Concurrent Programming for the Control of Hexapod Walking

Bemard Thirion, Laurent Thiry
Groupe LSI, Laboratoire MIPS
ESSAIM, Ecole Supérieure des Sciences Appliquées pour I’Ingénieur-Mulhouse
12 rue des Fréres Lumicre
68093 Mulhouse Cedex, France
e-mail : {b.thirion, l.thiry} @uha.fr

Abstract

Ada95 is a powerful language with a great number
of original constructions. Learning these constructions
requires the finalization of projects that are both
interesting and motivating for students, as well as the
coverage of the different constructions during the
project. Moreover, the field of mobile robotics is one
that requires real-time programming and appropriate
software architectures. More particularly, legged
robots offer a real challenge as regards autonomy and
the coordination of movements of the different legs.
This field proves fruitful for the definition of projects
on concurrent programming. The present paper
describes such a project about an architecture for an
omnidirectional legged robot. In a resolutely object-
oriented approach, the project helps to teach the main
constructions of the Ada language. Among others, it
deals with child units, generics, tagged types and type
extension, tasking, protected objects, family entries,
asynchronous transfer of control, discriminants, etc.
Numerous extensions can be considered within this
project.

1. Introduction

Mobile robotics is a vast, multidisciplinary field of
investigation which covers various domains as
mechanics, electrical and software engineering, vision,
etc. The renewed interest in this field is due to the fact
that the robot can now be given great computation
power at a low cost. From a software point of view, a
robot needs an efficient, appropriate control
architecture which allows the integration of the robot’s
numerous functions: movement of the platform,
estimation of the position, perception of the
environment, navigation, decision and planning,
actions on the environment, vision, etc [1]. In general,
these functions must occur jointly, in real-time. That is
why the field of mobile robotics is an important source
of inspiration for motivating projects that integrate
concurrent programming and real-time aspects.

Ada Letters, March 2002

Page 17

Moreover, mobile robotics helps to deal with a number
of concepts linked to the control of systems, using
either classic control methods or more advanced
methods like fuzzy logic, neural networks, etc.

Ada is well suited to the teaching of the
fundamental concepts of software engineering and
concurrent programming. It is also starting to be used
for projects about mobile robotics [2]. This paper will,
more particularly, consider the case of legged
locomotion. An interesting point to be studied is the
coordination of the leg movements, so as to highlight
the different walking gaits — tripod gait, slow gait, etc.
The control of the walking algorithms is usually not
centralized, which means that each leg is relatively
independent in its movements. Such decentralized
control will lead to interesting problems linked to the
coordination and synchronization of movements which
provide fair gaits and maintain the robot’s stability. In
particular, lifting one leg is concurrent with lifting
others and can thus cause a conflict. This conflict is
processed using the well-known algorithm of the
dining philosophers, which is an interesting practical

application of that algorithm.
The purpose of this paper is to illustrate the use of
the different Ada constructions — in particular

concwrrent programming — with an example which
interested students greatly. After giving some details
on legged robots and walking, the paper will
progressively describe the architecture of the whole
system.

2. Legged robots

The understanding of walking mechanisms and the
design of robust walking algorithms for legged robots
remain a challenge. To try and take up this challenge,
many laboratories have built walking machines [3-4].
There are two types of machines: the ones exhibiting
dynamic stability and the ones exhibiting static
stability. For robots with dynamic stability, the center
of gravity can leave the support polygon; they are
usually robots with a limited number of legs (1 to 4)

Volume XXII, Number 1

which have to keep their balance permanently. Robots
with static stability maintain their center of gravity
within the support polygon; they have at least four
legs. The case of hexapods or octopods is interesting as
they provide static stability and numerous walking
gails.

The walking algorithms are often decentralized and
designed by assembling a multitude of small processes
(or agents) which are executed concurrently [5]. The
complexity of the computational aspects (kinematic
computation, trajectory planning, etc) has led some
roboticians [5-7] to distribute the processing over
distributed architectures. For example the Robug IV
robot [7] has 4 processors per leg and 8 legs, that is o
say 32 processors linked by a CAN fieldbus. This kind
of structure requires distributed algorithms; therefore
the distributed philosophers algorithm will be used for
the allocation of the privileges of leg lifting.

The author’s team [8] has developed a hexagonal
hexapod robot — called Bunny - to validate their
software architectures concerning decentralized
control (Fig. 1).

Bunny is an omnidirectional robot with 18 degrees
of freedom (3 degrees per leg). The platform is not
directly used within student projects for reasons of
mechanical fragility, but it is the inspiration for the
definition of the problems. The following paris will
more specifically consider the problem of leg
coordination and the generation of walking gailts.

3. Fundamental Principles

On an ideal surface, a leg moves in a cyclic way
between two extreme positions — AEP which is the
anterior extreme position and PEP the posterior
extreme position. A leg is said to be in retraction when
it is on ground and pushes the platform forward. It is

Ada Letters, March 2002

Page 18

said to be in protraction when it is lifted and tries to
reach its AEP (Fig. 2).

