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Abstract 

Ada95 is a powerful language with a great number 
of  original constructions. Learning these constructions 
requires the finalization of  projects that are both 
interesting and motivating for students, as well as the 
coverage o f  the different constructions during the 
project. Moreover, the f ield o f  mobile robotics iz one 
that requires real-time programming and appropriate 
software architectures. More particularly, legged 
robots offer a real challenge as regards autonomy and 
the coordination o f  movements o f  the different legs. 
This field proves frui~ul for  the definition o f  projects 
on concurrent programming. The present paper 
describes such a project about an architecture for  an 
omnidirectional legged robot. In a resolutely object- 
oriented approach, the project helps to teach the main 
constructions of  the Ads language. Among others, it 
deals with child unitr, generics, tagged types and type 
extension, tasking, protected objects, family entries, 
asynchronous transfer of  control, discriminants, etc. 
Numerous extensions can be considered within this 
project. 

1. Introduction 

MobiIe robotics is a vast, muitidisciplinary field o f  
inves t iga t ion  which  covers  var ious  domains  as 
mechanics, electrical and sex ' r a r e  engineering, vision, 
etc. The renewed interest in this field is due to the fact 
that the robot  can now be given great computat ion 
power at a low cost. From a sof~vare point  o f  view, a 
robot  needs  an e f f ic ien t ,  a p p r o p r i a t e  con t ro l  
architecture which allows the integration o f  the robot's 
numerous  funct ions:  m o v e m e n t  o f  the p la t form,  
es t imat ion  o f  the pos i t ion ,  p e r c e p t i o n  o f  the 
envi ronment ,  navigat ion,  dec is ion  and planning,  
actions on the environment, vision, etc [1]. In general, 
these functions must occur jointly, in real-time. That  is 
why the field of  mobile robotics is an important source 
of  inspiration for  motivat ing projects  that integrate 
concur ren t  p r og ramming  and r ea l - t ime  aspects .  

Moreover, mobile robotics helps to deal with a number  
o f  concepts linked to the control o f  systems, using 
either classic control  methods  or more  advanced  
methods like fuzzy logic, neural networks, etc. 

Ada is well  sui ted to the teaching  o f  the 
fundamental concepts o f  software engineer ing and 
concurrent programming. It is also starting to be used 
for projects about mobile robotics [2]. This paper will, 
more  par t icular ly ,  cons ider  the case o f  l egged  
locomotion. An interesting point to be studied is the 
coordination o f  the leg movements,  so as to highlight 
the different walking gaits - tripod gait, slow gait, etc. 
The control o f  the walking algorithms is usually not 
centralized, which means that each leg is relat ively 
independent  in its movements .  Such decentra l ized 
control will lead to interesting problems linked to the 
coordination and synchronization o f  movements which 
provide fair gaits and maintain the robot 's  stability. In 
particular, lifting one leg is concurrent  with l if t ing 
others and can thus cause a conflict. This conflict  is 
processed using the wel l -known algori thm o f  the 
dining philosophers, which is an interesting practical 
application of  that algorithm. 

The purpose of  this paper is to illustrate the use o f  
the d i f ferent  Ada construct ions  m in par t i cu la r  
concurrent programming m with an example which 
interested students greatly. After giving some details 
on legged robots  and walking,  the pape r  wil l  
progressively describc the architecture o f  the whole  
system. 

2. Legged robots 

The understanding o f  walking mechanisms and the 
design o f  robust walking algorithms for legged robots 
remain a challenge. To try and take up this challenge, 
many laboratories have built walking machines [3-4]. 
There are two types o f  machines: the ones exhibiting 
dynamic  stabili ty and the ones exhibi t ing stat ic 
stability. For robots with dynamic stability, the center  
o f  gravity can leave the support  polygon;  they are 
usually robots with a limited number  o f  legs (1 to 4) 
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which have to keep their balance permanently. Robots 
with static stability maintain their center of  gravity 
within the support polygon; they have at least four 
legs. The case of  hexapods or octopods is interesting as 
they provide static stability and numerous walking 
gaits. 

The walking algorithms are often decentralized and 
designed by assembling a multitude of  small processes 
(or agents) which are executed concurrently [5]. The 
complexity of  the computational aspects (kinematic 
computation, trajectory planning, etc) has led some 
roboticians [5-7] to distribute the processing over 
distributed architectures. For example the Robug IV 
robot [7] has 4 processors per leg and 8 legs, that is to 
say 32 processors linked by a CAN fieldbus. This kind 
o f  structure requires distributed algorithms; therefore 
the distributed philosophers algorithm will be used for 
the allocation of  the privileges of  leg lifting. 

The author's team [8] has developed a hexagonal 
hexapod robot - called Bunny - to validate their 
software archi tectures concerning decentral ized 
control (Fig. 1). 

