
Concurrent Programming for the Control of Hexapod Walking

Bernard Thirion, Laurent Thiry
Groupe LSI, Laboratoire MIPS

ESSAIM, Ecole Sup6rieure des Sciences Appliqu6es pour l'Ing6nieur-Mulhouse
12 rue des Fr6res Lumi6re

68093 Mulhouse Cedex, France
e-mail : {b.thirion, 1.thiry} @uha.fr

Abstract

Ada95 is a powerful language with a great number
of original constructions. Learning these constructions
requires the finalization of projects that are both
interesting and motivating for students, as well as the
coverage o f the different constructions during the
project. Moreover, the f ield o f mobile robotics iz one
that requires real-time programming and appropriate
software architectures. More particularly, legged
robots offer a real challenge as regards autonomy and
the coordination o f movements o f the different legs.
This field proves frui~ul for the definition o f projects
on concurrent programming. The present paper
describes such a project about an architecture for an
omnidirectional legged robot. In a resolutely object-
oriented approach, the project helps to teach the main
constructions of the Ads language. Among others, it
deals with child unitr, generics, tagged types and type
extension, tasking, protected objects, family entries,
asynchronous transfer of control, discriminants, etc.
Numerous extensions can be considered within this
project.

1. Introduction

MobiIe robotics is a vast, muitidisciplinary field o f
inves t iga t ion which covers var ious domains as
mechanics, electrical and sex ' r a r e engineering, vision,
etc. The renewed interest in this field is due to the fact
that the robot can now be given great computat ion
power at a low cost. From a sof~vare point o f view, a
robot needs an e f f ic ien t , a p p r o p r i a t e con t ro l
architecture which allows the integration o f the robot's
numerous funct ions: m o v e m e n t o f the p la t form,
es t imat ion o f the pos i t ion , p e r c e p t i o n o f the
envi ronment , navigat ion, dec is ion and planning,
actions on the environment, vision, etc [1]. In general,
these functions must occur jointly, in real-time. That is
why the field of mobile robotics is an important source
of inspiration for motivat ing projects that integrate
concur ren t p r og ramming and r ea l - t ime aspects .

Moreover, mobile robotics helps to deal with a number
o f concepts linked to the control o f systems, using
either classic control methods or more advanced
methods like fuzzy logic, neural networks, etc.

Ada is well sui ted to the teaching o f the
fundamental concepts o f software engineer ing and
concurrent programming. It is also starting to be used
for projects about mobile robotics [2]. This paper will,
more par t icular ly , cons ider the case o f l egged
locomotion. An interesting point to be studied is the
coordination o f the leg movements, so as to highlight
the different walking gaits - tripod gait, slow gait, etc.
The control o f the walking algorithms is usually not
centralized, which means that each leg is relat ively
independent in its movements . Such decentra l ized
control will lead to interesting problems linked to the
coordination and synchronization o f movements which
provide fair gaits and maintain the robot 's stability. In
particular, lifting one leg is concurrent with l if t ing
others and can thus cause a conflict. This conflict is
processed using the wel l -known algori thm o f the
dining philosophers, which is an interesting practical
application of that algorithm.

The purpose of this paper is to illustrate the use o f
the d i f ferent Ada construct ions m in par t i cu la r
concurrent programming m with an example which
interested students greatly. After giving some details
on legged robots and walking, the pape r wil l
progressively describc the architecture o f the whole
system.

2. Legged robots

The understanding o f walking mechanisms and the
design o f robust walking algorithms for legged robots
remain a challenge. To try and take up this challenge,
many laboratories have built walking machines [3-4].
There are two types o f machines: the ones exhibiting
dynamic stabili ty and the ones exhibi t ing stat ic
stability. For robots with dynamic stability, the center
o f gravity can leave the support polygon; they are
usually robots with a limited number o f legs (1 to 4)

Ada Letters, March 2002 Page 17 Voltm~ XXI1, Number I

which have to keep their balance permanently. Robots
with static stability maintain their center of gravity
within the support polygon; they have at least four
legs. The case of hexapods or octopods is interesting as
they provide static stability and numerous walking
gaits.

The walking algorithms are often decentralized and
designed by assembling a multitude of small processes
(or agents) which are executed concurrently [5]. The
complexity of the computational aspects (kinematic
computation, trajectory planning, etc) has led some
roboticians [5-7] to distribute the processing over
distributed architectures. For example the Robug IV
robot [7] has 4 processors per leg and 8 legs, that is to
say 32 processors linked by a CAN fieldbus. This kind
o f structure requires distributed algorithms; therefore
the distributed philosophers algorithm will be used for
the allocation of the privileges of leg lifting.

The author's team [8] has developed a hexagonal
hexapod robot - called Bunny - to validate their
software archi tectures concerning decentral ized
control (Fig. 1).

Figure 1. Bunny, the omnidirectional robot

Bunny is an omnidirectional robot with 18 degrees
o f freedom (3 degrees per leg). The platform is not
directly used within student projects for reasons o f
mechanical fragility, but it is the inspiration for the
definition of the problems. The following parts will
more specif ical ly consider the problem of leg
coordination and the generation ofw~ilking gaits.

3. Fundamental Principles

On an ideal surface, a leg moves in a cyclic way
between two extreme positions -- AEP which is the
anterior extreme position and PEP the posterior
extreme position. A leg is said to be in retraction when
it is on ground and pushes the platform forward. It is

said to be in protractfon when it is lifted and tries to
reach its AEP (Fig. 2).

Protraction ~ " ' ~ - ' ~ ' ; ~ . " '-

,, - . . ~ . ; " i.,."e* /
.... , gZ;on

PEP

Figure 2. Basic cycle of a leg

For hexapods, static stability is maintained at all
times by the configuration of the legs that are on the
ground. The observation of insects shows that some
specimens adapt their gait according to the speed at
which they move. This is possible because the
protraction speed of a leg is maximum (Max) while its
retraction speed (S) varies and depends on the animal's
speed, which results in different gaits. For example, for
a hexapod moving at high speed, 3 legs are lifted and 3
legs are pushing; at an average speed 2 legs are lifted
and 4 legs are pushing, and at a low speed (uneven
ground or insect carrying a load), only 1 leg is lifted
and the 5 others are pushing. Observations also show
that the protraction o f the legs moves like a wave that
is propagated from the rear to the front o f the animal.
These movements are called wave gaits. It has bean
shown that these movements are stable and optimum
and that they result in equal gaits for each leg (Fig. 3).