Figure 2. Basic cycle of a leg

For hexapods, static stability is maintained at all
times by the configuration of the legs that are on the
ground. The observation of insects shows that some
specimens adapt their gait according to the speed at
which they move. This is possible because the
protraction speed of a leg is maximum (Max) while its
retraction speed (S) varies and depends on the animal’s
speed, which results in different gaits. For example, for
a hexapod moving at high speed, 3 legs are lifted and 3
legs are pushing; at an average speed 2 legs are lifted
and 4 legs are pushing, and at a low speed (uneven
ground or insect carrying a load), only 1 leg is lifted
and the 5 others are pushing. Observations also show
that the protraction of the legs moves like a wave that
is propagated from the rear to the front of the animal.
These movements are called wave gaits. It has been
shown that these movements are stable and optimum
and that they result in equal paits for each leg (Fig. 3).

L1l — —

Ll —— — —
K=1 -t — e

R2 —_— e

A3 — tripod

Ll — — —

L2 — — —
K=18 &1 — —

R2 S _—

M —_— _— ripple -

Ll — —

L2 —_— —
K=1/5 &} — —

Ra R —_

R — ’ \ — slow

protraction retraction

Figure 3. Wave gaits

Other studies have shown that the different gaits
can be obtained using local synchronization rules. The
robustness and flexibility of walking is then the result
of the interaction and cooperation of several
mechanisms. To obtain the emergence of those
coordinated movements, a current approach is to use
recurrent neural metworks and an interconnection
architecture obtained with evolutionary algorithms [9].

Volume XXII, Number 1

The present project gives the same results using a
network of objects (Fig. 20) which allow the
propagation of causal chains of events/actions and the
interaction of several, more or less redundant,
resynchronization mechanisms, which gives great
robustness to the algorithm. The global architecture
[10] of the project is divided into three main layers.

Coordination

Decentralized Control

Platform

The Platform layer abstracts a hexapod which
evolves and which can be controlled. The
Decentralized Control layer contains 6 tasks for the
control of the legs. These leg controllers are subject to
constraints of conflict resolution imposed by the
Coordination layer. This general system architecture is
chosen in order to deal with the principal Ada
constructions.

4. The Platform

The platform is an instance of the Fagade pattern
[11]; its role is to abstract the robot. So, the
implementation can vary (3D rendering, real robot,
etc.). To perform the simulation the hexapod is
simplified. In particular, a leg movement occurs in an
abstract space and consists of a simple position
between AEP and PEP and a state (lifted or not). This
model can be improved using a more precise geometry
of the leg. Minimum graphics will help to draw the
evolution of the legs (using AdaGraph for example).
Fig.4 shows the class diagram in UML [12].

<< tmgk >>

Platform

entry Start Retraction(Leg_1Id)
entry Start_ Protraction(Leg_Id)
entry Set_Speed Ratio(Float)
entry Shutdown

6 t’l‘he_l.ega

eq
X, Y, Position, Movement
Last_Evolve, The_Speed

The_Speed

Speed
Speaed Value
Speed_Ratio

Popltion, Retracts ?, Evolve value 7
Set_Fosition, Set_Speed Adust_Ratlo
Start_Retraction Ratio 7

Start_Protraction
=-Erase, =Draw

Figure 4. The Platform
The Speed class abstracts the fact that the retraction

and protraction speeds are not the same. The speed is
adjusted through a simple coefficient K which is the

Ada Letters, March 2002

Page 19

ratio between the two speeds. The class is translated
into Ada through a private type as follows.

Package Speed is

Maximum: constant == 1.0;
Stopped: constant := 0.0;
Full Speed: constamt := 1.0;

r
typa object is private;
function Value(K: Float) returm Object;
function Value(0: Object) returm Float;
function Ratio(0: Object) returm Float;
procedure Adjust _Ratio(O: imn out Object;
K: Float);
private
type Object is record
Speed_Ratio: Float := Stopped;
Speed Value: Float := 0.0;
end record;
aend Speed;

This is the general design principle adopted for the
translation of a class into Ada. The Speed body does
not present any difficulties.

A leg is considered as a dynamical system which
drives the position of the tip towards AEP or PEP.
Once it has armrived in one of those positions, the leg
stops moving. It will be the role of the leg controller to
give it a cyclical behavior. The hybrid finite state
machine in Fig. 5 specifies its functioning,.

Retraction oot Frotraction (™ Protraction \

do: dp/dt = -5 do: dp/dt = Max
- PEPS p <AEP
Start Retraction :

PEPS p SAEP [

Figure S. Basic leg behavior

X and Y are the graphic coordinates of the origin of
the leg. The contract of the Leg class is defined using a
tagged type, so as to allow the extension of this type.
The specification of the package is the following:

with Calendar; with Speed;
package Leq is
AFP: comstant Float = 1.0;
PEP: comstant Float := -1.0;
type Object is tagged private;
type Class_Ref is access all Object’'Class;

function Value(X, Y: Integer; P: Float)
return Class_Ref;
function Retracts(Leg: Object)
return Boolean;
function Position(Leg: Object)
return Float;
procedure Set_Position(Leg: in out Object;
To: Float);
procedure Set_Speed(Leg: im out Object;
To: Speed.Object);
Procedure Start_Retraction(
Leg: im out Object):

procedure Start_Protractionmn(

Leg: in out Object);
procedure Evolve (Leg: im out Object);