Figure 1. Bunny, the omnidirectional robot 

Bunny is an omnidirectional robot with 18 degrees 
o f  freedom (3 degrees per leg). The platform is not 
directly used within student projects for reasons o f  
mechanical fragility, but it is the inspiration for the 
definition of  the problems. The following parts will 
more specif ical ly consider  the problem of  leg 
coordination and the generation ofw~ilking gaits. 

3. Fundamental Principles 

On an ideal surface, a leg moves in a cyclic way 
between two extreme positions -- AEP which is the 
anterior extreme position and PEP the posterior 
extreme position. A leg is said to be in retraction when 
it is on ground and pushes the platform forward. It is 

said to be in protractfon when it is lifted and tries to 
reach its AEP (Fig. 2). 

Protraction ~ " ' ~ - ' ~ ' ; ~ .  " '- 

,, - . . ~ . ; "  i.,."e* / 
.... , gZ;on 

PEP 

Figure 2. Basic cycle of a leg 

For hexapods, static stability is maintained at all 
times by the configuration of  the legs that are on the 
ground. The observation of insects shows that some 
specimens adapt their gait according to the speed at 
which they move. This is possible because the 
protraction speed of  a leg is maximum (Max) while its 
retraction speed (S) varies and depends on the animal's 
speed, which results in different gaits. For example, for 
a hexapod moving at high speed, 3 legs are lifted and 3 
legs are pushing; at an average speed 2 legs are lifted 
and 4 legs are pushing, and at a low speed (uneven 
ground or insect carrying a load), only 1 leg is lifted 
and the 5 others are pushing. Observations also show 
that the protraction o f  the legs moves like a wave that 
is propagated from the rear to the front o f  the animal. 
These movements are called wave gaits. It has bean 
shown that these movements are stable and optimum 
and that they result in equal gaits for each leg (Fig. 3). 

LZ 

K=I R1 
R~ 
R3 

L I  
L 2  

11.2 
1%.1 

LX 

K=1/5 
!1,3 
R 3  

--tripod 

-- ripple - 

~ s l ~  
protraction retraction 

Figure 3. Wave gaits 

Other studies have shown that the different gaits 
can be obtained using local synchronization rules. The 
robustness and flexibility of  walking is then the result 
o f  the interact ion and coopera t ion  o f  several  
mechanisms. To obtain the emergence o f  those 
coordinated movements, a current approach is to use 
recurrent neural nettworks and an interconnection 
architecture obtained with evolutionary algorithms [9]. 
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The present project gives the same results using a 
network o f  objects  (Fig.  20)  which  a l low the 
propagation of  causal chains o f  events/actions and the 
interaction o f  several ,  more or less redundant,  
resynchronizat ion mechanisms,  which  gives great 
robustness to the algorithm. The global architecture 
[10] o f  the project is divided into three main layers. 

Coordin ation 

Decentralized Control 

Platform 

The Platform layer abstracts a hexapod which 
e v o l v e s  and w h i c h  can be contro l l ed .  The 
Decentralized Control layer contains 6 tasks for the 
control of  the legs. These leg controllers are subject to 
constraints o f  confl ict  resolut ion imposed by the 
Coordination layer. This general system architecture is 
chosen  in order to deal with the principal Ads 
constructions. 

4. The Plat form 

The platform is an instance o f  the Fafade pattern 
[11]; its role is to abstract the robot. So,  the 
implementation can vary (3D rendering, real robot, 
etc.). To perform the s imulat ion the hexapod  is 
simplified. In particular, a leg movement occurs in an 
abstract space and consists  o f  a s imple posi t ion 
between AEP and PEP and a state (lifted or not). This 
model can be improved using a more precise geometry 
o f  the leg. Minimum graphics will  help to draw the 
evolution o f  the legs (using AdaGraph for example).  
Fig.4 shows the class diagram in UML [12]. 

< <  t n B k  > >  

Platform 

matE7 5~art Retr actiolt ( Leg_Id ) 
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6 ~ T h e  ~ g s  

L~. 
Ix, Y, Position, Mov~nent 
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Figure 4. The  Platform 

The Speed class abstracts the fact that the retraction 
and protraction speeds are not the same. The speed is 
adjusted through a simple coefficient K which is the 

ratio between the two speeds. The class is translated 
into Ads through a private type as follows. 

Package Speed is 
Maximum~ constant : =  1.0; 
Stopped: constant := O.0; 
Full_Speed: constant ;= 1.0; 
t y p e  o b j e c t  is p r i v a t o ;  
f u n c t i o n  Value(K: Float) r e t u r n  Object; 
function Value(0: Object) return Float; 
fueotien Ratio(0= Object) return Float; 
p r o c e d u r e  AdjuB~_Ratio(0: in o u t  Object; 

K: Float); 
private 

tTpe Object is reco=d 
Speed Ratio: Float := Stopped; 
Speed Value: Float := 0.0; 

end  r e c o r d ;  
e n d  S p e e d ;  

This is the general design principle adopted for the 
translation o f  a class into Ads. The Speed body does 
not present any difficulties. 

