step is O(lg m�lg lg m) w.h.p. in m, and the time of the
algorithm is therefore t=O(lg* n lg m�lg lg m). The work
of the algorithm is O(�i $

i=1 n�2i) which is o(n). By
Corollary 3.8, the algorithm described above can be
implemented on the qrqw pram in O(n) work and
O(lg* n lg m�lg lg m+lg* n - lg m lg lg lg m) time, i.e.,
O(lg* n lg m�lg lg m) time, w.h.p. in m.

We next describe a more direct implementation of the
L-spawning algorithm above, which does not require the
use of the linear compaction algorithm (as in Corollary 3.8).
Consider a partition of the input elements in array A into
groups of size lg2 m. Since the expected number of active
items in each group is 0(lg m) in each round, by Chernoff
bounds (Fact 2.5), the number of active items within each
group is, w.h.p. in m, within a constant factor of the
expected value. Therefore, the allocation step can be
implemented within each group. Specifically, within each
group a linear-work O(lg lg2 m))-time prefix sum algorithm
is used to

(i) identify successful copies and select one of them to
deactivate their item;

(ii) count the number of active items in the group;

(iii) duplicate each active item into qi copies; and

(iv) partition the set of copies into equal-sized chunks,
one chunk per processor.

Thus, the deactivation step of round i can be implemented
in O(lg lg m) time and O(n�2i) work w.h.p. in m. This leads
to the following lemma.

Lemma 4.2. The multiple compaction problem in which
the count of each set is at least : } lg2 m for a suitable constant
:>0 can be solved by a qrqw pram algorithm in
O(lg* n lg m�lg lg m) time and O(n) work w.h.p. in m. The

heavy multiple compaction problem (the case n=m) can be
solved in O(lg n lg* n�lg lg n) time and linear work w.h.p. in n.

In Section 7, we will use a relaxed version of the heavy
multiple compaction problem in which the input assump-
tion that all counts nj are upper bounds on the sizes of their
respective sets 8j is true w.h.p. only. When some set 8j has
more than nj items, the algorithm is permitted to report
failure. The algorithm given above can be readily adapted to
handle this relaxed version, within the same time and work
bounds, as follows: After round i $, use the output subarray
to count the number of items in each set 8j ; if there exists
a set 8j with more than nj items, report failure. This can be
done in O(lg n) time and linear work using prefix sum com-
putations. Repeat round i $ and this test until either all items
are placed or failure is reported.

4.2. The Light Multiple Compaction Algorithm

In this section we present an O(lg n) time, linear work
qrqw pram algorithm for the multiple compaction problem
when the count of every set is at most : lg2 n, i.e., for the
light multiple compaction problem. The main steps in the
algorithm are as follows:

(i) Elect a leader for every set 8j as follows: Write
each item into a random location in its output subarray.
Then use a simple prefix sums computation on the output
array to identify the item written in the first nonempty
location in each subarray. Designate this item as the leader
for its set.

(ii) Have the leader of every set 8j write the value of nj

in location j of an array C[1..n]. For every empty set 8j

write the value 1 (empty sets are assumed to have one
dummy member).

(iii) Let each subarray of size : lg2 n in C define a
superset containing the sets represented in this subarray.
Note that each superset is of size between : lg2 n and
(: lg2 n)2.

(iv) Process the data for the supersets defined in step
(iii) to serve as an input for the heavy multiple compaction
problem as follows: Compute prefix sums in array C to
determine the starting position of the subarray for each
superset in the (new) output array for the supersets. The
leader for each set in the superset writes the label of the
superset, its count, and its pointer in the starting position of
the output subarray for its set. The processors then apply a
simple broadcast computation to broadcast this informa-
tion to all locations within each subarray in an optimal
logarithmic time erew pram computation. Each item then
reads a random location in its output subarray to determine
the label of its superset, its count, and its pointer.

(v) Apply the heavy multiple compaction algorithm of
Lemma 4.2 to place each superset item in the appropriate
subarray.
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(vi) Within each superset, sort the items with the keys
being the input labels modulo : lg2 n. This places items with
the same input label consecutively within the subarray.

(vii) Rank each item within the consecutive subarray
for its input label, using a prefix sums computation. Then
move each item, say with rank i, to the ith position in the
original output subarray for its input label, using its input
pointer.

The maximum contention in steps (i) and (iv) is
O(lg n�lg lg n) w.h.p., by Observation 2.6. Thus each of steps
(i)�(v) and (vii) is easily seen to run on a qrqw pram in
O(lg n) time and linear work w.h.p. For step (vi), we apply
the following result.

Fact 4.3 (see, e.g., [Rei93]). The erew pram can
stably-sort n integers in the range [1..lgc n], for any integer
constant c, in O(lg n) time and linear work.

Proof. The following steps stably-sort integer keys in
the range [1..lg n]; the desired result is obtained by repeat-
ing these steps c times on increasingly significant bits of the
input integers.

We use p=n�lg n processors. The input items are
partitioned into p groups of size lg n, by their location in the
input array. Each group consists of lg n subgroups (some of
them perhaps empty), according to the key values. We use
a two-dimensional array Nlg n, p ; N[i, j] will represent the
number of keys with value i in group j. Thus, each row i in
N will represent the sizes of subgroups of keys with value i,
whereas each column j in N will represent the subgroups of
group j. The algorithm consists of the following steps:
(i) each processor j, j=1, ..., p, traverses its group j, counts
the number of items in each subgroup i, and records them
into N[i, j], i=1, ..., lg n; (ii) each processor j traverses its
group and puts the items of each subgroup in a separate list,
ordered in the same relative order as in the input; (iii) the p
processors compute the prefix sums of the numbers N[i, j]
(in row major order) into the two-dimensional array Slg n, p ;
(iv) each processor j traverses its group j, and computes the
global rank r of each element in its group; if x is an element
in a subgroup i that is ranked ri (x) in its subgroup's list,
then the global rank of x is r(x)=S[i, j&1]+ri (x); and
(v) each processor copies all the items in its group into the
output array in sorted order by their global rank. All steps
can be easily implemented in O(lg n) time. K

This gives us the following lemma.

Lemma 4.4. The multiple compaction problem in which
the count of each set is at most : } lg2 n for the constant : in
Lemma 4.2 (i.e., the light multiple compaction problem) can
be solved on a qrqw pram in O(lg n) time and linear work
w.h.p.

5. RANDOM PERMUTATION

The random permutation problem is to generate a
permutation of [1, ..., n] such that all permutations are
equally likely. The random cyclic permutation problem is to
generate a cyclic permutation (one that consists of a single
cycle) of [1, ..., n] such that all such permutations are
equally likely. Examples of cyclic and noncyclic permuta-
tions are given in Fig. 1. As indicated in Table I, the best
known linear work random permutation algorithm for the
erew pram run in O(n=) time, for fixed =>0. This also the
best bound known for the random cyclic permutation
problem. Polylog time erew algorithms know for both
problems are work inefficient by at least a - lg n lg lg n
factor.

In this section, we present three qrqw pram algorithms
that significantly improve upon the best erew algorithms.
The first, an adapted crcw algorithm, solves the random
permutation problem in O(lg n) time, linear work w.h.p.
The second, a newly designed algorithm, solves the random
cyclic permutation problem in O(- lg n) time w.h.p., using
n processors. The third, an adapted crcw algorithm, solves
the random cyclic permutation problem in O(lg n lg* n�
lg lg n) time, linear work w.h.p. This section concludes with
some results obtained from running random permutation
algorithms on the MasPar MP-1 [Mas91].