Volume XXII, Number 1

private
type Movements is (
Protraction,
Retraction);
type Object is tagged record
X, Y : Integer ta 0;
Position : Float := AEP;
Movement : Movements := Retraction;
The_Speed : Speed.Object;
Last_Evolve: Calendar.Time ;
end record;
end Leg;

There is no particular problem about the package
body. A few methods are given:

package body Leg 1s
procedure Draw (Leg: Object);
procedure Erase(Leg: Object);
function Value(X, ¥: Integer;
Pomition: Float) return Class_Ref is

begin
return New Object' (X, ¥, Position,
Retraction,
Speed.value(0.0),
Calendar.Clock);
end;

procedure Start_Retraction(
Leg: im out Object) is
begin
Erase (Legqg);
Leg.Movement := Retraction;
Draw (Leg);
and;

-- etc

procedure Evolve (Leg: imn out Object) is
Step: Float; Now: Calendar.Time; S: Float;
use Calendar ;
begin
Erase (Leqg);
Now := Calendar.Clock;
if Leg.Movement = Retraction thenm
S := Speed.Value(Leg.The_Speed);
alse
S := Speed.Maximum;
end 1f;
Step = S5 * Float(Now - Leg.Last_Evolve);
oase Leg.Movement is
when Protraction => Leg.Position =
Float'Min(Leg.Position + Step, AEP);
when Retraction => Leg.Position :m
Float'Max(Leg.Position - Step, PEP);
end case;
Leg.Last_Eveolve := Now;
Draw(Leqg);
end;
end Leg;

The platform is a task which ensures the motion of
the 6 legs. The task accepts its Rendez-Vous and
makes the legs move according to a sampling period.
The task also has an access discriminant to an event
notifier which will be descnibed in § 5.

Ada Letters, March 2002

with Generic_Notifier;
package Platform is
type Leg _Ids is (L1, L2, L3, R3, R2, Rl);
type Leg_Events 1is (
PEP_Reached, Is_Late, AEP_Reached,
Leg_Killed);
package Notifier is mew
Generic_ Notifier(Leg Ids, Leg_Events);

task type Object(
Notifier: Platform.Notifier.Ref :=
new Platform.Notifier.Object) is
entry Shutdown;
entry Start_ Retraction (L: Leg_TIds);
entry Start_Protractien (L: Lag_Ids);
entry Set_Speed Ratio (To: float);
end;
type Ref is access Object:
end Platform;

The Platfom body exploits a private child unit
Platform.Legs which manages the 6-leg collection.

with Calendar, Leg, Platform.Legs, Speed;
package body Platform is
Period: constant := 0.1;
procedure Notify Shutdown (N: Notifier.Ref);
task body Object is

Alive: Boolean := True;
The_Legs: Legs-Object := New Legs (...);
Next: Calendar.Time := Calendar.Cloek;
ugse Calendar; use Leg;
begin
while Alive loop
selact

accept Start Protraction(L: Leg Ids) do
Start Protraction(The_Legs(L).all);
end;
or
accept Start_Retraction(L: Leg_Ids) do
Start_Retraetion(The_Legs(L).all);
end;
or
accept Set Speed Ratio(To: float) de
Legs.Set_Speed Ratio(The_Legs, To);
and;
or
accept Shutdown do Alive := False; end;
or
dalay until Next;
Legs.Evolve(The_Legs);
Next := Next + Period;
end select;
end loop;
Notify Shutdown(Notifier);
while Notifier.Has_Pendings leop --shutdown
-- accept remaining Rendez-Vous
end loop;
end;
ete
aend Platform;

To start a Shutdown, the platform exploits the
Notifier to wamn the leg controllers of the imminent end
of the platform. In the shutdown phase, the task
continues to accept Rendez-Vous as long as there are
undelivered events (see § 5).

Page 20 Volume XXII, Number 1

The Platform_Legs unit illustrates the possibilities
of private child units and the class wide types for the
creation of polymorphic arrays.

with Leg;
private package Platform.Legs is
type Object is array(Leg_Ids) of
Leg.Class_Ref;

function New_Legs(X, Y, Bug_Size: Integer)
returm Object;
procedure Evolve(Legs: Object);
procedure Set_Speed_Ratio(Legs: Object;
To: Float);
end;

5. Notification of Events

As the platform is a fagade which ensures
uncoupling according to the decentralized control
layer, it must be able to notify the occurrence of
important events to the upper layer. The mechanism
used is that of an event notifier, as shown in Fig. 6.

Controllers AEP_Reached, PEP_Reached, Leg_KRilled
A A A A A A

|
Start_Retraction
Start Protraction

Platform

T
1
1

6 Channels L1

L2 L3 R1 R2 R3

Figure 6. Event notification

The notifier has several channels. It will be built as
an instance of a generic unit. It also allows the
introduction of protected objects and family entries.
The class diagram in Fig. 7 describes the situation.

<< protectad >>

Generic_Notifler

[Sen annel, Event

Send If_Possible(Channel, Event)
entry Wait(Channels)(out Event)
Has_Pendings: Boolean

‘ Notifier I::i!!ql!lll

Figure 7. Generic Notifier

-]

<< task >>

Platform

The notifier helps to send :
1) memorized high-priority events which override
possible undelivered events
2) low-priority events which will be lost if they are
not sent.