A leg is considered as a dynamical system which 
drives the posit ion o f  the tip towards AEP or PEP. 
Once it has arrived in one o f  those positions, the leg 
stops moving. It will  be the role o f  the leg controller to 
give it a cycl ical  behavior. The hybrid finite state 
machine in Fig. 5 specifies its functioning. 

s d p / d t  - - S  da: d p / d t  - Max 
~ p ~ F / q  / F ~  n ~azr 

J Start Retractlon ~ 

Figure 5. Basic leg behavior 

X and Y are the graphic coordinates o f  the origin o f  
the leg, The contract of  the Leg cIass is defined using a 
tagged type, so as to allow the extension o f  this type. 
The specification o f  the package is the following: 

with Calendar; with Speed; 
package Log is 

AEP: constant Float z= 1.0; 
PEP: constant Float :- -i.0; 
t y p e  Object is t a g g e d  p = i v a t e ;  
t y p e  Class_Ref £s access all 0bject'Class; 

f u n c t i o n  V a l u e ( X ,  ¥ :  I n t e g e r ;  P:  F l o a t )  
r e t u r n  C l a s s  R e f ;  

f u n c t i o n  Retracts(Leg: Object) 
return Boolean; 

function Position(Leg: Object) 
rOuEn Float; 

procedure Set_Position(Leg: in out Object; 
To: Float); 

procedure Sot_Speed(Log: in out 0bjoct; 
To: S p e e d . O b j e c t ) ;  

procedure Start_Rotraction( 
LeG: i n  o u t  Object); 

p r o c e d u r e  S t a r t P r o t r a c t i o n (  
L e g :  i n  o u t  O b j e c t ) ;  

p r o c e d u r e  E v o l v e  ( L e g :  £ n  o u t  O b j e c t ) ;  

Ads Letters, March 2002 Page 19 Volume XXII, Number 1 



private 
type Movements is ( 

Protraction, 
Retraction) ; 

t y p e  Object is t a g g e d  r e c o r d  
X ,  Y : Integer :m 0; 
Position : Float := AEP; 
Movmnent : Movements : =  Retraction; 
The_Speed : Speed.Object; 
Last_Evolve: Calendar.Time ; 

e n d  r e c o r d  ; 
end Leg; 

Thor= is no particular prob|em about the package 

body. A few methods are given: 

package  body Leg l e  
p r o c e d u r e  Draw ( L e g :  Object); 
procedure Erase(Leg: Object) ; 
fun=finn Value(E, Y: Integer; 

Position; Float) r e t u r n  Class_Bar i s  
b e g i n  

z e t e r o  New O b j e c t '  ( X ,  Y, Position, 
Retr action, 
Speed. Value ( 0.0 ), 
Calendar .Clock ) ; 

end ; 

p r o c e d u r e  Start_Retraction( 
Legs i n  o u t  Object) J.a 

b e g i n  
Erase ( L e g )  ; 
Leg.Movement :-- Retraction; 
Draw (Leg) ; 

and; 

-- etc 

procedure Evolve (Leg: in out Object) ha 
Step: Float; Now: Calendar.Time; S: Float; 
usa  Calendar ; 

b e g i n  
Erase (Leg) ; 
New : =  Calendar.Clock; 
Af Leg.Movement = Retraction t h e n  

S :-- Speed.Value(Leg.The Speed ); 
e l s e  

S : :  S p e e d . M a x i m u m ;  
an4 A t ;  
Step :- S * Float(Now -Lag.Last_Evolve); 
case Leg.Movement As 

when Protraction => Leg.Position :-- 
Float'Min(Lag.Poaition + Step, AEP); 

when Retraction : >  Leg.Position :m 
Float' Max (Leg. Position - Step, PEP ) ; 

end c a s e ;  
Leg.Last_Evolve := Now; 
Draw(Leg) ; 

end ;  
a n d  L a g ;  

The p la t fo rm is a task which  ensures  the m o t i o n  o f  
the 6 legs.  The  task accepts  its R e n d e z - V o u s  and  
makes  the legs m o v e  accord ing  to a s a m p I i n g  per iod.  
The  task also has an accesa discriminant to an even t  
notif ier  which  wil l  be descr ibed in  § 5. 