5.1. Algorithms

Dart throwing is a popular technique for random
permutation on the crcw pram [MR89, RR89, MV91a,
Hag91, Mat92]. The random permutation algorithms in the
cited references all essentially consist of two basic steps.
First, the items 1, ..., n are placed at random into a linear
size arrays by a process in which each attempts to claim a
random cell in the array until it succeeds (in later rounds,
multiple processors may work on behalf of each item). If
multiple items attempt to claim the same cell in the same
step (by writing to the cell), all such attempts are considered
to be failures; this ensures that the policy for arbitrating
between multiple writers to a cell does not bias the random
permutation. At the end of this first step, the relative order
of the items in the array gives an implicit random permuta-
tion. In the second step, the items are compressed into an
array [1..n], in order to compute the permutation explicitly.

A simple compression can be obtained by compacting the
items using a prefix sum algorithm [MR89, RR89]. An

FIG. 1. Permutations. On the left, a cyclic permutation, ?, and a
corresponding cycle representation. On the right, a noncyclic permutation,
,, and a corresponding cycle representation.
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alternative compression technique that circumvents the
need for compaction was presented in [MV91a]: each item
in the linear size array finds its neighboring item and point
to it; using the pointers all items can be placed in an array
[1..n] in constant time, resulting in a random cyclic
permutation; (A general random permutation is obtained
in [MV91a] by breaking the global cycle into smaller cycles
in an appropriate manner, using a prefix-minima
computation.)

The difference between the two compression techniques is
illustrated by the following example. Let n=5, and consider
the items placed at random into an array of size 10, as
follows:

4 5 2 1 3

In the first technique, the items are compacted in order,
yielding the permutation on the right in Fig. 1. In the second
technique, the items specify the cycle representation,
yielding the permutation on the left in Fig. 1.

In each of the qrqw pram algorithms in this section, we
need to detect whether a processor attempting to claim a
cell x succeeds, i.e., whether the attempt is the only claim on
cell x. This is accomplished for all attempts over all cells in
a constant number of steps as follows. Each processor first
writes its index into its selected cell; then it reads the cell.
Any processor that does not read its own index has detected
multiple claims on that cell and, hence, has failed to claim
the cell; it writes again to the cell. Finally, each processor
that did read its own index reads again the cell; if the cell no
longer contains its index, it has failed to claim the cell;
otherwise it has succeeded.

5.1.1. A Random Permutation Algorithm

Theorem 5.1. The random permutation problem can be
solved by a qrqw pram algorithm in O(lg n) time and linear
work w.h.p.

Proof. We use an algorithm adapted from a randomized
crcw algorithm of Gil [Gil91] for the renaming problem,
in which the processors in an anonymous set of at most n
processors are given distinct names from [1..O(n)]. For
each of c lg lg n rounds, for a constant c�1, each unplaced
item selects a random cell from a subarray of an array A (a
new subarray is used for each round); if no other item selects
the same cell, the item has been successfully placed. The size
of the subarray used in the first round is d } n, for some
constant d>1, and the size decreases by a factor of two at
each round. If, after c lg lg n rounds, not all items have been
placed, restart from the beginning. After all items have been
placed, the array A is compacted to size n.

Gil [Gil91] shows that, w.h.p., the algorithm completes
without restarting. Moreover, w.h.p., the number of active
items decreases more rapidly than the subarray size. In such

cases, the contention to a memory cell at each round is a
binomial random variable with an expected value less than
1. It follows by Observation 2.6 that w.h.p., the maximum
contention is O(lg n�lg lg n) at each round, and hence the
total time is O(lg n) w.h.p. The total work is O(n) w.h.p.
Processor allocation can be done directly or by applying
Theorem 2.4. K

We note that there are other crcw algorithms that may
also give similar complexity bounds. Also, if the output may
consist of an implicit (or ``padded'') random permutation
(i.e., without the compression step) then the time is sub-
logarithmic and can be somewhat improved if the algorithm
from [MV91a] is used. Such an algorithm is actually
described in the proof of Theorem 5.3.

5.1.2. A Fast Random Cyclic Permutation Algorithm

For random cyclic permutation, we observe that the
contention during the dart throwing can be reduced by
using a larger array; this was the technique used in the linear
compaction algorithm given in [GMR96a]. However, this
reduction in contention due to throwing into a larger array
must be balanced against the additional time spent by an
item finding its successor in the larger array. Consider an
array of size O(n 2 f), for lg lg n�f�lg n, into which n
random darts are thrown. By Observation 2.6, the maxi-
mum contention will be O(lg n�f ) w.h.p.; the maximum gap
between darts can be shown to be O(2 f) w.h.p. Successors
can be found in time logarithmic in the maximum gap.
Hence we have an O(lg n�f+ f ) time requirement for this
approach, which is minimized when f =- lg n. The
algorithm given below is based on this approach. Since the
contention at each round of dart throwing is O(- lg n), even
after many of the items have been placed, we aim for only a
constant number of rounds.

Theorem 5.2. The random cyclic permutation problem
can be solved by an n-processor qrqw pram algorithm in
O(- lg n) time w.h.p.

Proof. Let A be an auxiliary array of size m=nf 2c } f,
where f =- lg n, for a constant c�1 determined by the
analysis:

1. Each item attempts to claim f random cells in A; an
attempt succeeds if there is no other claim on that cell.

2. W.h.p., each item will have at least one claimed cell.
Each item marks all but its first such claimed cell as
unclaimed.

3. Each item finds it successor in A (with wrap-around),
as follows. Consider a binary tree imposed on A. Each item
begins at its leaf and walks up the tree level by level for at
most 2cf levels, until it encounters an item to its left and to
its right in A. In particular, at each node, v, we maintain a
linked list of the items in the subtree rooted at v by linking
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the rightmost item in v's left subtree with the leftmost item
in v's right subtree. Then, for each item that is the rightmost
item in its subtree at level 2cf (and hence has failed to find
its successor), link the item to the leftmost item (if any) in
the subtree immediately to its right at this level. Note that
this finds successors for all items whose successors are
within a distance of 22cf cells.

4. For each item, i, with successor j, write j to the i th
output cell.

The probability of an item failing to be placed in step 1 is
less than

(nf�m) f=(1�2cf) f=1�2c lg n=1�nc.

To analyze the probability that all successors will be found
in step 3, consider an arbitrary subarray of A of size 22cf.
Each dart hits a cell in the subarray with probability
p=22cf�m. The probability that no item is in the subarray is
less than

(1& p)n<(1�e) pn=1�e22c f�f 2c f
=1�e2c - lg n�- lg n.

it follows that w.h.p., all subarrays of A of size 22cf have
at least one item. In particular, for any given item, the
subarray starting just to its right in A will contain its
successor w.h.p. Thus w.h.p., the above algorithm outputs a
random cyclic permutation.

Note that detecting whether we are done and notifying all
the processors requires 0(lg n) time, by Theorem 3.1, so this
cannot be done. We can ensure, however, that the algorithm
always produces a valid random cyclic permutation, by
adding the following steps to handle the unlikely scenario
where there are unplaced items or items whose successors
have not been determined. Let x be a memory location
apart from the array A. Any processor assigned an item that
remains unplaced or without a known successor writes its
ID to x; the resulting value in x designates the processor
that will complete the work sequentially. The designated
processor checks each item to see if it is unplaced, and if so,
attempts to place the item into a random cell of A until it
succeeds in finding an unclaimed cell. Finally, after all the
items have been placed, the processor steps through A to
determine the successors for all items, and fills in the output
array. Thus we have a Las Vegas algorithm, but since we do
not inform all the processors when the algorithm completes,
some processors may not known when it is safe to use the
output.

To complete the proof of the theorem, we show that the
time and work for the algorithm matches the bounds stated
in the theorem. Step 1 is O(nf ) work and, by Observation 2.6,
O( f ) contention w.h.p. Step 2 is O(n) work and O(1)
contention. Step 3 is O( f ) substeps of O(n) work and O(1)
contention each. Step 4 is O(n) work and O(1) contention.