Ada Letters, March 2002

Page 21

generic
type Channels is (<>);
type Events is (<>);
package Generic_Notifier is
type Notification is record
Event : Events;
Arrived: Boolean := False;
end racord;
type Notifications is array(Channels)
of Notification;
protected type Object is
entry Wait(Channels)(E: out Events);
procedure Send(C: Channels; E: Events);
procedure Send_If Possible(
C: Channels; E: Events);
function Has Pendings return Boolean;
private
The_Events: Notifications;
end;
type Ref is access Object;
end Generic_Notifier;

package body Generic_Notifier is
protectad body Object is
entry Wait (for C im Channels)(E: out
Events) when The_Events(C).Arrived is
bagin
E := The_Events(C).Event;
The Events(C).Arrived := False;

end;
procedure Send (C: Channels; E: Events) is
begin

The_Events(C):= Notification'(E, True);
end;

procedurs Send If Poasible (
C: Channels; E: Events) is
begin
if not The_Events(C).Arrived thenm
Send (C, E);
end if;
end;
function Has_Pendings returm Boolean is
begin
for C in Channels loop
1f The Events(C).Arrived then
return True;
end if;
end loop;
return False;
end;
and;
end Generic_Notifier;

The Notify _Shutdown procedure of the Platform
body notifies the Leg Killed event in the 6 channels.
Then the task exploits the Has_Pendings entry to know
if those events have been delivered. When it receives a
Leg Killed event, a leg controller (which is a task) will
start its own shutdown.

To illustrate inheritance and type extension in Ada
and to generate the events of leg position, the Leg class
is subclassed into a Notifying Leg class. This class
overloads the Evolve method to generate the
PEP Reached and AEP Reached events and to notify
them in the appropriate channel. Fig. 8 describes the
situation.

Volume XXII, Number 1

<< taak >>

Platform

o]
The_Legs
Opposite_Leg
Notlflylng_Leg

[Notifier Lag Id

Evolva

Figure 8. Leg with notifier

The call of Evolve from within the Platform task is
a dispatching call because the type used is a class wide
type. Notyfing Leg uses discriminants and is a child
unit of Leg.

with Platform;
package Leg.Notifying Leg is
type Object(Leg_Id: Platform.Leg_1Ids;
Notifier: Platform.Notifier.Ref) is
new Leg.Object with null record;
typa Class_Ref is access Object'Class;
function Value(Leg_Id: Flatform.Leg_lds;
Notifier: Platform.Notifier.Ref;
A, ¥: Integer; Position: Float
) raturn Class_Ref;
procadure Evolve(0O: in out Object);
end;

with Platform; use Platform;
package body Leg.Notifying_Leg is
procedure Evolve(0O: im out Object) is
Super: Leg.Object remames Leg.0Object(0);
L: Leg_Ids remames O.Lég_Id;
Pl, P2: Float:
begin
Pl := O.Position;
Leg.Evolve(Super):;
P2 := QO.Popition;
if Pl < P2 and them P2 = AEP then
O0.Notifier.Send(L, AEP_Reached);
elsif Pl > P2 and then P2 = PEP then
O.Notifier.Send(L, PEP_Reached);
end if;
end;
-= other methods
end;

At this stage, the platform layer is completed.

6. The control layer

A leg must move according to the following rules:
1) any leg resting on the ground moves in retraction; 2)
when a leg arrives at its PEP, it must go into
protraction; 3) a leg can only go into protraction if it
does not compromise the static stability of the
hexapod; 4) when a leg in protraction amrives at its
AEP, it must go into retraction. The controller must
generate this behavior permanently. Rule 3 stipulates
that static stability must be maintained. The necessary
condition to ensure this stability is that a Ieg can only

Ada Letters, March 2002

Page 22

be lifted if its two neighbors are resting on the ground.
Fig. 9 describes the neighborhood relation for the legs.

Figure 9. Neighborhood relation

As decentralized and concurrent control is to be
implemented, there may be some conflict when making
the decision of lifting a leg. This conflict must be
solved. The problem is quite similar to the traditional
problem of the dining philosophers, if a leg is
considered a “philosopher” and if “to eat” means to
“lift a leg”. To solve the problem, a leg that wishes to
g0 into protraction must acquire a privilege and give it
up when protraction is over. The class diagram in Fig.
10 describes the situation.

Privilege

Aeguire

Releage
<< task >> z ;

Leg_Contraller

Leg_Id

G { via Platform }
<< task >> ? \<< protected >>
[Platorm — JO———>] Notifier

Figure 10. Controllers and privileges

The control layer consists of 6 instances of the
Leg Controller task type waiting for events from the
channels of the notifier and generating the subsequent
Start_Retraction or Stop_Retraction entry calls
towards the platform. The transition diagram of the leg
controller is shown in Fig. 11.