with GenericNotifier; 
package Platform is 

type Leg Ida Ls (LI, L2, L3, R3, R2, Ri); 
type Leg_Events is ( 

PEP_Reached, Is_Late, AEP_Reached, 
LegKilled); 

package Notifier is new 
Generic_Notifier(Leg_Ids, Leg_Events); 

task t y p e  Object( 
Notifier: Platform.Notifiar.Ref := 
now Platform.Notifier.Object) is 

e n t r y  Shutdown; 
entry Start_Retraction (L: Leg_Ids); 
entry Start_Protraction (L: Leg_Ids); 
entry Set Speed Ratio (To: float); 

end; 
t y p e  Ref is access Object; 

end Platform; 

The Platfom b o d y  exp lo i t s  a p r i v a t e  ch i ld  u n i t  
P ~ o r m . L e g s  which manages  the 6- leg collect ion.  

with Calendar, Leg, Platform.Legs, Speed; 
package body Platform is 

Period: c o n s t a n t  :- O . l ;  
procedure Notlfy_Shutdown (N: Notifier.Sol); 
t a s k  b o d y  Object i s  

Alive: Boolean : :  True; 
The_Legs: Legs.Object :- New Legs (...); 
Next: Calendar.Time :m Calendar. Clock; 
use Calendar; use L e g ;  

b e g i n  
while Alive loop 

salem 
mccepk Start Protraction(L: Leg_Ids) do 

Start Protraction(The_Lega(L).ell); 
and ;  

o r  
a c c e p t  Start Retraction(L: Lag_Ida) do 

S t a r t _ R e t ~ a c t i e n ( T h e L e g s ( L ) . a l l ) ;  
end ;  

o r  
a c c e p t  Sat_Spend_Ratio(To: float) do 

Legs.Set Speed Ratio(The_Legs, TO); 
end; 

oE 
accept Shutdown do Alive :: False; and ;  

c r  
d e l a y  u n t i l  Next; 
Legs.Evolve(The_Legs); 
Next =m Next + Period; 

a n d  s e l a c t ;  
end loop; 
Notify_Shutdown(Notifier); 
while Notifier.Xas_Pendings loop --shutdown 

- -  accept remaining Rendez-Vou$ 
end l o o p ;  

and;  
. . . . .  e t c  

end Platform; 

To s tar t  a Shutdown, the p l a t f o r m  exp lo i t s  the 
No~fier to warn  the leg control lers  o f  the i m m i n e n t  end  
o f  the p l a t f o r m .  In  the  s h u t d o w n  phase ,  the  task  
con t inues  to accept  R e n d e z - V o u s  as l ong  as there are 
undeI ivercd  e v e n ~  (see § 5). 
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The Platform.Legs unit illustrates the possibilities 
of private child units and the clays wide types for the 
creation of  polymorphic arrays. 

with Leg; 
private package Platform.Legs As 

type Object £s array(Leg_Ids) of 
Leg.Class Ref; 

f u n c t i o n  New_Leqs(X, Y, Buy Size: Integer) 
return Object; 

p r o c e d u r e  Evolve(Legs: Object); 
procedure Set_Speed_Ratio(Legs: Object; 

To: Float); 
e n d ;  

5. N o t i f i c a t i o n  o f  E v e n t s  

As the platform is a fagade which  ensures 
uncoupl ing  according to the decentralized control 
layer, it must be able to notify the occurrence o f  
important events to the upper layer. The mechanism 
used is that of  an event notifier, as shown in Fig. 6. 

Controllers ~ p  R e a c h e d  pEP R e a c h e d ,  Leg  H i l l e d  

S t a r t R u t r a c t  ion 
scan srctcacct.o, i ' ! ! 

J 

1, ' Platform t i I / 
/ I I I I I I 

6 Channels L1 1_2 L3 R1 R2 R3  

Figure 6. Event  notification 

The notifier has several channels. It will  be built as 
an instance o f  a generic unit. It also al lows the 
introduction o f  protected objects and family entries. 
T h e  c l a s s  d i a g r a m  in Fig. 7 describes the situation. 

I Generic_Notilter i _ _s~_ y.t?. _ _ .x_~_ _ ( _°_ .~ _ J 

SendlChnnnel, ~ e n t )  [ 
Sand If_Possible(Channel, Event) / 
c h e r t  WaitCehannals)(ont Rvent) J 
~as Pcnd~nge: Boolean J 

? 
<< ~.mllk >> I Log IdB 

J PJaff°rm ~ O - ~ J  N°tif ier ~a" even~. ] j 

Figure 7. Genet ic  Notifier 

The notifier helps to send : 
i) memorized high-priority events which  override 
possible undelivered events 
2) low-priority events which will be lost if  they a r e  
n o t  sen t .  

g e n e r i c  
type Channels is (<>); 
type Events is (<>); 

package Generic Notifier is 
type Notification is cecocd 

Event : Events; 
Arrived: Boolean :- False; 

e n d  record; 
t F p e  Notifications is array(Channels) 

of Notification; 
p r o t e c t e d  t y p e  O b j e c t  is 

ent~ Wait(Channels)(E: out Events); 
procedure Send(C: Channels; E: Events); 
procedure Send If Possible( 