LZ

K=I R1
R~
R3

L I
L 2

11.2
1%.1

LX

K=1/5
!1,3
R 3

--tripod

-- ripple -

~ s l ~
protraction retraction

Figure 3. Wave gaits

Other studies have shown that the different gaits
can be obtained using local synchronization rules. The
robustness and flexibility of walking is then the result
o f the interact ion and coopera t ion o f several
mechanisms. To obtain the emergence o f those
coordinated movements, a current approach is to use
recurrent neural nettworks and an interconnection
architecture obtained with evolutionary algorithms [9].

Ada Letters, March 2002 Page lg Volume XXII, Number 1

The present project gives the same results using a
network o f objects (Fig. 20) which a l low the
propagation of causal chains o f events/actions and the
interaction o f several , more or less redundant,
resynchronizat ion mechanisms, which gives great
robustness to the algorithm. The global architecture
[10] o f the project is divided into three main layers.

Coordin ation

Decentralized Control

Platform

The Platform layer abstracts a hexapod which
e v o l v e s and w h i c h can be contro l l ed . The
Decentralized Control layer contains 6 tasks for the
control of the legs. These leg controllers are subject to
constraints o f confl ict resolut ion imposed by the
Coordination layer. This general system architecture is
chosen in order to deal with the principal Ads
constructions.

4. The Plat form

The platform is an instance o f the Fafade pattern
[11]; its role is to abstract the robot. So, the
implementation can vary (3D rendering, real robot,
etc.). To perform the s imulat ion the hexapod is
simplified. In particular, a leg movement occurs in an
abstract space and consists o f a s imple posi t ion
between AEP and PEP and a state (lifted or not). This
model can be improved using a more precise geometry
o f the leg. Minimum graphics will help to draw the
evolution o f the legs (using AdaGraph for example).
Fig.4 shows the class diagram in UML [12].

< < t n B k > >

Platform

matE7 5~art Retr actiolt (Leg_Id)
J ent:Lr,f Start_Protr action (Le g_Id)
J ea~z'lF Set_Speed_Ratio(Float)
e l t r l F Shutdown

6 ~ T h e ~ g s

L~.
Ix, Y, Position, Mov~nent
l Y~aet_Evolve, The_Speed
]Position, Retracts ?B Evolve
[Set Positi0n, Set Speed
[Start Retraction --
IStart--Protractien

l -~rase r -Drew

The_Speed

Speed
Speed Value
Speed_Ratio
V a l u u ¥
Adust gatio
Ratio ?

Figure 4. The Platform

The Speed class abstracts the fact that the retraction
and protraction speeds are not the same. The speed is
adjusted through a simple coefficient K which is the

ratio between the two speeds. The class is translated
into Ads through a private type as follows.

Package Speed is
Maximum~ constant : = 1.0;
Stopped: constant := O.0;
Full_Speed: constant ;= 1.0;
t y p e o b j e c t is p r i v a t o ;
f u n c t i o n Value(K: Float) r e t u r n Object;
function Value(0: Object) return Float;
fueotien Ratio(0= Object) return Float;
p r o c e d u r e AdjuB~_Ratio(0: in o u t Object;

K: Float);
private

tTpe Object is reco=d
Speed Ratio: Float := Stopped;
Speed Value: Float := 0.0;

end r e c o r d ;
e n d S p e e d ;

This is the general design principle adopted for the
translation o f a class into Ads. The Speed body does
not present any difficulties.

A leg is considered as a dynamical system which
drives the posit ion o f the tip towards AEP or PEP.
Once it has arrived in one o f those positions, the leg
stops moving. It will be the role o f the leg controller to
give it a cycl ical behavior. The hybrid finite state
machine in Fig. 5 specifies its functioning.

s d p / d t - - S da: d p / d t - Max
~ p ~ F / q / F ~ n ~azr

J Start Retractlon ~

Figure 5. Basic leg behavior

X and Y are the graphic coordinates o f the origin o f
the leg, The contract of the Leg cIass is defined using a
tagged type, so as to allow the extension o f this type.
The specification o f the package is the following:

with Calendar; with Speed;
package Log is

AEP: constant Float z= 1.0;
PEP: constant Float :- -i.0;
t y p e Object is t a g g e d p = i v a t e ;
t y p e Class_Ref £s access all 0bject'Class;

f u n c t i o n V a l u e (X , ¥ : I n t e g e r ; P: F l o a t)
r e t u r n C l a s s R e f ;

f u n c t i o n Retracts(Leg: Object)
return Boolean;

function Position(Leg: Object)
rOuEn Float;

procedure Set_Position(Leg: in out Object;
To: Float);

procedure Sot_Speed(Log: in out 0bjoct;
To: S p e e d . O b j e c t) ;

procedure Start_Rotraction(
LeG: i n o u t Object);

p r o c e d u r e S t a r t P r o t r a c t i o n (
L e g : i n o u t O b j e c t) ;

p r o c e d u r e E v o l v e (L e g : £ n o u t O b j e c t) ;

Ads Letters, March 2002 Page 19 Volume XXII, Number 1

private
type Movements is (

Protraction,
Retraction) ;

t y p e Object is t a g g e d r e c o r d
X , Y : Integer :m 0;
Position : Float := AEP;
Movmnent : Movements : = Retraction;
The_Speed : Speed.Object;
Last_Evolve: Calendar.Time ;

e n d r e c o r d ;
end Leg;

Thor= is no particular prob|em about the package

body. A few methods are given:

package body Leg l e
p r o c e d u r e Draw (L e g : Object);
procedure Erase(Leg: Object) ;
fun=finn Value(E, Y: Integer;