(" Wail leg events)

\

PEP_Preached
Leg_Kil la{

Should_Prolract W
do1 m:quire_!rivileg_a)

REP_Reached /
Start_Retraction
Leg_Hilled/ |Relsase privilege

Reale l.!!‘
privilege N[Prolraction
\———— J

Figure 11. StateCharts of the leg controller

Privilege granted /
Start_Protractian

The specification and body of Leg Controller are
the following (Is_Late will be discussed later):

Volume XXII, Number 1

with Platform, Privilege ;
package Leg_Controller is
task type Object(P: Platform.Ref;
L: Platform.Leg_Ids;
Protraction_Privilege: Privilege.Ref);
type Ref is access Object;
end Leg_Controller;

with Platform; use Platform;
package bedy Leg_Controller is
type States is (Retraction,
Should_Protract, Protraction);
task bedy Object is
State: States := Retraction;
Event: Platform.Leg_Events;
bagin
loop
P.Notifier.Wait (L) (Event);
case Event is
when Is_Late | PEP_Reached =>
State := Should Protract;
when AEP_ Reached =>
State := Retraction;
P.Start_ Retraction (L);
Protraction Privilege.Release;
when Leg Killed =>
if State = Protraction thenm
Protraction_Privilege.Release;
end 1f;
exit;
end case;
if State = Should Protract them
Protraction_Privilege.Acquire;
State := Protraction;
P.Start_Protraction(L);
epnd if;
end loop;
end;
end Leg_Controller;

Provided that the privileges are working, the
controller ensures stable walking of the hexapod,
whatever the speed. However, the gait is not fair and
some legs may drag for a long while in PEP when
waiting for a privilege. To reduce waiting time and
improve the gait, other coordination mechanisms are
necessary. Fig. 3 shows that, whatever the walking
speed, a protraction wave runs from rear to front on
both sides of the hexapod. A new control rule
stipulates that the start of retraction for one leg
stimulates the protraction of the preceding leg, i.e. L3
stimulates L2 and L2 stimulates L1 (it is the same for
the right side). Such a (non-memorized) signal can be
obtained with a protected object as shown in Fig. 12.

<< taak >>

| Leg_Controller —I [:Leg_Controller |

Send
¢ Retraction_Signal

<< protected >>

Slgl‘lﬂ' Stimulation
0.. .1 Wait A
Retraction|gend Stimulation
“8ignal|yaie [Leg_Controller |

Figure 12. Stimulation signals

Ada Letters, March 2002

Page 23

A leg controller must then be kept waiting for an
event either from the notifier or from another leg
controller, which requites a simultaneous call of two
entries. This selective entry call is not available in Ada,
but a solution can be obtained with the asynchronous
transfer of control [13]. The following source gives the
corrections of the controller.

package Leg_Controller is
protacted type Signal is
procedure Send;

entry Wait;
private
Arrived: Boolean := False;
end;

type Signal Ref is access Signal;

task type Object(P: Platform.Ref;
L: Platform.Leg Ids;
Protraction_Privilege: Privilege.Ref);
Stimulation: Signal Ref ;
Retraction_Signal: Signal_Ref);

type Ref is access Object;

end Leg Contreller;

Package body Leg_Controller is
protectaed body Signal is
procedure Send is
begin
Arrived := Wait'Count /= 0;
end;
entry Wait whemn Arrived is
begin
Arrived := False;
end;
end;
task body Object is
-- Same as previous code
loop
if State = Retraction and them
Stimulatien /= null then
Event := PEP_Reached;
select
P.Notifier.Wait(L) (Event);
then abort
Stimulation.Wait;
end select;
alse
P.Notifier.wWait(L)(Event);
end if;
easa Event iEs
-- same as previous code
when AEP_Reached =>
State := Retraction;
P.Start_Retraction (L);
Protraction_Privilege.Release;
if Retraction_Signal /= null them
Retraction_Signal.Send;
end 1f;
-- same as previous code
end Leg_Controller;

With this new mechanism, walking stabilizes
rapidly in the form of tripod gait, even at low speeds.
To obtain the wave gaits shown in Fig. 3 — notably
slow walking (K = 1/5), a last resynchronization
mechanism must be added. Fig. 3 shows that 2 Li-Ri
legs are always in opposition of phase. In other terms,

Volume XXII, Number 1

the protraction of a leg starts in the middle of the cycle
of the opposite leg. The phase is evaluated as shown in

Fig. 13.
!— 1-8 o D=AEP-FEP
IFEEP K=5/Max
Hf" Tee— f=1/(1+K)
PEp| .- | Phase™ TS .~ @=(1-8) (p-PEP)/D
P ay— LEf Tetraction thenm
0-01 prot. Retraction ™ @=0+(AEF-p) /D

Figure 13. Phase calculation

A leg is linked to its opposite leg (Fig. &) and a
Phase method is added to the Leg class. To respect the
phase opposition criterion the delay of a retracting leg
is recovered by advancing its protraction. To do so, a
leg compares its phase with that of the opposite leg and
generates an Is_Late event if it is late. This event is
trapped by the leg controller and processed as an event
that is synonymous with PEP_Reached. Fig. 14
describes phase recovering.

Figure 14. Phase recovering

A leg is considered to be late if its phase is greater
than or equal to the phase of the opposite leg and if the
phase of the opposite leg is higher than 0.5. So,
Notifying Leg must simply be completed with that law
in order to generate the Is_Late event. Is Late is
considered to have no priority, as it is only used to
resynchronize movements. It is posted using the
Send_If Possible method of the notifier.

At this stage, the control layer is complete and the
typical wave gaits corresponding to K =1, K=1/3 and
K= 1/5 are obtained. Moreover, any modification of
the walking speed causes an automatic adaptation and
resynchronization towards a new equitable gait.