C: Channels; E= Events); 
function Bas_Pendings return Boolean; 

private 
The_Eventsz Notifications; 

e n d ;  
type Ref is access Object; 

end Generic_Notifier; 

package bed¥ Generic Notlfier is 
protected body Object is 

entry Wait(fo¢ C in Channela)(E: out 
Events) when The Eventa(C).Arrivad is 

begin 
E :ffi The Events(C).Event; 
The_Events(C).Arrived :-- False; 

end; 
procedure Send (C; Channels; Ez Events) is 
b e g i n  

The_Events(C):= Notificatlon'(E, True); 
e n d ;  
p r o c e d u r e  Send_If_Possible ( 

C: Channels; Ez Events) £s 
b e g i n  

if not The Evento(C).Arrived then 
Send (C, E); 

e n d  if; 
e n d ;  
f u n c t i o n  H a s _ P e n d i n g s  r e t u ~ a  B o o l e a n  £e 
b e g i n  

for C in Channels loop 
if The Events(C).Arrived then 

r e t u E n  True; 
and  If; 

e n d  l o o p ;  
return False; 

end; 
e n d ;  

e n d  G e n e r i c  N o t i f i e r ;  

The Notify_Shutdown p r o c e d u r e  o f  the Platform 
body notifies the Leg_Killed event in the 6 channels. 
Then the task exploits the Hay_Pendingx entry to know 
if  those events have b e e n  d e l i v e r e d .  W h e n  i t  r e c e i v e s  a 
Leg_Kil~d e v e n t  a l e g  c o n ~ o l l e r  (which is a task) will 
start its own shutdown. 

To illustrate inheritance and type extension in Ada 
and to generate the events o f  leg position, the Leg c l ~ s  
is subclassed into a NotiCing_Leg class. This class 
over loads  the Evolve method  to generate  the 
PEP_Reached and AEP_Reached even~  and to notify 
them in the appropriate channel. Fig. 8 describes the 
situation. 
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Figure 8. Leg with notifier 

The call of Evoke ~om within the Platform task is 
a dispatching call because the type used is a class wide 
type. Notyfing_Leg uses discriminants and is a child 
unit of  Leg. 

w~th Platform; 
package Leg.Notifying_Le~ is 

type Objeot(Leg_Id: Platform.Leg_Ida; 
Notifier: Platform.Notifier.Ref) is 

new Leg.Object with null record; 
t y p e  Class_Ref is access Object'Class; 
funotLon Value(Leg_Id: Platform.Leg Ida; 

Notifier: Platform.Notifier.Ref; 
X, Y: Integer; Position: Float 

) Eotu¢n Class_Ref; 
procodu¢o Evolve(O: in out Object); 

e n d ;  

with Platform; nee Platform; 
package bed F Leg.Notifying Leg is 

procedure Evolve(O: £n out Object) Is 
Super: Leg.Object renames Leg.Object(O); 
L: Leg_Zds renames O.Leg_Id; 
PI, P2= Float~ 

b e g i n  
Pl :-- O.Position; 
Leg.EvolveCSuper); 
P2 :m O.Position; 
if P1 < P2 and then P2 - AEP theq 

O.Notifier.Send(L, AEP_Reached); 
eleif Pl > P2 and then P2 = PEP then 

O.Notifier.Send(L, PEP_Rea¢hed); 
e n d  if; 

end; 
-- other methods 

e n d ;  

At this stage, the platform layer is completed. 

6. The control layer 

A leg must move according to the following rules: 
1) any leg resting on the ground moves in retraction; 2) 
when a leg arrives at its PEP, it must go into 
protraction, 3) a leg can only go into protraction if it 
does not compromise the static stability of  the 
hexapod; 4) when a leg in protraction arrives at its 
AEP, it must go into retraction. The controller must 
generate this behavior permanently. Rule 3 stipulates 
that static stability must be maintained. The necessary 
condition to ensure this stability is that a leg can only 

be lifted if  its two neighbors are resting on the ground. 
Fig. 9 describes the neighborhood relation for the legs. 

Figure 9. Neighborhood relation 

As decentralized and concurrent control is to be 
implemented, there may be some conflict when making 
the decision of  lifting a leg. This conflict must be 
solved_ The problem is quite similar to the traditional 
problem of  the dining philosophers, i f  a leg is 
considered a "philosopher" and if "to eat" means to 
"lift a leg". To solve the problem, a leg that wishes to 
go into protraction must acquire a privilege and give it 
up when protraction is over. The class diagram in Fig. 
10 describes the situation. 