Position; Float) r e t u r n Class_Bar i s
b e g i n

z e t e r o New O b j e c t ' (X , Y, Position,
Retr action,
Speed. Value (0.0),
Calendar .Clock) ;

end ;

p r o c e d u r e Start_Retraction(
Legs i n o u t Object) J.a

b e g i n
Erase (L e g) ;
Leg.Movement :-- Retraction;
Draw (Leg) ;

and;

-- etc

procedure Evolve (Leg: in out Object) ha
Step: Float; Now: Calendar.Time; S: Float;
usa Calendar ;

b e g i n
Erase (Leg) ;
New : = Calendar.Clock;
Af Leg.Movement = Retraction t h e n

S :-- Speed.Value(Leg.The Speed);
e l s e

S : : S p e e d . M a x i m u m ;
an4 A t ;
Step :- S * Float(Now -Lag.Last_Evolve);
case Leg.Movement As

when Protraction => Leg.Position :--
Float'Min(Lag.Poaition + Step, AEP);

when Retraction : > Leg.Position :m
Float' Max (Leg. Position - Step, PEP) ;

end c a s e ;
Leg.Last_Evolve := Now;
Draw(Leg) ;

end ;
a n d L a g ;

The p la t fo rm is a task which ensures the m o t i o n o f
the 6 legs. The task accepts its R e n d e z - V o u s and
makes the legs m o v e accord ing to a s a m p I i n g per iod.
The task also has an accesa discriminant to an even t
notif ier which wil l be descr ibed in § 5.

with GenericNotifier;
package Platform is

type Leg Ida Ls (LI, L2, L3, R3, R2, Ri);
type Leg_Events is (

PEP_Reached, Is_Late, AEP_Reached,
LegKilled);

package Notifier is new
Generic_Notifier(Leg_Ids, Leg_Events);

task t y p e Object(
Notifier: Platform.Notifiar.Ref :=
now Platform.Notifier.Object) is

e n t r y Shutdown;
entry Start_Retraction (L: Leg_Ids);
entry Start_Protraction (L: Leg_Ids);
entry Set Speed Ratio (To: float);

end;
t y p e Ref is access Object;

end Platform;

The Platfom b o d y exp lo i t s a p r i v a t e ch i ld u n i t
P ~ o r m . L e g s which manages the 6- leg collect ion.

with Calendar, Leg, Platform.Legs, Speed;
package body Platform is

Period: c o n s t a n t :- O . l ;
procedure Notlfy_Shutdown (N: Notifier.Sol);
t a s k b o d y Object i s

Alive: Boolean : : True;
The_Legs: Legs.Object :- New Legs (...);
Next: Calendar.Time :m Calendar. Clock;
use Calendar; use L e g ;

b e g i n
while Alive loop

salem
mccepk Start Protraction(L: Leg_Ids) do

Start Protraction(The_Lega(L).ell);
and ;

o r
a c c e p t Start Retraction(L: Lag_Ida) do

S t a r t _ R e t ~ a c t i e n (T h e L e g s (L) . a l l) ;
end ;

o r
a c c e p t Sat_Spend_Ratio(To: float) do

Legs.Set Speed Ratio(The_Legs, TO);
end;

oE
accept Shutdown do Alive :: False; and ;

c r
d e l a y u n t i l Next;
Legs.Evolve(The_Legs);
Next =m Next + Period;

a n d s e l a c t ;
end loop;
Notify_Shutdown(Notifier);
while Notifier.Xas_Pendings loop --shutdown

- - accept remaining Rendez-Vou$
end l o o p ;

and;
. e t c

end Platform;

To s tar t a Shutdown, the p l a t f o r m exp lo i t s the
No~fier to warn the leg control lers o f the i m m i n e n t end
o f the p l a t f o r m . In the s h u t d o w n phase , the task
con t inues to accept R e n d e z - V o u s as l ong as there are
undeI ivercd e v e n ~ (see § 5).

Ada Letters, March 2002 Page 20 Volume XXII. Number 1

The Platform.Legs unit illustrates the possibilities
of private child units and the clays wide types for the
creation of polymorphic arrays.

with Leg;
private package Platform.Legs As

type Object £s array(Leg_Ids) of
Leg.Class Ref;

f u n c t i o n New_Leqs(X, Y, Buy Size: Integer)
return Object;

p r o c e d u r e Evolve(Legs: Object);
procedure Set_Speed_Ratio(Legs: Object;

To: Float);
e n d ;

5. N o t i f i c a t i o n o f E v e n t s

As the platform is a fagade which ensures
uncoupl ing according to the decentralized control
layer, it must be able to notify the occurrence o f
important events to the upper layer. The mechanism
used is that of an event notifier, as shown in Fig. 6.

Controllers ~ p R e a c h e d pEP R e a c h e d , Leg H i l l e d

S t a r t R u t r a c t ion
scan srctcacct.o, i ' ! !

J

1, ' Platform t i I /
/ I I I I I I

6 Channels L1 1_2 L3 R1 R2 R3

Figure 6. Event notification

The notifier has several channels. It will be built as
an instance o f a generic unit. It also al lows the
introduction o f protected objects and family entries.
T h e c l a s s d i a g r a m in Fig. 7 describes the situation.

I Generic_Notilter i _ _s~_ y.t?. _ _ .x_~_ _ (_°_ .~ _ J

SendlChnnnel, ~ e n t) [
Sand If_Possible(Channel, Event) /
c h e r t WaitCehannals)(ont Rvent) J
~as Pcnd~nge: Boolean J

?
<< ~.mllk >> I Log IdB

J PJaff°rm ~ O - ~ J N°tif ier ~a" even~.] j

Figure 7. Genet ic Notifier

The notifier helps to send :
i) memorized high-priority events which override
possible undelivered events
2) low-priority events which will be lost if they a r e
n o t sen t .

g e n e r i c
type Channels is (<>);
type Events is (<>);

package Generic Notifier is
type Notification is cecocd

Event : Events;
Arrived: Boolean :- False;

e n d record;
t F p e Notifications is array(Channels)

of Notification;
p r o t e c t e d t y p e O b j e c t is

ent~ Wait(Channels)(E: out Events);
procedure Send(C: Channels; E: Events);
procedure Send If Possible(