7. Management of privileges

The coordination layer manages the privileges
allocated to the different legs. It has been seen that the
problem is similar to that of the dining philosophers.
The problem can be tackled in a simple, centralized
manner, or in a decentralized manner, which is more
complex. Centralized management is possible with one
protected Privilege object, shared between all the leg-
controllers. This object acts like a kind of Mediator
[11] to coordinate the leg controllers which do not
know each other.

Ada Leiters, March 2002

Page 24

with Platform; use Platform;
package Privilege is
type State is array (Leg_Ids)
of Boolean;
protacted type Object is
entry Acquire(Leg_Ids); -- familly
procedure Release(For_Leg: Leg_Ids);
private
Privileges: State := (others => False);
function Can_Take_Privilege(L: Leg_ZIds)
return Boolean;
end;
type Ref is access Object;
end Privilege;

package body Privilege is
function Right(L: Leg_Ids) return Leg_Ids is
begin
if L = Leg_Ids 'Last then
return Leg_Tds'First;
alse
return Leg_1lIds'Suce(L);
end 1f;
and;
function Left(L: Leg_Ids) returm Leg_Ids is
bagin
1f L = Leg_Ids'First them
reaturn Leg_Ids'Last;
else
return Leg_Ids'Pred(L);
and 1f;
end;
protected body Object is
entry Acquire(for L in Leg_Ids) whemn
Can_Take_Privilege (L) is
begin
Privileges(L) := True;
end;
procedure Release (For_Leg: Leg_Ida) is
bagin
Privileges(For Leg) := False;
end;
function Can_Take Privilege (L: Leg_lIds)
return Boolean 1is
begin
return not (Privileges(Left(L)) or
Privileges (Right(L)));
and;
end;
end Privilege;

As control is decentralized, it is pedagogically
more interesting to study a decentralized algorithm for
the allocation of privileges. In such a schema, all the
synchronization is performed through passage of
tokens (or messages). The present study will use part
of K.M.Chandy and J.Misra’s well-known
algorithm [14]. In this algorithm Chandy and Misra
tackle a more complex problem — the problem of the
drinking philosophers — which is a generalization of
the dining philosophers problem. Chandi and Misra
describe a distributed variant of the dining
philosophers problem as a first step in the solution of
the drinking philosophers problem. This first part will
be implemented in the present study.

The important elements of the algorithm are the
following:

Volume XXII, Number 1

- When a philosopher becomes hungry, he tries to
acquire the missing forks.

- When a hungry philosopher has the forks, he can eat.

- The forks are clean or dirty.

- As soon as a philosopher starts to eat, his forks
become dirty.

- The forks can be used several times and so, they
remain dirty.

- A request token is associated with each fork.

- A philosopher uses this token to ask his neighbor for
a fork.

- Only the holder of a request token may ask his
neighbor for a fork (passing of the token).

- To have the token then means that the neighbor has
asked for or is in the possession of the fork.

- Before giving his fork to his neighbor, the
philosopher cleans it.

- A clean fork is never given or given back. Indeed, a
philosopher only asks for a fork when he is hungry.
Consequently a fork is only given when the
philosopher is not eating (even if he is hungry), when
he has the token and when the fork is dirty.

The whole set must be initialized as follows:

- All forks are dirty.

- The tokens and forks are held by different
philosophers. Moreover, for a couple of neighboring
philosophers, one has a dirty fork and the other a
request token.

- The precedence graph is acyclic. A philosopher is
said to precede his neighbor if his neighbor has a dirty
fork or if the fork is coming or if he already has a clean
fork. Fig. 15 shows the initialization.

Figure 15. Initialization

The existence of a cycle may lead to a deadlock.
Therefore, one of the aims of the algorithm is to always
keep the precedence graph acyeclic.

To apply the algorithm to the robot, the elements of
the algorithm must be reformulated into the terms of
the problem. A leg controller is considered a
philosopher. Retraction corresponds to thinking,
Protraction to eating and being hungry to
Should Protract (Fig. 11). A fork is replaced by a
granted privilege and a dirty fork represents a privilege
that has already been used. The notion of privilege is
reified and each of the 6 leg controllers is linked to its
own Privilege object. The privilege must be acquired

Ada Letters, March 2002

Page 25

on the left and right sides. The scenario in Fig. 16
illustrates how privileges work.

=l I:I‘—I‘:— +[B2:Privieg et [P3]

L] -
6:Grank }
JiAequire
5:Relaase 10:Releage
P1 | LC2:ieg Controlier |
l:Start_Retraction .
7:5tart_Protraction T 2 : PEP_Reached
9:1Start_Retractien 8:REP Renched

| :Platiorm | | :Notifier |

Figure 16. The Functioning of privileges

In this figure, the privilege on the right has already
been acquired, used (dirty fork), but not given back.
On the left, the privilege has not been acquired, which
requires the sending of the Request message. Pl
records the request, but does not give up his privilege,
since 1t has not been used yet. When P1 has used his
privilege, he will grant it (Grant message) to P2 who
has asked for it. During all this phase, the LC2
controller is waiting. Once it is released, the controller
is sure to hold the privilege and can now perform
protraction, then give up the privilege at the end of
protraction.

The privilege objects are shared and must be able to
suspend the calling tasks. That is why protected objects
become necessary. For easier management of
privileges, each privilege object is assisted by 2 agents
{or Brokers) that memorize the cwrent privilege state
and negotiate the privileges with the neighbors. The
previous schema is thus improved (Fig. 17). The whole
coordination layer acts like a ring of mediators.