I Privileqo 

<< ~.itllJl >>  

~eL°g-C'°rltr°ll or ~ L  
i 

g_ld ~ __ -- 

6 ~ Platforn } 

<<  task :>> ~ < <  pro~ed > >  

I Platform ~ ~,3_l Notifier I 

Figure 10. Controllers and privileges 

The control layer consists of  6 instances of  the 
Leg_Controller task type waiting for events from the 
channels of  the notifier and generating the subsequent 
Start_Retraction or Stop_Retraction entry calls 
towards the platform. The transition diagram of  the leg 
controller is shown in Fig. 11_ 

l 

~ a g _ g L l l a ~  

L e g  H i L l a d /  
Ra l eSSS  

priviloqe' 

r Wait leg evenLs~ 

~C~Retraction~-..~. 
~ R e n l h o d  / 
mt  arq~ ROtE ml= t J.ol~ 

PEJP_Prre mchecl 

~ Should_Protract "~ 
I P~quire_P¢ivilego J 

YEivi~ogn gzant~l / 
SEart PEG ~ra¢Eian 

Figure 11. StateCharts of the leg controller 

The specification and body of  Leg_Controller are 
the following (Is_Late will be discussed later); 
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with Platform. Privilege ; 
package Leg Controller is 

task type Object(Pc Platform.Ref; 
L: Platform.Leg_Ids; 
Protraction_Privilege: Privilege.Ref); 

t y p e  Ref is access Object; 
end Leg Controller; 

with Platform; usa Platform; 
paokage b o d y  Leg_Controller is 

type States is (Retraction, 
Should_Protract, Protraotion); 

t a s k  b o d y  Object is 
State: States := Retraction; 
Event: Platform.Leg Events; 

begin 
l o o p  

P.Nntifier.Wait(L)(Event}; 
name Event is 

when IsLate i PEP Reached :> 
State := Should_Protract; 

when AEP Reached => 
State ;= Retraction; 
P.Start_Retraction (L); 
Protraction_Privilege.Release; 

when Leg_Killed => 
if State - Protraction then 

Protraction_Privilege.Release; 
e n d  if; 
exit; 

e n d  case; 
if State = Should Protract thou 

Protraction_Privilege.Acquire; 
State :m Protraction; 
P.Start_Protraction(L); 

c a d  i f ;  
e n d  l o o p ;  

e n d ;  
e n d  Leg Controller; 

Provided that the privi leges  are working,  the 
controller ensures stable walking o f  the hexapod,  
whatever the speed. However,  the gait is not  fair and 
some legs may drag for a long whi le  in PEP when 
waiting for a privilege. To reduce wait ing time and 
improve the gait, other coordination mechanisms are 
necessary. Fig. 3 shows  that, whatever the walking 
speed, a protraction wave  runs from rear to front on 
both sides o f  the hexapod.  A n e w  control  rule 
stipulates that the start o f  retraction for one leg 
stimulates the protraction o f  the preceding leg, i.e. L3 
stimulates L2 and L2 stimulates LI (it is the sarnc for 
the right side). Such a (non-memorized) signal can be 
obtained with a protected object as shown in Fig. 12. 

<< emak >> 

I Leg-c°ntmller I [:Lo~ Controller J 

,~.~,.L..~,~r ac t  i on_S l  seal 

I ~£aulat£on 
w.***l 

I I ._.Contmller I 

Figure 12. St imulat ion signals 

A leg controller must then be kept waiting for an 
event  ei ther f rom the notifier or f rom another  leg 
controller, which requires a simultaneous call o f  two 
entries. This selectiue entry c-ll is not available in Ads, 
but a solution can be obtained with the asy,chro.ous 
tr,msfer ofconlro! [13]. The following source gives the 
¢on-ections o f  the controller. 

p a c k a g e  Leg_Controller is 
p r o t e c t e d  t y p e  Signal i s  

procedure Send; 
e n t E ~ f  Wait; 

private 
Arrived: Boolean :- False; 

e n d ;  
type Signal Ref £a a c c e s s  Signal; 
task type Object(Pc Platform. Ref; 

L: Platform.Leg_Ids; 
ProtractionPrivilege: Privilege.Ref); 
Stimulation: Signal Ref ; 
Retraction_Signal: Signal_Ref); 

type Ref is access Object; 
end Leg_Controller; 

p a c k a g e  b o d 7  Leg_Controller £s  
p r o t e c t e d  b o d y  Signal i s  

p r o c e d u r e  Send in 
b e g i n  

A r r i v e d  : -  Wait'Count / -  O; 
e n d ;  
entrz Wait when Arrived £s 
b e g i n  