The sequential cleanup phase described in the previous
paragraph occurs with polynomially small probability, and
can be ignored in the analysis. K

5.1.3. An Efficient Random Cyclic Permutation Algorithm

We next show how to solve the random cyclic permuta-
tion problem in sublogarithmic time and linear work. The
algorithm is based on an O(lg* n) time crcw pram

algorithms for linear compaction and random permutation
[MV91a].

Theorem 5.3. The random cyclic permutation problem
can be solved by a qrqw pram algorithm in O(lg n lg* n�
lg lg n) time and linear work w.h.p.

Proof. We adapt the heavy multiple compaction
algorithm from Section 4.1 as follows. First, we consider the
special case where there is but a single label. Second, we
permit an item to claim a cell only if it is the only item
attempting to claim the cell, to ensure that the items are
placed at random into the array. Third, after completing all
the rounds of the log-star paradigm, we determine the
successor for each item, using the approach described in
Theorem 5.2, as follows. Consider a binary tree imposed on
A and walk up the three 2 lg lg n levels: At each node, v,
maintain a linked list of the items in the subtree rooted at v
by linking the rightmost item in v's left subtree with the
leftmost item in v's right subtree. Then for each node, v, at
level 2 lg lg n, link v's rightmost item to the leftmost item of
the next node to v's right at this level (with wrap-around).
This finds successors for all items whose successors are
within a distance of lg2 n cells. We complete the algorithm
by having each item, i, with successor j, write j to ith output
cell. A Las Vegas algorithm can be obtained by following
the procedure given in Theorem 5.2.

The analysis of the heavy multiple compaction algorithm
using the qi $ -spawning model given in Section 4.1 can be
readily adapted to show that the time for each of the
O(lg* n) rounds is O(lg n�lg lg n) w.h.p., that the overall
work is O(n) w.h.p., and that w.h.p., all items are placed
prior to finding the successors. Walking up the tree takes
O(lg lg n) time and O(n) work (the work is linear here since
the tree has only O(n) nodes). To analyze the probability
that all successors will be found in walking up the tree,
consider an arbitrary subarray of A of size lg2 n. Each dart
hits a cell in the subarray with probability p=lg2 n�cn,
where cn is the size of A, c a constant. The probability that
no item is in the subarray is less than (1& p)n<1�e lg2 n�c. It
follows that w.h.p., all subarrays of A of size lg2 n have at
least one item. In particular, for any given item, the
subarray starting just to its right in A (with wrap-around)
will contain its successor w.h.p.

The implementation of the algorithm described above on
a qrqw pram is similar to the implementation of the heavy
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TABLE II

Each Running Time Represents the Average of Generating
1000 Random Permutations of [1, ..., p], Where p Is

the Number of Processors

Random permutation on the MasPar MP-1

Algorithm 16K proc. 1K proc.

Sorting-based (erew) 11.25 ms 10.01 ms
Dart-throwing with scans 8.02 ms 6.05 ms
Dart-throwing for qrqw 7.57 ms 2.88 ms

Note. The experiment with 1K processors were run on the same
machine as the experiments with 16K processors, but using only one
processor per router cluster. See the text for more details.

multiple compaction algorithm. That is, it can be described
in an O(lg n) spawning model and be implemented using
Corollary 3.8, or it can be implemented directly as in the
proof of Lemma 4.2. The theorem follows. K

5.2. Preliminary Experimental Results

We have performed several illustrative experiments com-
paring random permutation algorithms; these experi-
ments were performed on a 16,384 processor MasPar MP-1
[Mas91]. The goal was to see whether a good qrqw

algorithm would outperform the popular erew algorithm.
We have implemented the random permutation algorithm
given in Theorem 5.1, as well as a variant of this algorithm
that uses more extensively the built-in library routine
provided by the MP-1 for performing scan operations, and
compared their performance to the popular sorting-based
erew random permutation algorithm.6

We perform two sets of experiments. In the first set, we
use all 16,384 processors to generate random permutations
of [1, ..., 16384]; i.e., we study the case where n= p=
16,384. Then in the second set, we use only 1024 processors
of the full machine to generate random permutations of
[1, ..., 1024]; i.e., we study the case where n= p=1024. The
results are shown in Table II. In both cases, the qrqw

algorithm described in Theorem 5.1 is the fastest. In the rest
of this section, we present the details of our experiments. We
begin with a brief description of the MasPar MP-1.

In the MasPar MP-1, the 16,384 processors are con-
nectedby a mesh-likepoint-to-pointnetworkcalledtheX-Net,
as well as by a multistage network used for global routing.
Processors are partitioned into clusters, such that the 16
processors in a cluster share a single output port and a
single input port to the multistage network. Each processor
has 16K bytes of local memory; processors can read or write
to locations in each other's local memories using either
network. The MP-1 is a simd machine.

In simd machines, the processors execute in lock-step;
thus if any processor is delayed due to contention at a
location, all processors are delayed. On the MasPar,
processors wait after each read�write for the read�write with
the maximum contention. This feature is captured by the
simd-qrqw pram model.

Our implementations were done using version 2.0 of the
system software provided for the MP-1. The programs were
written in the MPL language, an extension of C that permits
data-parallel operations. MPL provides ``plural'' versions of
many C data types for defining variables suitable for data
parallel operation. A plural int for example is a data
type with an integer on each processor; adding two
plural int variables results in a plural int variable
that is the component-wise sum.

A number of built-in library routines are provided with
the MPL language, including primitives for routing on the
multistage network of the X-Net, for various SCAN opera-
tions and for random number generation. The timings were
done using the timing functions provided with MPL, and
did not include the cost of generating an initial random seed
for each processor at the start of the experiments.

In our first set of experiments, we compare the following
three randomized Las Vegas algorithms, for 16,384
processors (n= p=16,384):

v A Sorting-Based Algorithm. Each processor selects a
random number between 1 and 231&1. These numbers are
sorted, and ?(i)= the rank of i's number in the sorted
order. In the unlikely event that two processors select the
same number, we repeat the algorithm. We use a built in
library routine for the sorting and ranking (rank32) and
for detecting if the algorithms needs to be repeated
(globalor). This is arguably the simplest and most
popular erew pram algorithm for random permutation.

v A Dart-Throwing Algorithm Using scan. At each
iteration, until all items have been placed: Each unplaced
item selects a random cell from an array A of size n&1; an
item succeeds in claiming a cell if no other item selects the
same cell this iteration. (This is detected using the ``write,
read, write, read'' procedure outlined at the beginning of
Section 5.1.) Compact the successful items in A and transfer
them to locations ?(K+1), ?(K+2), ..., ?(K+k), where K
is the number of items that succeeded in previous itera-
tions and k is the number of items that succeeded in this
iteration. Array ? will contain the random permutation.
We use a built-in scan-type routine for the compaction
(enumerate) and for detecting when all items have been
placed (globalor).

v A Dart-Throwing Algorithm for the qrqw. We
implement the algorithm described in Theorem 5.1, using n
processors (and no reallocation) and taking the initial
subarray size to be 2n&1. We use a built-in library routine
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for detecting when all items have been place (globalor)
and for the compaction at the end (scanAdd16).

The MP-1 provides for single-step data parallel operation
on plural variables, i.e., parallel operation on p data items,
one per processor. In the initial iterations of the dart-
throwing algorithm for the qrqw, p processors throw darts
into a subarray if size m, for some m greater than p;
however, parallel operation on p data items out of a larger
set m of possible data items is not efficiently supported by
the MP-1. We employ m�p plural variables to represent the
subarray of size m. We emulate each dart throwing step by
m�p substeps cycling through these plural variables, such
that each processor throws its dart only during the substep
for the plural variable containing its randomly selected
cell. This overhead increases with m; on the other hand,
decreasing m results in a lower success probability for each
item and, hence, extra iterations may be needed before all
items succeed in claiming a cell. With this trade-off in mind,
we have explored a range of possible array sizes for each of
the dart-throwing algorithms and selected the one that
resulted in the best performance.