C: Channels; E= Events);
function Bas_Pendings return Boolean;

private
The_Eventsz Notifications;

e n d ;
type Ref is access Object;

end Generic_Notifier;

package bed¥ Generic Notlfier is
protected body Object is

entry Wait(fo¢ C in Channela)(E: out
Events) when The Eventa(C).Arrivad is

begin
E :ffi The Events(C).Event;
The_Events(C).Arrived :-- False;

end;
procedure Send (C; Channels; Ez Events) is
b e g i n

The_Events(C):= Notificatlon'(E, True);
e n d ;
p r o c e d u r e Send_If_Possible (

C: Channels; Ez Events) £s
b e g i n

if not The Evento(C).Arrived then
Send (C, E);

e n d if;
e n d ;
f u n c t i o n H a s _ P e n d i n g s r e t u ~ a B o o l e a n £e
b e g i n

for C in Channels loop
if The Events(C).Arrived then

r e t u E n True;
and If;

e n d l o o p ;
return False;

end;
e n d ;

e n d G e n e r i c N o t i f i e r ;

The Notify_Shutdown p r o c e d u r e o f the Platform
body notifies the Leg_Killed event in the 6 channels.
Then the task exploits the Hay_Pendingx entry to know
if those events have b e e n d e l i v e r e d . W h e n i t r e c e i v e s a
Leg_Kil~d e v e n t a l e g c o n ~ o l l e r (which is a task) will
start its own shutdown.

To illustrate inheritance and type extension in Ada
and to generate the events o f leg position, the Leg c l ~ s
is subclassed into a NotiCing_Leg class. This class
over loads the Evolve method to generate the
PEP_Reached and AEP_Reached even~ and to notify
them in the appropriate channel. Fig. 8 describes the
situation.

Ada Letters, March 2002 Page 21 Volume XXII, Nmnber I

<< t, mnk ;>

Platform

I N o t i f i e r

~ Th=_L=g~l Leg I
O p p o s i k e _ L e g ~ I N=,,y,°,_L.g]

L~ ~ Log Id

Figure 8. Leg with notifier

The call of Evoke ~om within the Platform task is
a dispatching call because the type used is a class wide
type. Notyfing_Leg uses discriminants and is a child
unit of Leg.

w~th Platform;
package Leg.Notifying_Le~ is

type Objeot(Leg_Id: Platform.Leg_Ida;
Notifier: Platform.Notifier.Ref) is

new Leg.Object with null record;
t y p e Class_Ref is access Object'Class;
funotLon Value(Leg_Id: Platform.Leg Ida;

Notifier: Platform.Notifier.Ref;
X, Y: Integer; Position: Float

) Eotu¢n Class_Ref;
procodu¢o Evolve(O: in out Object);

e n d ;

with Platform; nee Platform;
package bed F Leg.Notifying Leg is

procedure Evolve(O: £n out Object) Is
Super: Leg.Object renames Leg.Object(O);
L: Leg_Zds renames O.Leg_Id;
PI, P2= Float~

b e g i n
Pl :-- O.Position;
Leg.EvolveCSuper);
P2 :m O.Position;
if P1 < P2 and then P2 - AEP theq

O.Notifier.Send(L, AEP_Reached);
eleif Pl > P2 and then P2 = PEP then

O.Notifier.Send(L, PEP_Rea¢hed);
e n d if;

end;
-- other methods

e n d ;

At this stage, the platform layer is completed.

6. The control layer

A leg must move according to the following rules:
1) any leg resting on the ground moves in retraction; 2)
when a leg arrives at its PEP, it must go into
protraction, 3) a leg can only go into protraction if it
does not compromise the static stability of the
hexapod; 4) when a leg in protraction arrives at its
AEP, it must go into retraction. The controller must
generate this behavior permanently. Rule 3 stipulates
that static stability must be maintained. The necessary
condition to ensure this stability is that a leg can only

be lifted if its two neighbors are resting on the ground.
Fig. 9 describes the neighborhood relation for the legs.

Figure 9. Neighborhood relation

As decentralized and concurrent control is to be
implemented, there may be some conflict when making
the decision of lifting a leg. This conflict must be
solved_ The problem is quite similar to the traditional
problem of the dining philosophers, i f a leg is
considered a "philosopher" and if "to eat" means to
"lift a leg". To solve the problem, a leg that wishes to
go into protraction must acquire a privilege and give it
up when protraction is over. The class diagram in Fig.
10 describes the situation.

I Privileqo

<< ~.itllJl >>

~eL°g-C'°rltr°ll or ~ L
i

g_ld ~ __ --

6 ~ Platforn }

<< task :>> ~ < < pro~ed > >

I Platform ~ ~,3_l Notifier I

Figure 10. Controllers and privileges

The control layer consists of 6 instances of the
Leg_Controller task type waiting for events from the
channels of the notifier and generating the subsequent
Start_Retraction or Stop_Retraction entry calls
towards the platform. The transition diagram of the leg
controller is shown in Fig. 11_

l

~ a g _ g L l l a ~

L e g H i L l a d /
Ra l eSSS

priviloqe'

r Wait leg evenLs~

~C~Retraction~-..~.
~ R e n l h o d /
mt arq~ ROtE ml= t J.ol~

PEJP_Prre mchecl

~ Should_Protract "~
I P~quire_P¢ivilego J

YEivi~ogn gzant~l /
SEart PEG ~ra¢Eian

Figure 11. StateCharts of the leg controller

The specification and body of Leg_Controller are
the following (Is_Late will be discussed later);