Arrived : -  False; 
a n d ;  

e n d ;  
t a s k  b o d y  O b j e c t  i s  
- -  s a m e  as previous c o d e  

l o o p  
I£ State = Retraction and then 

Stil~lation /~ null then 
Event :m PEP_Reached; 
eele~q~ 

P.Notifier.Wait(L)(Event); 
t h e e  a h o : t  

Stimulation.wait; 
e n d  s e l e c t ;  

else 
P.Notifier.Wait(Ll(Event); 

e n d  i f ;  
c a s e  E v e n t  i s  

-- same as previous co~le 
w h e n  AEPReeohed => 

State := Retraction; 
P.Start Retraction (L); 
Protrac~ionPrivilege.Release; 
if Retraction Signal /m  n u l l  t h e n  

Retraction Signal.Send; 
e n d  i f ;  

-- s m n e  a s  p r e v i o u s  oode 
end Leg controller; 

With this new  mechanism,  walking  stabil izes 
rapidly in the form o f  tripod gait, even at low speeds. 
To obtain the wave gaits shown in Fig. 3 - notably 
s low walking (K -- 1/5), a last resynchronizat ion 
mechanism must be added. Fig. 3 shows that 2 Li-Ri 
legs are always in opposition o f  phase. In other terms, 
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the protraction of  a leg starts in the middle o f  the cycle 
o f  the opposite leg. The phase is evaluated as shown in 
Fig. 13. 

l -a  _ I ~ 13 - I ,  o t>:A,is~-t~st~ 

p d / T "  . . . . .  ~ . . ~ " ' ~  • I ~=x / ( x , x  ) 
,vL . . . . . .  J,.- a=, j ,  ,0 

T /  i T ~ t f  :etcnct..i.on "khan 
O . O J  Prof. [ Retraction i ~  I ~ + ( A E P - p ) / D  

Figure  13. Phase  calculat ion 

A leg is l inked to its opposi te  leg (Fig. 8) and a 
Phase method is added to the Leg class. To  respect the 
phase opposit ion criterion the delay o f  a retracting leg 
is recovered by  advancing its protraction. To do so, a 
leg compares its phase with that o f  the opposite leg and 
generates an Is_Late event  i f  it is late. This event is 
trapped by the leg controller and processed as an event 
that is s y n o n y m o u s  wi th  PEP_Reached. Fig.  14 
describes phase recovering. 

om ! 
IDVqNmaA r i .~..-- 

~ ' -  L,,..~" . . . . .  " a ~  ~ ~ l e g  

Figure 14. Phase recovering 

A leg is considered to be late if  its phase is greater 
than or equal to the phase of  the opposite leg and if the 
phase o f  the opposite leg is higher than 0.5. So, 
Notify'hE_Leg must  s imply  be completed with that law 
in order  to generate  the Is Late event .  Is_Late is 
cons idered  to have  no priori 'ty, as it is only used to 
r e synch ron ize  m o v e m e n t s .  I t  is p o s t e d  us ing  the 
Send_If_Possible method o f  the notifier. 

At  this stage, the control layer  is complete  and the 
typical wave  gaits corresponding to K = l ,  K = 1/3 and 
K = 1/5 are obtained. Moreover ,  any modif ica t ion  o f  
the walking speed causes an automatic  adaptation and 
resynchronization towards a new equitable gait. 

7. M a n a g e m e n t  o f  p r i v i l e g e s  

The  coord ina t ion  l a y e r  m a n a g e s  the pr iv i leges  
allocated to the different legs. It  has been seen that the 
p rob lem is s imilar  to that o f  the dining philosophers.  
The  problem can be tackled in a simple,  centralized 
manner,  or in a decentral ized manner ,  which is more  
complex.  Centralized management  is possible with one 
protected Privilege object, shared between all the leg- 
controllers.  This object  acts like a kind o f  Mediator 
[1 1] to coordinate  the leg control lers  which  do not 
know each other. 

w i th  Platform; use Platform; 
package  Privilege in 

type State is a r r a y  (Leg_Ida) 
o f  Boolean;  

p r e ~ e c t e d  tIrpa Object £a 
entry A~quira(Leg_Ids); -- familly 
procedure Release(For_Leg: Leg_Ida); 

private 
Privileges: State ;= (others => False}; 
functlon Ceu~TakePrIvilege(L: Leg_Ida) 

return Boolean; 
end; 
type gef in access Object; 

end Privilege; 

package body P r i v i l e g e  £a 
f u n c t i o n  R.ight(L: Leg_Zds) r e t u r n  Leg_Ida  £s 
b o g l e  

i f  L = L e g _ I d s ' L a s t  t hen  
r a t u r n  L e g  I d s ' F i r s t ;  

e l a n  
r e t u r n  L e g  Z d s ' S u o c ( L ) ;  

end  Lf; 
and; 
f u n c t i o n  L e f t ( L :  L e g _ Z d a )  r e t u r n  L e g _ Z d s  £s 
b e g i n  

i f  L - L e g _ Z d a ' F i r s t  t hen  
r e t u r n  L e g  Z d a ' L a e t ;  