The first column of timings in Table II shows the results
of these experiments. Both dart-throwing algorithms
outperform the erew algorithm, with the qrqw algorithm
being the fastest.

In our second set of experiments, we explore the
performance of the three algorithms on an optimistic
configuration of the MP-1. In particular, we employ only
1024 processors of the MP-1, one per cluster, so that each
processor has its own input port and output port to the
multistage network. Moreover, we use plural variables
that are the full size of the machine permitting one-step
parallel on p=1024 larger set m�16,384 of possible data
items (overcoming the bottleneck described above). This
improves the relative performance of the qrqw algorithm.
For this configuration, we again explored a range of
possible initial array sizes, and report in Table II on the
choice resulting in the best performance, namely, an initial
subarray of size 4n&1. Note that the inactive 15K
processors are used solely for the extra memory they
provide; only the active 1K processors execute useful steps
in the program.

The second column of timings in Table II shows the
results of these experiments. As can be seen from this table,
the qrqw algorithm is over three times faster than the erew

algorithm, and the dart-algorithm with scans algorithm is
in between.

Asymptotic Analysis of the Implemented Algorithms. We
provide an asymptotic analysis of the implemented
algorithms to determine if the relative order of the analyzed
bounds corresponds to the relative order, of the measured
performance on the MP-1. We consider two possible models
on which to base our analysis: the simd-qrqw pram,

described at the end of Section 2.1, and the scan-simd-qrqw

pram, define to be a simd-qrqw pram augmented with a
unit time scan operation. As mentioned above, features of
the MP-1 are more closely reflected in the simd-qrqw pram

model. Considering both the simd-qrqw pram and scan-
simd-qrqw pram models allows us to explore whether the
built-in scan operations in the MP-1 should be considered
unit time operations when modelling the MP-1.

We analyze the three implemented algorithms in turn.
The sorting-based algorithm uses bitonic sorting (the

sorting method employed by the MP-1 system sort
routines), and hence takes O(lg2 n) time w.h.p. on the
n-processor simd-qrqw pram or scan-simd-qrqw pram

(same bound as for the erew pram).
The first dart-throwing algorithm takes O(lg n lg lg n)

time w.h.p. on the n-processor simd-qrqw pram and is
readily shown to take O(lg n) time w.h.p. on the n-processor
scan-simd-qrqw pram. (A more careful analysis for the
scan-simd-qrqw pram yields a time bound that is slightly
sublogarithmic.)

The random permutation algorithm given in Theorem 5.1
takes O(lg n) time w.h.p. on the n-processor simd-qrqw

pram. On the n-processor scan-simd-qrqw pram, the time
is again slightly sublogarithmic.

We conclude that for the particular implementations
studied above, the relative order according to the simd-
qrqw pram matches the observed performance, and to a
lesser extent, the same can be said for the scan-simd-qrqw

pram. The simd-qrqw pram has the advantage over the
scan-simd-qrqw pram in predicting the faster of the two
dart-throwing algorithms.

Related Experimental Results. Recall that the random
permutation algorithm described in Theorem 5.1 permitted
each processor to have multiple reads�writes in progress at
a time, and that this pipelining feature was exploited to
obtain a work-optimal algorithm on the qrqw pram. On
the MasPar, however, each processor can have at most one
read�write in progress at a time, so we were not able to
exploit this aspect of the algorithm (and in fact the resulting
implemented algorithm is not work-optimal). Recently, the
random permutation algorithm described in Theorem 5.1
was implemented on an 8-processor cray j90 a parallel
vector machine that permits this pipelining feature. This
algorithm was compared with the fastest known sorting-
based random permutation algorithm on the cray j90 and
was shown to be considerably faster over a range of problem
sizes (e.g., a factor of 2.5 times faster in generating a random
permutation for n=16,384) [BGMZ95].

6. PARALLEL HASHING

Given a finite universe U and a set S/U of size n, the
hashing problem is to construct a linear-size data structure
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(a ``hash table'') that can support lookup operations, i.e.,
queries of the type ``is x # S,'' for any x # U. We show:

Theorem 6.1. A hash table for S can be constructed
in O(lg n) time and linear work w.h.p. on a qrqw pram.
Subsequently, lookup queries for n given distinct keys can be
completed in O(lg n�lg lg n) time and linear work w.h.p. on a
qrqw pram.

The set S of keys to be stored in the hash table, as well as
the set of keys appearing in lookup queries, can be arbitrary
subsets of U. We assume that the choice of sets is inde-
pendent of the random bits used by the algorithm. Our
result is for distinct keys. As shown in Table I, the best
known linear work erew pram algorithm for this problem
runs in O(n=) time.

6.1. Basics

Consider the universe U=[0, 1, ..., q&1], where q is
some prime. A hash function h, U [ h [0, ..., s&1], maps
the universe U into a smaller universe of size s. Given a set
S/U of size n, the hash function h splits S into buckets
Bh

i : =[x # S | h(x)=i] of sizes bh
i =|Bh

i |, 0�i<s. The
function h is c-perfect for S if bh

i �c for all 0�i<s; h is
perfect for S if it is 1-perfect for it.

Let d be a constant. The class of d-degree polynomial hash
functions is defined as

Hd
s : ={h } h(x) :=\ :

d

i=0

ai xi mod q+ mod s, ai # U= .

Fact 6.2 [KRS90]. Let h be selected at random from
Hd

n1&$ . Then, for each i, i=1, ..., n1&$,

Prob(bh
i >2n$)=O(n&$d�2).

The class H1
s is denoted the class of linear hash function.

Siegel [Sie89] and then Dietzfelbinger and Meyer auf der
Heide [DM90] showed how polynomial hash functions can
be combined to create a new class of hash functions. The
class R=Rd1, d2(k, n) of hash functions, defined in [DM90],
is the set of all (k+2)-tuples h=( f, g, a1 , a2 , ..., ak) , where
f # Hd1

k , for some constant d1 , g # Hd2
n , for some constant

d2 , and a1 , a2 , ..., ak # [0, ..., n&1]. The action of h # R on
x # U is defined as h(x) :=(g(x)+af (x)) mod n.

With high probability, a random hash function from R
has a distribution of bucket sizes that is very close to that of
a truly random function. In particular:

Fact 6.3 [DM90]. Let 0<$< 1
2 and let k=n1&$. For h

randomly chosen from R, h is O(lg n�lg lg n)-perfect with
high probability.

The two-level hashing scheme. Fredman, Komlos, and
Szemeredi [FKS84] introduced a simple and elegant

two-level scheme for constructing a perfect has function: a
first-level hash function h partitions the input set S into n
buckets Bh

i , 0�i<n; this function is constructed in a first
phase and is assumed to imply a certain distribution on the
bucket sizes bh

i . For each bucket Bh
i , a private memory

block of appropriate size is allocated and a second-level
function hi maps the elements of Bh

i injectively into its block;
these functions are constructed in a second phase. Fredman,
Komlos, and Szemeredi showed that both the first level and
the second level can be constructed in linear expected time,
by using linear hash functions only and by allocating to
each bucket Bh

i a memory block of quadratic size O((bh
i )2).

6.2. The Hashing Algorithm

Our algorithm is based on an O(lg lg n) time crcw

hashing algorithm of Gil and Matias [GM94a, GM94b]
(see also [GM91]). Their algorithm uses a technique of
oblivious execution that circumvents the need to learn the
bucket sizes bh

i , in order to allocate appropriately sized
memory blocks and construct the second level functions hi .
We first sketch the high-contention crcw algorithm and
then derive our low-contention qrqw algorithm:

1. Partition the input set into n buckets by a random
hash function from Hd

n , where d is an appropriate constant.