Privil -Privil Privil
iBreker || 1Bxohex

Figure 17. Chaining of brokers and privileges

The Ada specification is:

package Privilege is
type Sides is (Left, Right);
typa States is (Used, Not_Granted,
Granted, In_Use);
subtype Initial States is States ranga
Used. .Not_Granted;
type Objact;
type Ref is accesas Object;
type Broker(Side: Sides; Initial_ State:
Initial States) is record
Needed : Boolean := False;
State : States := Initial_state;
Requested : Beolean :=
Initial_State = Not_Granted;
Neighbour : Privilege.Ref;
end record;

Volume XXII, Number 1

protacted type Object(Initial_State:
Initial_States) is
entry Acquire;
procedure Release;
pProcedure Request(Side: Sides;
Granted: out Boolean,
Needed : out Boolean);
procadure Grant(Side: Sides);
Procedure Link To(Left, Right: Ref);
private
entry Wait;
Left Broker: Broker(Left, Initial_ State);
Right_Broker:Broker(Right, Initial_State);
end;
end Privilege;

As for the state memorized in the Broker:

- Needed indicates that a privilege is needed, whether
it has been obtained or not.

- Requested is the token; it is true when the neighbor
has asked for a privilege, whether he has obtained it or
not.

- State memorizes the privilege state associated with
one side.

The discriminants allow correct initialization
during the object construction phase. Acquire delegates
the negotiation of privileges to the 2 brokers, then
starts waiting at the Wazit private entry. The Request
method has 2 output parameters. Indeed, a request may
be followed by an immediate allocation (Granted
parameter). A privilege may also be given up because
it has already been used while it is still needed; the
Needed parameter encodes this fact. So, an allocation
can be immediate (parameter) or postponed (Grant
message). In the same way, a request for a privilege
can occur when a privilege is lost (Needed parameter)
or when a Request message is sent. This construction
avoids an indirect entry call during the execution of a
protected action (cf. ARM 9.5), Fig. 18 shows the
finite state machine for privilege allocation.

Request/
rant
(] alse
else * Use

{Requested]/

aguest Grant

Grant

Use

Release

Figure 18. Privilege allocation FSM
The Privilege body is the following:

Ada Letters, March 2002

package body Privilege is

function Has_P(B: Broker) returm Boolean is
baegin

return B.State /= Not_Granted:;
end;
procedure Grant_P(B: in out Broker) is
begin

B.-State := Granted;
and;

procedure Need P(B: in out Broker) is
Granted, Requested: Boolean;
begin
B.Needed := True;
if B.State = Not_Granted them
B.Requested := False; -- send token
case B.Side is
when Left =>
B.Neighbour-Request (Right,
Granted, Requested);
when Right =>
B.Neighbour.Request (Left,
Granted, Requested);
end case;
if Granted then Grant_P(B); end if;
if Requested them
B.Requested := True;
aend if;
end if;
and;
procedure Use P(B: im out Broker) is
begin
B.State
end;
procedure Release P (B: in out Broker) is
bagin
B.Needed := False;
if B.Requested then
case B.Side 1s
when Left =>
B.Neighbour.Grant(Right);
when Right =>
B.Neighbour.Grant (Left);
end case;

t= In_Use;

B.State := Not Granted;
else

B.State := Used;
end if;

end;
procodure Request_P (B: im out Broker;
Granted: out Boolean;

Needed: out Boolean) is
begin
Granted := False;
Needed := B.Needed;

B.Requested := True;

1f B.State = Used then
B.State := Not_Granted;
Granted := True;
1f Needed themn

B.Requested := False;

end if;

end 1if;

end;

-- token sent

protected body Object is
procedure Link To(Left, Right: Ref) is
bagin
Left Broker := Left;
Right Broker := Right;

end;
entry Acquire whem True is
bagin
Page 26 Volume XXII, Number 1

Need_ P (Left Broker);
Need_P(Right_Broker):;
ragueue Wait with abort;
end;
entry Wait when Has_P(Left_ Broker)
and Has_P(Right_Broker) is
begin
Use_P(Left_Broker);
Use_P(Right_ Broker);
end;
procedure Release is
begin
Release_P(Left_Broker);
Release_P(Right_Broker);
aend;
procedure Request (Side: Sides:
Granted: out Boolean,
Needed : out Boolean) is
begin
case Side is
when Left =>
Request_P(Left_Broker, Granted,
Needed) ;
when Right =>
Request_P(Right_ Broker, Granted,

Needed) ;
end case;
end;
procedure Grant (Side: Sides) is
begin

case Side is
when Left => Grant_P(Left_Broker);
when Right => Grant_P(Right_Broker);
end casa:
end;
end;
end Privilege;