Ada Letters, March 2002 Page 22 Volume XXlI, Nttmber I

with Platform. Privilege ;
package Leg Controller is

task type Object(Pc Platform.Ref;
L: Platform.Leg_Ids;
Protraction_Privilege: Privilege.Ref);

t y p e Ref is access Object;
end Leg Controller;

with Platform; usa Platform;
paokage b o d y Leg_Controller is

type States is (Retraction,
Should_Protract, Protraotion);

t a s k b o d y Object is
State: States := Retraction;
Event: Platform.Leg Events;

begin
l o o p

P.Nntifier.Wait(L)(Event};
name Event is

when IsLate i PEP Reached :>
State := Should_Protract;

when AEP Reached =>
State ;= Retraction;
P.Start_Retraction (L);
Protraction_Privilege.Release;

when Leg_Killed =>
if State - Protraction then

Protraction_Privilege.Release;
e n d if;
exit;

e n d case;
if State = Should Protract thou

Protraction_Privilege.Acquire;
State :m Protraction;
P.Start_Protraction(L);

c a d i f ;
e n d l o o p ;

e n d ;
e n d Leg Controller;

Provided that the privi leges are working, the
controller ensures stable walking o f the hexapod,
whatever the speed. However, the gait is not fair and
some legs may drag for a long whi le in PEP when
waiting for a privilege. To reduce wait ing time and
improve the gait, other coordination mechanisms are
necessary. Fig. 3 shows that, whatever the walking
speed, a protraction wave runs from rear to front on
both sides o f the hexapod. A n e w control rule
stipulates that the start o f retraction for one leg
stimulates the protraction o f the preceding leg, i.e. L3
stimulates L2 and L2 stimulates LI (it is the sarnc for
the right side). Such a (non-memorized) signal can be
obtained with a protected object as shown in Fig. 12.

<< emak >>

I Leg-c°ntmller I [:Lo~ Controller J

,~.~,.L..~,~r ac t i on_S l seal

I ~£aulat£on
w.***l

I I ._.Contmller I

Figure 12. St imulat ion signals

A leg controller must then be kept waiting for an
event ei ther f rom the notifier or f rom another leg
controller, which requires a simultaneous call o f two
entries. This selectiue entry c-ll is not available in Ads,
but a solution can be obtained with the asy,chro.ous
tr,msfer ofconlro! [13]. The following source gives the
¢on-ections o f the controller.

p a c k a g e Leg_Controller is
p r o t e c t e d t y p e Signal i s

procedure Send;
e n t E ~ f Wait;

private
Arrived: Boolean :- False;

e n d ;
type Signal Ref £a a c c e s s Signal;
task type Object(Pc Platform. Ref;

L: Platform.Leg_Ids;
ProtractionPrivilege: Privilege.Ref);
Stimulation: Signal Ref ;
Retraction_Signal: Signal_Ref);

type Ref is access Object;
end Leg_Controller;

p a c k a g e b o d 7 Leg_Controller £s
p r o t e c t e d b o d y Signal i s

p r o c e d u r e Send in
b e g i n

A r r i v e d : - Wait'Count / - O;
e n d ;
entrz Wait when Arrived £s
b e g i n

Arrived : - False;
a n d ;

e n d ;
t a s k b o d y O b j e c t i s
- - s a m e as previous c o d e

l o o p
I£ State = Retraction and then

Stil~lation /~ null then
Event :m PEP_Reached;
eele~q~

P.Notifier.Wait(L)(Event);
t h e e a h o : t

Stimulation.wait;
e n d s e l e c t ;

else
P.Notifier.Wait(Ll(Event);

e n d i f ;
c a s e E v e n t i s

-- same as previous co~le
w h e n AEPReeohed =>

State := Retraction;
P.Start Retraction (L);
Protrac~ionPrivilege.Release;
if Retraction Signal /m n u l l t h e n

Retraction Signal.Send;
e n d i f ;

-- s m n e a s p r e v i o u s oode
end Leg controller;

With this new mechanism, walking stabil izes
rapidly in the form o f tripod gait, even at low speeds.
To obtain the wave gaits shown in Fig. 3 - notably
s low walking (K -- 1/5), a last resynchronizat ion
mechanism must be added. Fig. 3 shows that 2 Li-Ri
legs are always in opposition o f phase. In other terms,

Ada Letters, March 2002 Page 23 Volume XXII, Number 1

the protraction of a leg starts in the middle o f the cycle
o f the opposite leg. The phase is evaluated as shown in
Fig. 13.

l -a _ I ~ 13 - I , o t>:A,is~-t~st~

p d / T " ~ . . ~ " ' ~ • I ~=x / (x , x)
,vL J,.- a=, j , ,0

T / i T ~ t f :etcnct..i.on "khan
O . O J Prof. [Retraction i ~ I ~ + (A E P - p) / D

Figure 13. Phase calculat ion

A leg is l inked to its opposi te leg (Fig. 8) and a
Phase method is added to the Leg class. To respect the
phase opposit ion criterion the delay o f a retracting leg
is recovered by advancing its protraction. To do so, a
leg compares its phase with that o f the opposite leg and
generates an Is_Late event i f it is late. This event is
trapped by the leg controller and processed as an event
that is s y n o n y m o u s wi th PEP_Reached. Fig. 14
describes phase recovering.

om !
IDVqNmaA r i .~..--

~ ' - L,,..~" " a ~ ~ ~ l e g

Figure 14. Phase recovering

A leg is considered to be late if its phase is greater
than or equal to the phase of the opposite leg and if the
phase o f the opposite leg is higher than 0.5. So,
Notify'hE_Leg must s imply be completed with that law
in order to generate the Is Late event . Is_Late is
cons idered to have no priori 'ty, as it is only used to
r e synch ron ize m o v e m e n t s . I t is p o s t e d us ing the
Send_If_Possible method o f the notifier.

At this stage, the control layer is complete and the
typical wave gaits corresponding to K = l , K = 1/3 and
K = 1/5 are obtained. Moreover , any modif ica t ion o f
the walking speed causes an automatic adaptation and
resynchronization towards a new equitable gait.