2. For t :=1 to O(lg lg n) do

(a) Allocation. Allocate mt memory blocks, each of
size xt , where mt and xt are carefully selected parameters
(xt behaves as 2*t

for some constant * and mt rn�2txt). Let
each bucket select a block at random and try to claim it by
writing the bucket number in a designated memory cell.

(b) Hashing. Each bucket that successfully claimed
an allocated block in the previous step tries to injectively
map its keys into the block using a random linear hash
function from H1

xt
. If it succeeds, it records the description

of the hash function and the address of the memory block
for that bucket. Buckets that fail carry on to the next
iteration.

The algorithm above is a high-contention one, since the
bucket sizes when using a hash function from Hd

n may be
polynomially large, while the memory block sizes xt are
small (e.g., x0 is a constant). To obtain an efficient low-
contention algorithm, we first replace the polynomial class
Hd

n in step 1 with the class R defined above, taking
k=n1&$, 0<$< 1

2; functions from this class have relatively
small bucket sizes (Fact 6.3). The disadvantage of using
functions from R is that each function h # R is represented
by n1&$+3(1) numbers that need to be selected at random
in an initialization step and then used to evaluate in parallel
h(x) for x # S, as well as any subsequent query set. A straight-
forward implementation of this evaluation results in poly-
nomial contention. We devise a low-contention scheme for
the evaluation, yielding the following result.
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Lemma 6.4. A function h can be selected at random from
R and preprocessed for efficient evaluation in O(lg n) time
and linear world w.h.p. Subsequently, for any set S/U of size
n, h(x) can be evaluated in parallel for all x # S on a qrqw

pram in O(lg n�lg lg n) time and linear work w.h.p.

Proof. Recall that h=(f, g, a1 , a2 , ..., an1&$) , for some
constant $, where each aj is selected at random from
[0, ..., n&1]. These n1&$+3(1) parameters are selected by
as many processors and then duplicated in O(lg n) time and
linear work, using a simple binary broadcasting algorithm:
the functions f and g are duplicated n times and each of
the aj is duplicated 4n�n1&$=4n$ times. The total
representation requires linear space.

Recall that for a key x # S, we compute h(x) :=
(g(x)+af (x)) mod n. Thus, for each key we need to read the
values of f, g, and af (x) . Reading f and g is easy: the i th key
reads the ith copies of these two functions. The main
difficulty is in reading af (x) as contention cannot be entirely
avoided. For each key x # S, a processor allocated to the key
evaluates f (x) and then chooses at random one of the copies
of af (x) and reads it. By Fact 6.2,

Prob(b f
i �2n$ for 0�i<n1&$)�1&O(n1&$&$d1�2).

Therefore, w.h.p. the contention distribution obtained in the
read step of af (x) is upper bounded by a distribution
obtained by n1&$ instances of throwing 2n$ balls into 4n$

turns at random. In particular, it follows from Fact 2.5 that
the maximum contention is O(lg n�lg lg n) w.h.p. K

The Gil and Matias algorithm sketched above requires a
careful selection of its constants and parameters, so that
O(lg lg n) iterations provably suffice. Likewise, our
adaptation of their algorithm requires a careful selection of
its constants and parameters to leverage their analysis
and obtain the desired result, as follows. In selecting the
hash function that defines the buckets, it suffices to take
R$=Rd1, d 2(k, n) with d1=7, d2=11, and k=n3�7. Let
*= 18

13 , and let t*=2 lg lg n�lg * be the number of iterations.
Let t$=Wt�2X. For t=1, 2, ..., t*, let xt , the block size at
iteration t, and mt , the number of blocks at iteration t,

xt=2a*t$+b 1 t$+c1

mt=n 2&a*t $&b 2 t$+c2,

where a= 8
13 , b1= 1

5 , b2= 9
20 , c1= 73

25 , and c2= 89
20 (these are

the same constants used in the Gil and Matias algorithm).
Then the qrqw hashing algorithm is:

Constructing a hash Table. 1. Select a random hash
function h from R$, duplicate the parameters of h, and
partition the input set into n buckets according to h.

2. For t :=1 to t* do

(a) Allocation. Allocate mt memory blocks, each of
size xt . Let each bucket select a block at random, and try to
claim it by writing the bucket number in a designated
memory cell.

(b) Hashing. Each bucket that successfully claimed
an allocated block in the previous step tries to injectively
map its keys into the block using a random linear hash
function from H1

xt
. If it succeeds, record the description of

the hash function and the address of the memory block for
that bucket. Buckets that fail carry on to the next iteration.
For the last iteration, t=t*, repeat this hashing substep a
total of 8 times.

3. If there are any buckets that have yet to succeed,
return to step 1 and restart the algorithm from the beginning.

Lookup queries for n distinct keys are performed as
follows:

Lookup Queries. 1. For each query key x, h(x) is
computed to locate the memory block for this bucket and
the secondary has function hi , i=h(x), used within this
block.

2. The key x is in the hash table if and only if location
hi (x) of this memory block contains the key x.

Proof of Theorem 6.1. We first analyze the hash table
construction algorithm, then the lookup queries algorithm.

By Lemma 6.4, step 1 of the hash table construction
algorithm takes O(lg n) time and linear work w.h.p. As for
step 2, Gil and Matias [GM94a] show that, for their
algorithm, the number of active buckets decreases more
rapidly than the number of memory blocks, and hence
w.h.p.; all buckets have become inactive after O(lg lg n)
iterations. A straightforward adaptation of their analysis to
our algorithm (which uses hash functions from R$), shows
that w.h.p., all buckets have become inactive after t*
iterations. Thus w.h.p., the algorithm will not be restarted.
Step 3 can be performed in O(lg n) time and linear work,
using an or computation.

To complete the analysis for the qrqw pram, we deter-
mine the contention encountered in step 2. For each active
bucket we have a processor standing by that acts in step
2(a) in claiming a memory block, and in step 2(b) in select-
ing a random function from H1

xt
. As argued above, the

number of active buckets is, w.h.p., smaller than the number
of memory blocks. In such cases, the contention to a
memory block in step 2(a) is a binomial random variable
with an expected value less than 1. It follows by Observation
2.6 that w.h.p., the maximum contention to a memory
block is O(lg n�lg lg n). By Fact 6.3, all buckets contain
O(lg n�lg lg n) keys w.h.p. Thus, in a constant number of
steps of O(lg n�lg lg n) contention w.h.p., keys of each active
bucket can learn if their bucket is allocated with a memory
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block, read the random linear function selected by their
bucket, and test for injectiveness.

The work for an iteration of step 2 is bounded by the
number of keys in active buckets; Gil and Matias [GM94a]
show that w.h.p. this number decreases faster than a
geometric series. Thus step 2 of the algorithm can be
described in a qrqw work-time presentation as a geometric
decaying algorithm with O(n) work, consisting of O(lg lg n)
steps, each with contention O(lg n�lg lg n) w.h.p.

This implies an O(lg n) time O(n) work algorithm that,
by using Theorem 2.3 and Theorem 2.4, can be implemented
on a qrqw pram in O(lg n) time, using n�lg n processors.