8. Speed control

By continuously changing the reference speed, and
despite the automatic transition between the different
walking gaits when the reference speed changes, some
of the legs may drag for a while in the PEP position,
waiting for a privilege. To avoid such leg dragging, the
speed of the robot is controlled and reduced until the
stretched legs can start their protraction. The control
law is simple: If one or the other leg of the robot
stretches too far, the speed must be reduced. This law
can be implemented using a small controller based on
fuzzy logic [15, 16]. The source of this part will not be
described in detail, bul the general principle is the
following: an Is_Stretched fuzzy predicate is added to
the Leg class and a Legs_Are_Stretched fuzzy
predicate is added to the Platform task. These
predicates correspond to the fuzzification of the
position of the legs. A small kinematic margin is
provided for the PEP position. Thus, a leg can continue
to move beyond PEP, but starts to stretch; Is_Strefched
expresses this fact. The fuzzy predicate
Legs_Are_Stretched is the “dilatation” of the “or”
between the 6 Is_Stretched predicates of the legs. The
fuzzy “or” operator is typically the maximum of the 2

Ada Letters, March 2002

Page 27

operands and the “dilatation™ operator is typically
obtained using the square root function. Fig. 19 shows

the fuzzy membership funciions.
Membaership
Prue 199 i8 Stretched not Lag iam Stretched
l’nlsnl . : < -
| Stretched_PEP PEP Position
Membership

True. Lags are Stretched not Legs ara Stretched

o =

| Stretehad_PEP PEP

Position

Figure 19. Fuzzy membership functions

The speed ratio is adjusted through the
defuzzification of the control law, according to:

K = Kreference * (not Legs_Are_Stretched)

This control law is implemented through the
addition of a periodic controller task which observes
the stretching of the legs and adjusts the speed of the
platform according to the desired speed.

Finally, all the objects and tasks that have been
described are assembled using a Hexapod class.

9. Conclusion

This paper has described an example of
coordination and synchronization of the leg
movements of a hexapod robot, using several more or
less redundant mechanisms. The whole set leads to a
graph of objects which ensure an adaptive behavior.
Fig. 20 shows the main points

Figure 20. Complete object graph

Volume XXI1, Number 1

This is a very comprehensive projecl insofar as it
deals with most of the Ada language constructions,
focuses on architectural aspects and takes great account
of concurrent programming. It is complex enough to
require an appropriate archilecture. Numerous
extensions can be imagined, including a more accurate
leg model, a 3D graphic rendering using a binding to
OpenGL, an off-line graphic rendering of walking
sequences (e.g. using Pov-Ray, Fig. 21 and [8]),
embedding the software on a real platform, the use of a
distributed platform, more sophisticated movements
which allow rotation, navigation and planning of
trajectories, etc.

Figure 21. Pov-Ray rendering

The paper is also an incentive to explore non-
traditional fields of software engineering. There is,
indeed, much to be leamt from non-technical examples
(in biology, for instance) as regards synchronization or
coordination patterns, or as regards complex behaviors.
In this respect, mobile robotics is an ideal field to leam
how to integrate bio-inspired algorithms and advanced
software technologies.

References

]
2]

G.Dudek and M.Jenkin. Computational Principles of
Mobile Robotics. Cambridge University Press. 2000,

P. Balbastre, S. Terrasa, J. Villa, and A. Crespo.
Experiences using Ada in a Real-Time and Distributed
Laboratory. Ada-Letters. XIX(3) :145-155. 1999.

The Walking Machine Catalog

http:/fwww fzi.de/ipt/WMC/preface/
walking_machines_karalog.himl

The Climbing and Walking Robots Home Page
http:/fwww.uwe.ac.uk/clawar/home_htm

C. Ferrel. Robust agent control of an autonomous robot
with many sensors and actuators. Master's thesis, MIT,
Dep. of Electrical Engineering and Compuler Science.
1993.

U. Schmucker, A. Schneider, and T. Thme. Six-Legged
robot for service operations. In Proceedings of

31

4]
(5]

[6]

Ada Letters, March 2002

7

(8]

]

[10]

(]

[12]
[13]

[14]

[15]
[16]

Page 28

EUROBOT'96. Los Alamitos: IEEE Computer
Society Press, p 135-142, 1996,

S. Galt, B. L. Luk, S. Chen, R. H. Istepanian, D. S.
Cooke, and N. D. Hewer. Intelligent walking pgait
generation for legged robots. In Proceedings of 2nd
International Conference on Climbing and Walking
Robots, 605-613. 1999.

http://www Isi.crespim_ uha.fr/

R.D.Beer, R.D. Quinn, H.J. Chiel, and R E. Ritzmann.
Biologically Inspired Approaches to Robotics.
Communications of the ACM. 40(3) :31-38, 1997.

F. Buschmann, R. Meunier, H. Rohnert, P, Sommerlad,
and M. Stal. Pattern-Oriented Software Architecture, A
Systems of Patterns. John Wiley & Sons. 1996
E.Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design-Patterns — Elements of Reusable Object
Oriented Software. Addison-Wesley. 1995.

B.P. Douglass. Real-Time UML, Developping Efficient
Objects for Embedded Systems. Addison Wesley. 1998.
A. Burns and A. Wellings. Concurency in Ada.
Cambridge University Press. 1995.

K.M. Chandi and J. Misra. The Drinking Philosophers
Problem. ACM Transactions on Programming
Language and Systems, 6(4) :632-646, 1984.

J.-SR. Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy
and Soft Computing. Prentice Hall. 1997.

N.Gaertner, and B.Thirion. A Framework for Fuzzy
Knowledge Based Control. Software Practice and
Experience. 30 :1-15. 2000.

Volume XXII, Number 1