7. M a n a g e m e n t o f p r i v i l e g e s

The coord ina t ion l a y e r m a n a g e s the pr iv i leges
allocated to the different legs. It has been seen that the
p rob lem is s imilar to that o f the dining philosophers.
The problem can be tackled in a simple, centralized
manner, or in a decentral ized manner , which is more
complex. Centralized management is possible with one
protected Privilege object, shared between all the leg-
controllers. This object acts like a kind o f Mediator
[1 1] to coordinate the leg control lers which do not
know each other.

w i th Platform; use Platform;
package Privilege in

type State is a r r a y (Leg_Ida)
o f Boolean;

p r e ~ e c t e d tIrpa Object £a
entry A~quira(Leg_Ids); -- familly
procedure Release(For_Leg: Leg_Ida);

private
Privileges: State ;= (others => False};
functlon Ceu~TakePrIvilege(L: Leg_Ida)

return Boolean;
end;
type gef in access Object;

end Privilege;

package body P r i v i l e g e £a
f u n c t i o n R.ight(L: Leg_Zds) r e t u r n Leg_Ida £s
b o g l e

i f L = L e g _ I d s ' L a s t t hen
r a t u r n L e g I d s ' F i r s t ;

e l a n
r e t u r n L e g Z d s ' S u o c (L) ;

end Lf;
and;
f u n c t i o n L e f t (L : L e g _ Z d a) r e t u r n L e g _ Z d s £s
b e g i n

i f L - L e g _ Z d a ' F i r s t t hen
r e t u r n L e g Z d a ' L a e t ;

e l a n
r e t u r n L e g _ Z d a ' P r e d (L) ;

end I f ;
end;
p r o t e c t e d body Ob jec t in

e n t r y A c q u i r e f f o r L Ln L e g _ I d a) when
Can T a k e _ P r i v ± l e g e (L) £a

begLn
Priv£1eges(L) := True;

end;
p r o c e d u r e R e l e a s e (For._Leg: Leg_Zds) £s
beg in

Privileges(For_Leg) :- False;
and;
funetlon Can Take Prlvilege (L: Leg_Zds)

r e t u r n Boolean i s
b e g £ n

r e r u n not. (Prlvileges(Left(L)) or
Prlvileges(Right(L)));

end;
and;

end P r i v i l e g e ;

As control is decentralized, it is pedagogically
more interesting to study a decentralized algorithm for
the allocation of privileges. In such a schema, all the
synchronization is performed through passage o f
tokens (or messages) . The present study will use par t
o f K . M . C h a n d y a n d J . M i s r a ' s w e l l - k n o w n
algor i thm [14]. In this a lgor i thm Chandy and Misra
tackle a more complex p rob lem - the p rob lem o f the
drinking philosophers - which is a general izat ion o f
the dining phi losophers problem. Chandi and Mis ra
de sc r i be a d i s t r i b u t e d v a r i a n t o f the d i n i n g
philosophers p rob lem as a first step in the solution o f
the drinking phi losophers problem. This first part will
be implemented in the present study.

The important e lements o f the a lgor i thm are the
following:

Ada Letters, March 2002 Page 24 Volume XXII, Number 1

- When a phi losopher becomes hungry, he tries to
acquire the missing forks.
- When a hungry philosopher has the forks, he can eat.
- The forks arc clean or dirty.
-As soon as a philosopher starts to eat, his forks
become dirty.
- The forks can be used several times and so, they
remain dirty.
- A request token is associated with each fork.
- A philosopher uses this token to ask his neighbor for
a fork.
- Only the holder o f a request token may ask his
neighbor for a fork (passing o f the token).
- To have the token then means that the neighbor has
asked for or is in the possession of the fork.
- B e f o r e giv ing his fork to his ne ighbor , the
philosopher cleans it.
- A clean fork is never given or given back. Indeed, a
philosopher only asks for a fork when he is hungry.
Consequen t ly a fork is on ly g iven when the
philosopher is not eating (even i f he is hungry), when
he has the token and when the fork is dirty.

The whole set must be initialized as follows:

- All forks are dirty.
- T h e tokens and forks are he ld by d i f fe ren t
philosophers. Moreover , for a couple o f neighboring
philosophers, one has a dirty fork and the other a
request token.
- The precedence graph is acyclic. A phi losopher is
said to precede his neighbor i f his neighbor has a dirty
fork or i f the fork is coming or i f he already has a clean
fork. Fig. 15 shows the initialization.

Q O
F i g u r e 1 5 . I n i t i a l i z a t i o n

The existence o f a cycle may lead to a deadlock.
Therefore, one of the aims o f the algorithm is to always
keep the precedence graph acyclic.

To apply the algorithm to the robot, the elements o f
the algorithm must be reformulated into the terms o f
the problem. A leg con t ro l l e r is cons ide red a
phi losopher . Retraction corresponds to thinking,
P r o t r a c t i o n to eat ing and be ing h u n g r y to
Should_Protract (Fig. I 1). A fork is replaced by a
granted privilege and a dirty fork represents a privilege
that has already been used. The notion o f privilege is
reified and each o f the 6 leg controllers is linked to its
own Privilege object. The privilege must be acquired

on the left and right sides. The scenario in Fig. 16
illustrates how privileges work.

4 : ReqUetat

LC2:Leo Controlter
i : S t a r t K o t r o c t l o o l I
? z Start--Protra~ticm

i 9 ~ S%art--Rotr met ton

I :Plaff°rm I

I
[~ % :PEP_Am=Red
/ B=~KP Ken=bud

I :N°tifier I

Figure 16. Th e Func t ion ing o f privileges

In this figure, the privilege on the right has already
been acquired, used (dirty fork), but not given back.
On the left, the privilege has not been acquired, which
requires the sending o f the Reques t message. P1
records the request, but does not give up his privilege,
since it has not boon used yet. When P1 has used his
privilege, he will grant it (Grant message) to P2 who
has asked for it. During all this phase, the LC2
controller is waiting. Once it is released, the controller
is sure to hold the privi lege and can now per form
protraction, then give up the privi lege at the end o f
protraction.

The privilege objects are shared and must be able to
suspend the calling tasks. That is why protected objects
b e c o m e necessa ry . F o r eas i e r m a n a g e m e n t o f
privileges, each privilege object is assisted by 2 agents
(or Brokers) that memorize the current privilege state
and negotiate the privileges with the neighbors. The
previous schema is thus improved (Fig. 17). The whole
coordination layer acts like a ring o f mediators.