We now analyze the lookup queries algorithm. By
Lemma 6.4, h(x) can be computed for each query key in
parallel in O(lg n�lg lg n) time and linear work w.h.p. By
Fact 6.3, at most O(lg n)�lg lg n) query keys map to any
single bucket w.h.p. Thus the contention encountered for a
query key to read its block address, its secondary hash
function, and its hash table location is O(lg n�lg lg n) w.h.p.
This completes the proof of Theorem 6.1. K

7. SORTING

In this section, we present results for three classes of
sorting algorithms. First, we consider sorting keys drawn
uniformly at random and present an O(lg n) time linear
work w.h.p. algorithm. Second, we consider sorting general
keys and present two simple, work-optimal, comparison-
based sorting algorithms, one running in O(lg2 n�lg lg n)
time w.h.p. and the other running in O(lg n) time w.h.p.
Third, we consider sorting small integer keys and present an
O(lg n) time linear work w.h.p. algorithm. We apply this
result to obtain an O(lg n) time linear work w.h.p. algorithm
for emulating the powerful fetch6add pram. The first two
results are for the qrqw pram model; the latter three are for
the stronger crqw pram model.

7.1. Distributive Sorting

The sorting from U(0, 1) problem is to sort n numbers
chosen uniformly at random from the range (0,1). As
indicated in Table I, the best known linear work erew pram

algorithm for this problem runs in O(n=) time, for fixed
=>0. erew pram algorithms that run in polylog time are
work inefficient by at least a - lg n lg lg n factor. We obtain
the following.

Theorem 7.1. Sorting from U(0, 1) can be done in
O(lg n) time and linear work w.h.p. on a qrqw pram.

Proof. First partition the real interval (0, 1) into n�lg n
subintervals. It follows from Fact 2.5 that the number of
input items in each subinterval is with probability at most
c lg n for some constant c. We allocate to each subinterval
an array of size 4c lg n and employ our multiple compaction

algorithm (Theorem 4.1) to place each input item in a
private cell in the subarray allocated to its subinterval.

To obtain a sorted output it remains to sort within each
subinterval. Each subinterval contains O(lg n) items w.h.p.,
and we assign one processor to the items in each subinterval.
Each subinterval can be sequentially sorted in O(lg n)
expected time by further dividing the subintervals into lg n
buckets (sub-intervals), having each processor assign its
items to the appropriate bucket and then having each
processor use heapsort to sort within the buckets [MA80].
A more precise analysis [Hag89] shows that each processor
fails to complete its sorting in O(lg n) time with probability
less than 1�lg n (the failure probability is in fact much
smaller). We can achieve O(lg n) time w.h.p., as follows:
Each processor applies the sequential sorting algorithm for
O(lg n) steps. We expect O(n�lg n) processors to fail to
complete their sorting, and by Fact 2.5, this occurs
w.h.p. Use a parallel prefix sum algorithm to compact the
unsuccessful subintervals and then assign O(lg n) processors
to each such subinterval; each processor gets a constant
number of unsorted items. In O(lg n) time, each processor
compares its items against the other items in its assigned
subinterval, computes their ranks within the subinterval,
and places the items in the appropriate positions in the
output array. Finally, the output array is compacted to size
n using a parallel prefix sums algorithm.

At this point, w.h.p., the n numbers drawn from U(0, 1)
are successfully sorted and the stated time and work bounds
are achieved w.h.p. However, for some inputs, e.g., when the
number of items in a subinterval exceeds 4c lg n, we will
have failed to sort the items. To obtain a Las Vegas
algorithm, in such cases, we sort the input using a single
processor; this does not affect the time and work bounds for
the algorithm. K

Theorem 7.1 matches the bounds obtained for the crcw

pram in [Chl89, Hag89]. (There is also a more involved
O(lg n�lg lg n) time crcw pram algorithm, as implied by
applying first the O(lg lg n) padded-sorting algorithm of
[MS91], followed by the O(lg n�lg lg n) prefix sums
algorithm of [CV89].)

7.2. General Sorting

In this section we consider the problem of general sorting,
i.e., sorting an arbitrary collection of n keys from some
totally ordered set. On the erew pram, there are two known
O(lg n) time, O(n lg n) work algorithms for general sorting
[AKS83, Col88]; these deterministic algorithms match
the asymptotic lower bounds for general sorting on the
erew and crew pram models. Unfortunately, these two
algorithms are not as simple and practical as one would like.
Simple parallel O(n lg n) work algorithms for sorting
include a simple straightforward parallelization of merge-
sort that runs in O(lg2 n) time on a crew pram and an
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O(lg2 n) time randomized quicksort algorithm on an erew

pram (see, e.g., [Ja� J92]).
Another relatively simple parallel sorting algorithm is a

randomized - n-sample sort algorithm for the crew pram

that runs in O(lg n) time, O(n lg n) work, and O(n1+=) space
[Rei85].7 This algorithm consists of the following high-level
steps: (1) randomly sample - n keys, (2) sort the sample by
comparing all pairs of keys, (3) each item determines by
binary search its position among the sorted sample and
labels itself accordingly, (4) sort the items based on their
labels using integer sorting, and (5) recursively sort within
groups with the same label. When the size of a group is at
most lg n, finish sorting the group by comparing all pairs of
items.

We build on this - n-sample sort algorithm and obtain
the following two results:

v For the qrqw pram, we obtain an O(lg2 n�lg lg n)
time, O(n lg n) work, O(n) space randomized sorting
algorithm, thus improving the time bound by a factor of
lg lg n over the erew pram quicksort algorithm.

v For the crqw pram, we improve the space bound (to
O(n) space) over the crew pram while maintaining the
O(lg n) time, O(n lg n) work bounds.

These algorithms are arguably as simple as the ones cited
earlier.

To obtain these improved results, we modify the- n-sample
sort algorithm given above. In the last phase of our
algorithm, we use a work-inefficient, but simple deter-
ministic sorting algorithm. For our qrqw result, we use
bitonic sorting [Bat68]; this runs in O(lg2 n) time and
O(n lg2 n) work on an erew pram. For our crqw result, we
use a parallelization of mergesort that applies Valiant's
O(lg lg n) time merging algorithm [Val75, BH85] at each
round; this runs in O(lg nlg lg n) time with n processors on
a crew pram. (The work can be improved to O(n lg n); see,
e.g., [Ja� J92].) Algorithm A below describes the generic
modifies algorithm.

Algorithm A. Let = be any constant such that
0<=< 1

2. Let n=n0 be the number of input items, and for
i�1, let

ni=(1+1�lg n) } n1�2+=
i&1 .

W.h.p., ni is an upper bound on the number of items in each
subproblem at the i th recursive call to A. For subproblems
at the i th level of recursion:

1. Let S be the set of at most ni items in this subproblem.
Select in parallel - ni items drawn uniformly at random
from S.

2. Sort these sample items by comparing all pairs of
items, using summation computations to compute the ranks
of each item, and then store the items in an array B in sorted
order. More every (n=

i ) th item in B to an array B$.

3. For each time v # S, determine the largest item, w, in
B$ that is smaller than v, using a binary search on B$. Label
v with the index of w in B$.

4. Place all items with the same label into a subarray of
size 3(n1�2+=

i ) designated for the label, using heavy multiple
compaction. W.h.p., the number of items with the same label
is at most ni+1 and thus the heavy multiple compaction
succeeds in placing all items in each such group into its
designated subarray.

5. Recursively sort the items within each group, for all
groups in parallel. When ni+1 is at most n1�lg lg n, finish
sorting the group using the crew pram mergesort
algorithm. Alternatively, for our qrqw pram result, when
ni+1 is at most 2(lg n)1�2

, finish sorting the group using the
erew pram bitonic sort algorithm. The cutoff points suffice
for n sufficiently large; for general n, the cutoff points are
max[n1�lg lg n, lgc n] and max[2(lg n)1�2

, lgc n], respectively
for c>6�=, a suitable constant.

We use ``relaxed'' heavy multiple compaction, which reports
failure if a set size exceeds its upper bound count (recall the
discussion at the end of Section 4.1). If failure is reported for
any subproblem, we restart the algorithm from the beginning.

