
PARALLEL PROGRAMMING: 1
(DRAFT NOTES)

RAUL H.C. LOPES

1. P+1-ary search

This section presents a (p+1)-ary search algorithm, for searching
an ordered sequence for a given item, using p processors. Dijkstra
presents in [1] a derivation of a binary search algorithm that can be
easily generalized to a (p+1)-ary search with p processors.

1.1. Generalizing Dijkstra’ binary search. Given an

X ∈ Int

and

S.0..M − 1 ∈ Int where ∀i, j : 0 ≤ i < j < M : S.i < S.j

one is required to calculate present such that

present ≤ ∃i : 0 ≤ i < M : X = S.i

The existential quantifier in the formula above is better understood
from a constructive point of view: it demands that an i is produced
that will validate X = S.i, or else present will be false. The message
that quantifier to be sending is is: find and i that validates x = S.i or
prove that any legal i makes X = S.i a contradiction.1

Determining present is then relaxed to finding an i

R ≤ 0 ≤ i < M ∧ S.i ≤ X < S.i+ 1

assuming that S.M is defined to be greater than X.
Dijkstra’s program has the form

|[Var i ∈ Int
; establish R
; present := (S.i = X)

]|
1Dijkstra[1] says in his argument that it “is hard to visualize an algorithm cor-

rectly establishing present ... without establishing for some integer” i such that
S.i = X ∧ 0 ≤ i < M .

1

2 RAUL H.C. LOPES

Generalizing R by replacing (i + 1) by j gives an invariant for the
case when X occurs in S:

0 ≤ i < j ≤M ∧ S.i ≤ X < S.j

That together with the fact X may be less than S.0 gives the invari-
ant

P ≤ 0 ≤ i < j ≤M ∧ (S.i ≤ X < S.j ∨X < S.0)

That invariant establishes at any transition that S.i..j − 1 must be
searched for a pair of indexes (i, j) delimiting the area where X can
be found in S. A progress condition should state that the area to be
scanned is decreasing

(j − i) > (j − i)′

and a fixed point should bound progress: it doesn’t make much sense
to search a singleton subsequence:

(j − i) = 1

“establish R” is then refined to

|[Var j ∈ Int
; i, j := 0,M
; {P}
∗|[
j − i 6= 1→ shrink(S, j, i){P}

]|{R}
]| {R}
Shrinking (j − i) can be done by either increasing i to some h, if

S.h ≤ X, or decreasing j to h, if S.h < X, or both simultaneously,
why not?

shrink(S,X, i, j) is
|[Var h ∈ Int
; h := (i+ j)/2
; if S.h ≤ X → i := h

][X < S.h→ j := h
fi

]|
Exercise 1.

(1) Prove the invariant P holds for the program above.

PARALLEL PROGRAMMING: 1 (DRAFT NOTES) 3

(2) Prove the program terminates.
(3) Prove that it correctly determines q.

1.2. Generalizing to (p+1)-ary search. Determining present is
now relaxed to finding an interval with size up to p that can be tested
in parallel for the presence of X.

R ≤ 0 ≤ i < M ∧ S.i ≤ X < S.min(i+ p,M)

assuming that S.M is defined to be greater than X.
The program becomes

|[Var i ∈ Int
; establish R
; |[‖ i : i ≤ k < min(i+ p,M) :

q := (X = S.k)
]|

]|
The loop invariant is the same. The fixed point now is reached when

(j − i) is less than or equal to p.
“establish R” is then refined to

|[Var j ∈ Int
; i, j := 0,M
; {P}
∗|[
j − i > p→ pshrink(S, j, i, p){P}

]|{R}
]| {R}
Shrinking (j − i) can be performed by either

• increasing i to some h, if S.h ≤ X;
• or decreasing j to h, if S.h < X;
• or both simultaneously.

This is performed by a parallel test.

pshrink(S,X, i, j) is
|[Var h ∈ Int
; nel := (i+ j)/(p+ 1)
; |[‖ k : 1 ≤ k ≤ p :

4 RAUL H.C. LOPES

Var h, hb ∈ Int
; h, hb := i+ (nel ∗ k), i+ (nel ∗ (k − 1))
; if k = p ∧X ≥ S.h→ i := h

][S.hb ≤ X ∧X < S.h→ i, j := hb, h
fi

]|
]|

Exercise 2.
Prove P is still an invariant for the new program.
Evaluate its complexity in terms of: time (i.e, number of parallel tran-
sitions or supersteps), and work.

2. Quicksort

Exercise 3. Derive a quicksort algorithm that splits its input in p+ 1
intervals, when assigned p processors. Use a parallel scan operation for
splitting around p pivots.

3. Sequences

Exercise 4.

(1) Given sequences a.0..n − 1 ∈ Int, and b.0..n − 1 ∈ Int, and
s.0 = 0, give a program to compute, for 1 ≤ i < n:
(a) s.i = (a.i ∗ s.i− 1) + b.i
(b) s.i = (a.i ∗ s.i− 1) + (b.i ∗ s.i− 2)

(2) Given a nondecreasing sequence a.0..n−1 ∈ Int, and a number
b ∈ Int, derive a program to find the rank of b in a: the index
of the largest element of a that is smaller than b.

(3) Derive a program to find the rank of all elements of a sequence
b.0..m− 1 ∈ Int, in a nondecreasing sequence b.0..n− 1 ∈ Int.

(4) Derive a program to merge 2 nondecreasing sequences.

References

[1] Edsger W. Dijkstra, Fillers at the YoP intitute, in Formal Development of Pro-
grams and Proofs [2].

[2] Edsger W. Dijkstra (ed.), Formal development of programs and proofs, Addison-
Wesley, 1990.