~_d~JJgg~ ~ . :Privlleoe ~ : P r i v i l ~ e

F i g u r e 1 7 . C h a i n i n g o f b r o k e r s a n d p r i v i l e g e s

The Ada specification is:

package P r i v i l e g e i s
t]rpe Sides i s (Zmftr R i g h t) ;
tTpe States is (Used, Not Granted,

Granted, In_Use);
subtype Initial States is States gangs

Used..Not Granted;
t3ppe Object;
tTpe Ref is at=ass Object;
type BEaker(Side: Sides; Initial_State:

Initial States) in re=ord
Needed : Boolean :- False;
State z States :-- Inltial_State;
Requested : Boolean :o

Znitlel State = Not Granted;
Neighbour ~ Prlvilege.Ref;

e n d r e c o r d ;

Ada Let~rs, March 2002 Page 25 Volume XXII, Number I

protested type Object (Initial_State :
Initial_States) As

e n t r y Acquire ;
p r o c e d u r e Release;
procedure Bequest (Side : Sides ;

Granted: out Boolean,
Needed : out Boolean);

procedure Grant (Side : Sides) ;
procedure Link_To(Left, Right: Ref);

private
entry Wait;
Left Broker: Broker(Left, Tnitial_State) ;
Right Broker:Broker(Bight, Initial State) ;

end ;
end Privilege;

As for the state memorized in the Broker:
- N e e d e d indicates that a privilege is needed, whether

it has been obtained or not_
- R e q u e s t e d is the token; it is true when the neighbor
has asked for a privilege, whether he has obtained it or
not.
- S t a t e memorizes the privilege state associated with
one side.

The discriminants al low correct ini t ia l izat ion
during the object construction phase. Acquire delegates
the negotiat ion o f privileges to the 2 brokers, then
starts waiting at the Wait private entry. The Request
method has 2 output parameters. Indeed, a request may
be fo l lowed by an immediate al location (Granted
parameter). A privilege may also be given up because
it has already been used while it is still needed; the
Needed parameter encodes this fact. So, an allocation
can be immediate (parameter) or pos tponed (Grant
message). In the same way, a request for a privi lege
can occur when a privilege is lost (Needed parameter)
or when a Request message is sent. This construction
avoids an indirect entry call during the execution o f a
protected action (cf. ARM 9.5). Fig. 18 shows the
finite state machine for privilege allocation.

• ~ e l s e

~ q u i r e / / Errant ~ /

o;. / /
('oo 7

Figure 18. Privilege allocation F SM
The Privilege body is the following:

package body Privilege is
function Has P(B: Broker) return Boolean ls
b e g i n

return S.State /a Not_Granted;
end;
procedure Grant_P(B: in out Broker) is
b e g i n

B.State : -- Granted;
e n d ;
p r o c e d u r e Need_P(B: i n o u t Broker) is

Granted, Requested: Boolean;
begin

B.Needed := True;
if B.State - Not_Granted thee

B.Requested :m False; -- send token
ease B.Side is

when Left =>
B.Neighbour.Request(Right,

Granted, Requested);
when Right ->

B.Neighbour.Request(Laft,
Granted, Requested);

e n d c a s e ;
if Granted t h e n Grant_P(B); e n d if;
if Requested then

B.Requested :n True;
and if;

e n d if;
e n d ;
p r o c e d u = e O s e _ P (B ; i n o u t B r o k e r) I s
b e g i n

B.State :m In_UBe;
a n d ;
p r o c e d u r e Release P (B; £ n ~ t Broker) is
b e g i n

B.Needed ; - False;
if B.Requested t h e e

e a s e B . S i d e i e
w h e n Left -->

B-Neighhour.Grant(Right);
when Right ->

B.Neighbour.Grant(Left);
e n d e a s e ;
B.State :- Not_Granted;

e l s e
B.State : = Used;

e n d if;
end;
p r o c e d u r e R e q u e s t P (Be i n o u t B r o k e r ;

G r a n t e d : o u t B o o l e a n ;
Needed: out Boolean) in

b e g i n
Granted : = False;
Needed :: B.Needed;
B.Requested :m True;
if B.Statn - Used t h e n

B.State : = Not Granted;
Granted :: True;
i f N e e d e d t h e n

B . R e q u e s t e d :m F a l s e ; - - t o k e n s e n t
a n d if;

end if;
e n d ;

p r o t e c t e d b o d y Object AS
p r o c e d u r e L i n k _ T o (L e f t , R i g h t : R e f) £s
b e g a n

L e f t _ B r o k e r : - L e f t ;
R i g h t B r o k e r : = R i g h t ;

e n d ;
entzT Acquire when True is
b e g i n

Ada Letters, March 2002 Page 26 VohLme XXII, Number I

N e e d . . P (L e £ t B r o k e r) ;
Need P (R l g h t . _ B r o k e r) ;
r e q u e u e Wait with a b o r t ;

e n d ;
e n t z ~ W a l t when Has P (L e f t B r o k e r)

and Has P (n i g h t _ a r o k e r) I s
b e g i n

U s e _ P (L e f t B r o k e r) ;
Use_P(Right_Rrmker);

end;
p E o c e d u w e Release is
b e g i n

Release_P(Left_Sreker};
Release_P(Right_BEoker);

e n d ;
p r e m n d u w e B e q u e s t (S i d e : S i d e s :

Granted: o u t Boolean,
Needed : e a t ~ o l e a n) i s

b e g i n
e a s e S i d e is

when Left m>
Request P(Laft.Broker, Granted,

N e e d e d) ;
w h e n R i g h t m>

Request_P(aightBroker, Gran~edp
Needed);

e n d e a s e ;
e n d ;
p z o c e d u r n G r a n t (S i d e : S i d e s) i n
b e g L n

anne Side i s
when Left ~ G r n n t _ P (L e f t _ B r o k e :) ;
whoa Bight -~ G r a n t P (R i g h ~ B r o k e r) ;

e n d c a m e ;
e n d ;

e n d ;
end Privilege;

operands and the "dilatation" operator is typically
obtained using the square root function. Fig. 19 shows
the fuzzy membership functions.