Algorithm A is readily implemented on a crqw pram, as
follows.

Theorem 7.2. Algorithm A for sorting n arbitrary keys
can be implemented in a crqw pram in O(lg n) time and
O(n lg n) work w.h.p., using O(n) space.

Proof. We first show that ni<n1�lg lg n after {=3(lg lg_
lg n) recursive calls to Algorithm A. We claim that for all i,

ni�(1+1�lg n)i } n (1�2+=) i
.

The proof of this claim is by induction on i. The case i=0
is straightforward. Assume that the claim holds for an
arbitrary i�0. We have that ni+1=(1+1�lg n) } n1�2+=

i ,
which by the inductive hypothesis is at most (1+1�lg n)_
((1+1�lg n) i } n(1�2+=)i

)1�2+=. Since =< 1
2 , we have that

ni+1<(1+1�lg n) i+1 } n(1�2+=)i+1
, and the claim is proved. It

follows that there exists a {=3(lg lg lg n) such that n{<
n1�lg lg n. Also, for all i�{, we have that (1+1�lg n)i<
(1+1�{){<e.

Algorithm A applies the technique of oversampling as
used in [RV87] to obtain a sample B$ with better perfor-
mance guarantees. Specifically, let Xi be the size of the
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7 The algorithm in [Rei85] uses 3(n) memory locations of size
O(- n lg n) bits. Under the standard assumption for the pram, adopted as
well in this paper, that each memory location is of size O(lg n) bits, the
algorithm in [Rei85] uses 3(n1.5) space. This has been improved to
O(n1+=) space, for any constant =>0 (see, e.g., [Ja� J92]).
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largest group created for a given subproblem (of size at
most ni) at the i th level of recursion. Then from Lemma 7.1
in [RV87], we have

Pr[Xi>(1+n&=�6
i ) n1�2+=

i ]=(n=�2
i 2ni

=�2
)&|(1). (1)

Since ni�lgc n and c>6�=,

Pr[Xi>ni+1]=Pr[Xi>(1+1�lg n) n1�2+=
i ]

<Pr[Xi>(1+lg&c=�6 n) n1�2+=
i ]

�Pr[Xi>(1+n&=�6
i ) n1�2+=i]

=o(n&c=�2) (by 1).

Thus, w.h.p., ni+1 will be an upper bound on the number of
items with the same label, the subarrays designated for each
label are of sufficient size, and the heavy multiple compac-
tion will succeed��therefore the algorithm will complete
without restarting.

We now analyze the crqw pram complexity of Algorithm
A. Consider all O(n�ni) subproblems at the i th level of
recursion. Step 1 takes O(1) time and O(n�- ni) work.
Step 2 takes O(lg ni) time and O(n) work. Step 3 takes
O(lg ni) time and O(n lg ni) work. By Lemma 4.2 and the
analysis in the previous paragraph, step 4 can be done in
O(lg* ni lg n�lg lg n) time and O(n) work w.h.p. Thus
the total time spent on all recursive calls is, w.h.p.,
�1�i�{ O(lg ni+lg* ni lg n�lg lg n). Since lg ni=O(( 1

2+=) i_
lg n) and lg* ni<lg* n, the total time is, w.h.p.,

O(({ lg* n�lg lg n) lg n)+ :
1�i�{

O(( 1
2+=)i lg n)=O(lg n).

The total work is, w.h.p.,

:
1�i�{

O(n lg ni)=O(n lg n).

The time for mergesort on groups of size at most n1�lg lg n

is O(lg n), while the total work performed is O(n lg n) over
all groups. Broadcasting whether any failure has occurred is
done only after the mergesort and takes O(lg n) time and
linear work.

It follows that the entire algorithm runs in O(lg n) time
and O(n lg n) work w.h.p. Moreover, all steps can be done
in O(n) space. K

To implement Algorithm A on a qrqw pram, we must
replace all the high-contention read steps with techniques
that use only low-contention steps. The main obstacle is
step 3, in which each item needs to learn its position relative
to the sorted sample. A straightforward binary search on B$
would encounter 3(n) contention. Instead, for the qrqw,
we employ the following novel data structure:

Binary Search Fat-Tree. In a binary search fat-tree,
there are n copies of the root node, n�2 copies of the two
children of the root node, and in general, n�2 j copies of each
of the 2 j distinct nodes at level j down from the root of the
tree. The added fatness over a traditional binary search tree
ensures that, if n searches are performed in parallel such
that not too many searches result in the same leaf of the
(nonfat) tree, then each step of the search will encounter low
contention.

The process of fattening a search tree can be done in
O(lg n) time and O(n lg n) work using binary broadcasting.

In the case of our sorting algorithm, at the i th level of
recursion we make ni copies of the median splitter, ni �2
copies of the 1

4 and 3
4 splitters, and so forth, down to n1�2+=

i

copies of the n1�2&=
i splitters in the leaves of the tree.8 Since

there are 3(n1�2+=
i ) items per splitter bucket w.h.p., it can

be shown that at each step in the binary search, an item
selecting a random copy of the splitter encounters constant
expected contention. Thus by Observation 2.6, the maxi-
mum contention over all items at each step in the search is
O(lg n�lg lg n) w.h.p. Thus each item can determine its
bucket in O(lg ni lg n�lg lg n) time and O(lg ni) work w.h.p.

At the i th level of recursion, there are n�ni fat-trees, each
of which uses O(ni lg ni) space. To reduce the space per
fat-tree to O(ni), we initially make only some of the copies
and then reuse the space as needed. Specifically, we make ni

copies of the median splitter stored in an array A0 , ni�4
copies of the 1

4 and 3
4 splitters stored in an array A1 and, in

general, ni �4 j copies of each splitter at the j th level of the
fat-tree, for a total of ni �2 j copies of splitters stored in an
array Aj . This is O(ni) copies in all. The processors begin by
probing A0 , encountering constant expected contention.
Then for each array Aj , j>0, the contents of Aj are
duplicated and stored in array Aj&1 , in constant time and
O(ni) work. The processors again probe A0 , which contains
ni �2 copies of the 1

4 and 3
4 splitters, followed by the duplica-

tion of all splitter copies, and so forth, alternating probe
steps and duplication steps, until finally probing the n1�2+=

i

copies of the n1�2&=
i splitters placed in A0 in the previous

duplication step. In this way, the maximum contention over
all items at each step in the search is O(lg n�lg lg n) w.h.p. as
before, while the space for all the fat-trees is O(n).

This leads to the following theorem.

Theorem 7.3. Algorithm A for sorting n arbitrary keys
can be implemented on a qrqw pram in O(lg2 n�lg lg n) time
and O(n lg n) work w.h.p., using O(n) space.
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routing of each item to a subnetwork designated for the splitter bucket in
which its key belongs.
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Proof. The analysis proceeds as in Theorem 7.2. Since
ni�(1+1�lg n) i } n(1�2+=)i

for all i, there exists a {=
3(lg lg n) such that n{<2- lg n. Moreover, since ni�lgc n,
we have that, w.h.p., ni+1 will be an upper bound on the
number of items with the same label, the subarrays
designated for each label are of sufficient size, and the heavy
multiple compaction will succeed��therefore the algorithm
will complete without restarting.

We now analyze the qrqw pram complexity of Algorithm
A. Consider all O(n�ni) subproblems at the i th level
of recursion. By Observation 2.6 and since ni>2- lg n, the
maximum contention in step 1 is O(- lg n) w.h.p. The work
is O(n�- ni). Step 2 can be done in O(lg ni) time and O(n)
work by first making - ni copies of each item in the sample.
For step 3, we build a binary search fat-tree of depth
lg (n1�2&=

i ), and then we label each item using a random
search into the fat-tree, as described above. This takes
O(lg ni } lg n�lg lg n) time w.h.p. and O(n lg ni) work. Step 4
can be done in O(lg* ni lg n�lg lg n) time and O(n) work
w.h.p. Thus the total time spent on all recursive calls is,
w.h.p.,

:
1�i�{

O(lg ni lg n�lg lg n)=O(lg2 n�lg lg n).