~ M ~ r s h i p

~ru- Lag £a Stre~=hed n=~ La©j la StL '~ched

F e R a l . I "
• r

J S t E e t c h e d _ P B P P E P X ~ a £ t l e m

~ membership
L a g s a z a S t r e t c h e d a n t L e g s ItEm S t r e t c h e d

T r u e

FaLse I ~"
] S ' ~ . E a t e h o c ~ P B P P E P P o s i t i o n

Figure 19. Fuzzy membership functions

The speed ratio is adjusted through the
defuzzification of the control law, according to:

K = Kreference * (not Leg,_Are Stretched)

This control law is implemented through the
addition of a periodic controller task which observes
the stretching of the legs and adjusts the speed of the
platform according to the desired speed.

Finally, all the objects and tasks that have been
described are assembled using a Hexapod class.

9. Conclusion

8. Speed control

By continuously changing the reference speed, and
despite the automatic transition between the different
walking gaits when the reference speed changes, some
of the legs may drag for a while in the PEP position,
waiting for a privilege. To avoid such leg dragging, the
speed of the robot is controlled and reduced until the
stretched legs can start their protraction. The control
law is simple: I f one or the other leg o f the robot
searches too far, the speed must be reduced. This law
can be implemented using a small controller based on
fuzzy logic [15, 16]. The source of this part will not be
described in detail, but the general principle is the
following: an Is_Stretched fuzzy predicate is added to
the Leg class and a L e g s _ A r e _ S t r e t c h e d fuz zy
predicate is added to the Platform task. These
predicates correspond to the fuzzification of the
position of the legs. A small kinematic margin is
provided for the PEP position. Thus, a leg can continue
to move beyond PEP, but starts to stretch; Is_Stretched
expresses this fact. The fuzzy predica te
Legs_Are_S t re t ched is the "dilatation" of the "or"
between the 6 Is_Stretched predicates of the legs. The
f n ~ y "or" operator is typically the maximum of the 2

This paper has described an example o f
coordinat ion and synchronizat ion of the leg
movements of a hexapod robot, using several more or
less redund-nt mechanisms. The whole set leads to a
graph of objects which ensure an adaptive behavior.
Fig. 20 shows the main points of this object graph.

| L,.

Figure 20. Complete object graph

Ada Letters, March 2002 Page 2'7 Volume XXll. Nnmher 1

This is a very comprehens ive project insofar as it
deals with most of the Ada language constructions,
focuses on architectural aspects and takes great account
o f concurrent p rogramming . It is complex enough to
r equ i re an a p p r o p r i a t e a rch i t ec tu re . N u m e r o u s
extensions can be imagined, including a more accurate
leg model , a 3D graphic rendering using a binding to
OpenGL, an off - l ine graphic rendering o f walking
sequences (e.g. us ing P e r - R a y , Fig. 21 and [8]),
embedding the software on a real platform, the use o f a
distr ibuted p la t form, more sophist icated m o v e m e n t s
wh ich a l low rotat ion, naviga t ion and p lanning o f
trajectories, etc.

EUROBOT'96. Los Alami tos : IEEE C o m p u t e r
Society Press, p 135-142, 1996.

[7] S. Gait, B. L. Luk, S. Chen, R. H. Istepanian. D. S.
Cooke, and N. D. Hewer. Intelligent walking gait
generation for legged robots. In Proceedings o f 2nd
International Conference on Climbing and Walking
Robots, 605..613. 1999.

[8] hnp'J/www.lsi.crespim.uha.fr/
[9] R.D.Beer, R.D. Quinn, H.J. Chiel, and R.E. Rit2mann.

Biologically Inspired Approaches to Robotics.
Commun~cationa o f the ACM. 40(3) :31-38, 1997.

[10] F. Buschmann, R. Mounter, H. Rohnert, P. Sommerlad,
and M. Sial. Pattern-Oriented Software Architecture, A
Systems of Patterns. John Wiley & Sons. 1996

[!1] E.Ganuna, R. Helm, R. Johnson, and J. Vlissides.
Design-Patterns - Elements of Reusable Object
Oriented Software. Addison-Wesley. 1995.

[12] B.P. Douglass. Real-Time UML, Developping Efficient
Objects for Embedded Systems. Addiaon Wesley. ! 998.

[13] A. Burns and A. Wetlings. Concurency in Ada.
Cambridge Univeraity PresJ. 1995.

[14] K.M. Chextdi and J. Misra. The Drinking Philosophers
Problem. ACM Tranaactions on Programming
Language and~?3,aten~, 6(4) :632-646, 1984.

[15] J.-S.R. Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy
and Soft Computing. Prentice Hall. 1997.

[16] N.Gaua~a©r, and B.Thirion. A Framework for Fuzzy
Knowledge Based Control. Software Pracaice and
Experience. 30:1-15.2000.

F i g u r e 21. P e r - R a y r ende r ing

The p a p e r is also an incent ive to explore non-
traditional fields o f soft 'ware engineering. There is,
indeed, much to be learnt f rom nan-technical examples
(in biology, for instance) as regards synchronization or
coordination patterns, or as regards complex behaviors.
In this respect, mobi le robotics is an ideal field to learn
how to integrate hie- inspired algorithms and advanced
software technologies.

R e f e r e n c e s

[I] G.Dudek and M.Jenkin. Computational Principles of
Mobile Robotics. Cambridge University Press. 2000.

[2] P. Balbaslre, S. Terrasa, J. Villa, and A. Cmspo.
Experiences using Ada in a Real-Time and Distributed
Laboratory. Ada-Letters. XIX(3) :!45-155. 1999.

[3] The Walking Machine Catalog
hffp : //www.~i.d&lpt/WMC/prejhce/
walking_machines_karalog.html

[4] The Climbing and Walking Robots Home Page
h ttp: / / ~ . uwe. a c. u k/c lawar /h o me. htm

[5] C. Ferrel. Robust agent control of an autonomous robot
with many sensors and actuators. Master's thesis, MIT,
Dep. o f F, lectrical Engineering and Computer Science.
! 993.

[6] U. $chmucker, A. Schneider, and T- Ihme. Six-Legged
robot for service operations. In Proceedings o f

Aria Letters, March 2002 Page 28 Volume XXII, Number i