The total work is, w.h.p.,

:
1�i�{

O(n lg ni)=O(n lg n).

The time for bitonic sort on groups of size at most 2- lg n

is O(lg n), while the total work performed is O(n lg n) over
all groups. Broadcasting whether any failure has occurred is
done only after the bitonic sort and takes O(lg n) time and
linear work.

It follows that the entire algorithm runs in O(lg2 n�lg lg n)
time and O(n lg n) work w.h.p., using O(n) space. K

In [GMR96b], we consider the qrqw asynchronous

pram model, a more asynchronous qrqw model in which
individual processors may proceed at their own pace
without waiting for the contention encountered by other
processors. We show how to adapt the above qrqw pram

sorting algorithm to obtain a fairly simple randomized
sorting algorithm on the qrqw asynchronous pram that
runs in O(lg n) time with O(n lg n) work w.h.p.

7.3. Integer Sorting

The final class of sorting problems we consider is that of
sorting an arbitrary collection of n integers in the range
[1..n lgc n], for a constant c. For this problem, we obtain an
O(lg n) time, linear work randomized algorithm for the

crqw pram. In contrast, no algorithm with O(lg n) time
and simultaneously o(n lg n) work is known for the crew

pram.

Theorem 7.4. Sorting n integers in the range [1..n_
lgc n], for any constant c, can be done in O(lg n) time and
linear work w.h.p. on a crqw pram.

Proof. The integer sorting algorithm follows the steps of
the Rajasekaran and Reif algorithm for the crcw pram

[RR89]. The main phase of the algorithm sorts the input
keys based on their lg (n�lg3 n) least significant bits. Then
Fact 4.3 can be applied to stably sort the resulting sequence,
based on the lg (lgc+3 n) most significant bits of the input
keys, to obtain the final sorted sequence. In what follows, we
list the steps of the main phase of the Rajasekaran��Reif
algorithm and then discuss how to implement the steps on
a crqw pram within the bounds stated in the theorem.

Let D=n�lg3 n and for each input item, let is lg D least
significant bits be its label:

1. Select in parallel n�lg2 n input items drawn uniformly
at random.

2. Sort these sample items according to their labels.

3. For each label j # [1..D], compute the number, Nj , of
items in the sample with label j. Let countj=d(lg2 n)_
max(Nj , lg n), for a constant d. Rajasekaran and Reif show
that for a suitable d, countj is an upper bound on the
number of input items with label j and �D

j=1 count j�2dn,
w.h.p.

4. Let B be an array of size 8dn. Partition array B into
subarrays such that the j th subarray is of size 4countj . Let
pointerj be the starting point in B of the j th subarray.

5. Each item with label j reads countj and pointer j .

6. Apply a multiple compaction algorithm to place each
item into a private cell in the subarray for its label.

7. Compact the items in B into an array of size n.

By Observation 2.6, the maximum contention in step 1 is
O(lg n�lg lg n) w.h.p. For step 2, we can apply Theorem 7.2
(or use any other algorithm that sorts n keys in O(lg n) time
and at most O(n lg2 n) work on a crqw pram). Steps 3, 4,
5, and 7 can be done in O(lg n) time and linear work using
prefix sum computations. For step 6, we replace the
procedure used in [RR89] with our algorithm for ``relaxed''
heavy multiple compaction (Lemma 4.2). Thus w.h.p., the
total time is O(lg n) and the total work is O(n). Processor
allocation is straightforward, yielding the desired result. K

We observe that, with the exception of step 5 above, the
entire algorithm can be adapted to run on the qrqw pram

within the same resource bounds. In step 5, each item needs
to learn the estimate of the set size for its key, and the
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pointer to its allocated subarray; we use the concurrent-read
capability to stay within the desired resource bounds.

Theorem 7.4 matches the bounds obtained for the crcw

pram in [RR89]. (There is also a more involved, optimal
crcw pram algorithm that runs in O(lg n�lg lg n) time and
linear work w.h.p.; see, e.g., [Mat92].)

We conclude this section with the following application of
integer sorting to emulating the powerful fetch6add pram

on the crqw pram.
Emulating Fetch6Add PRAM on CRQW PRAM. The

fetch6add pram model [GGK+83, Vis83] is stronger
than the crcw pram; for instance, the parity and the prefix
sums problems with input size n can be solved in constant
time on a fetch6add using n processors, while requiring
0(lg n�lg lg n) time on a crcw pram when using nc

processors, for any constant c>0. The following lemma
gives a reduction from the problem of emulating one step of
a fetch6add pram on an erew pram, to the integer sorting
problem.

Lemma 7.5. [MV95]. Emulating one step of a fetch6
add pram with n processors and memory of arbitrary size m
on a erew pram can be reduced to [1, n]-integer sorting in
O( j lg n) time and O(n) work w.h.p., using O(n lg( j) n) space,
for any j=1, ..., lg* n. In particular, it can be reduced:

(ii) to [1, n]-integer sorting, in O(lg n lg* n) time and
O(n) operations with high probability, using O(n) space; and

(iii) to [1, n]-integer sorting, in O(lg n) time and O(n)
operations with high probability, using O(n lg( j) n) space, for
any constant j>0.

By using the crqw integer sorting algorithm of
Theorem 7.4 we obtain:

Theorem 7.6. One step of an n-processor fetch6add

pram can be emulated on an n�lg n-processor crqw pram

in O( j lg n) time w.h.p., and O(n lg( j) n) space, for any
j=1, ..., lg* n. In particular, the emulation takes linear work
and O(lg n lg* n) time w.h.p., using O(n) space; and further-
more, for any constant j the emulation takes linear work and
O(lg n) time w.h.p., using O(n lg( j) n space.

8. CONCLUSIONS

In this paper we have presented highly parallel work-
optimal algorithms for several fundamental problems for
the qrqw pram. These include linear work, logarithmic time
algorithms for multiple compaction, generating a random
permutation, and hashing; a sublogarithmic time, linear
work algorithm for load balancing when the maximum
initial load is small; and a sublogarithmic time linear work
algorithm for generating a random-cyclic permutation. We
have also presented several simple algorithms for the sorting

problem that improve on algorithms known for exclusive
memory access pram models. Complementing these
algorithmic results, we have shown an 0(lg L) time lower
bound on the qrqw pram for the load balancing problem
with maximum load L. All of the algorithms we have
presented in this paper are randomized algorithms with
high probability performance guarantees, and our lower
bound applies to randomized, as well as deterministic,
algorithms.

We have also provided experimental results from an
implementation, on the MasPar MP-1, of our qrqw pram

algorithm for generating a random permutation, as well as
the best erew pram algorithm for this problem; our
experimental results show that the qrqw pram algorithm
does, indeed, run faster than the erew pram algorithm.

The qrqw pram models the mechanism used by a number
of currently available commercial shared-memory machines
to handle memory contention. As has been illustrated in the
algorithms presented in this paper, novel techniques may be
needed in the design of efficient algorithms in the qrqw

models. We expect that further research will help obtain a
clearer understanding of the capabilities of this model and
its applicability to the design of efficient and cost effective
parallel algorithms that can be implemented on currently
available parallel machines.

Among the important open problems remaining are to
obtain tight upper and lower bounds for the running times
of (additional) fundamental problems on the qrqw pram,
and to obtain a work-optimal, polylog time simulation of
the crcw pram on a qrqw pram (or prove that such a
simulation does not exist).
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