e l a n  
r e t u r n  L e g _ Z d a ' P r e d ( L ) ;  

end  I f ;  
end; 
p r o t e c t e d  body Ob jec t  in  

e n t r y  A c q u i r e f f o r  L Ln L e g _ I d a )  when 
Can T a k e _ P r i v ± l e g e  (L) £a 

begLn 
Priv£1eges(L) :=  True; 

end; 
p r o c e d u r e  R e l e a s e  (For._Leg: Leg_Zds) £s 
beg in  

Privileges(For_Leg) :- False; 
and; 
funetlon Can Take Prlvilege (L: Leg_Zds) 

r e t u r n  Boolean i s  
b e g £ n  

r e r u n  not. (Prlvileges(Left(L)) or  
Prlvileges(Right(L))); 

end; 
and; 

end P r i v i l e g e ;  

As control is decentralized, it is pedagogically 
more interesting to study a decentralized algorithm for 
the allocation of  privileges. In such a schema, all the 
synchronization is performed through passage o f  
tokens (or messages) .  The  present  study will  use par t  
o f  K . M . C h a n d y  a n d  J . M i s r a ' s  w e l l - k n o w n  
algor i thm [14]. In  this a lgor i thm Chandy  and Misra  
tackle a more  complex  p rob lem - the p rob lem o f  the 
drinking philosophers - which is a general izat ion o f  
the dining phi losophers  problem.  Chandi  and Mis ra  
de sc r i be  a d i s t r i b u t e d  v a r i a n t  o f  the  d i n i n g  
philosophers p rob lem as a first step in the solution o f  
the drinking phi losophers  problem. This  first part  will 
be  implemented in the present study. 

The important  e lements  o f  the a lgor i thm are the 
following: 
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- When a phi losopher  becomes hungry,  he tries to 
acquire the missing forks. 
- When a hungry philosopher has the forks, he can eat. 
- The forks arc clean or dirty. 
-As soon as a philosopher starts to eat, his forks 
become dirty. 
- The forks can be used several times and so, they 
remain dirty. 
- A request token is associated with each fork. 
- A philosopher uses this token to ask his neighbor for 
a fork. 
- Only the holder  o f  a request  token may ask his 
neighbor for a fork (passing o f  the token). 
- To have the token then means that the neighbor has 
asked for or is in the possession of  the fork. 
- B e f o r e  giv ing  his fork  to his ne ighbor ,  the 
philosopher cleans it. 
- A clean fork is never  given or given back. Indeed, a 
philosopher only asks for a fork when he is hungry. 
Consequen t ly  a fork  is on ly  g iven  when  the 
philosopher is not eating (even i f  he is hungry), when 
he has the token and when the fork is dirty. 

The whole set must be initialized as follows: 

- All forks are dirty. 
- T h e  tokens and forks are he ld  by  d i f fe ren t  
philosophers. Moreover ,  for  a couple  o f  neighboring 
philosophers,  one has a dirty fork and the other  a 
request token. 
- The precedence graph is acyclic. A phi losopher  is 
said to precede his neighbor i f  his neighbor has a dirty 
fork or i f  the fork is coming or i f  he already has a clean 
fork. Fig. 15 shows the initialization. 

Q O 
F i g u r e  1 5 .  I n i t i a l i z a t i o n  

The existence o f  a cycle may  lead to a deadlock. 
Therefore, one of  the aims o f  the algorithm is to always 
keep the precedence graph acyclic. 

To apply the algorithm to the robot, the elements o f  
the algorithm must be reformulated into the terms o f  
the problem.  A leg con t ro l l e r  is cons ide red  a 
phi losopher .  Retraction corresponds  to thinking, 
P r o t r a c t i o n  to eat ing and be ing  h u n g r y  to 
Should_Protract (Fig. I 1). A fork is replaced by  a 
granted privilege and a dirty fork represents a privilege 
that has already been used. The notion o f  privilege is 
reified and each o f  the 6 leg controllers is linked to its 
own Privilege object. The privilege must  be acquired 

on the left and right sides. The scenario in Fig. 16 
illustrates how privileges work. 

4 : ReqUetat 

LC2:Leo Controlter 
i : S t a r t  K o t r o c t l o o l  I 
? z Start--Protra~ticm 

i 9 ~ S%art--Rotr met ton 

I :Plaff°rm I 

I 
[~ % :PEP_Am=Red 
/ B=~KP Ken=bud 

I :N°tifier I 

Figure  16. Th e  Func t ion ing  o f  privileges 

In this figure, the privilege on the right has already 
been acquired, used (dirty fork), but  not given back. 
On the left, the privilege has not  been acquired, which 
requires the sending o f  the Reques t  message.  P1 
records the request, but does not  give up his privilege, 
since it has not boon used yet. When  P1 has used his 
privilege, he will grant it (Grant message) to P2 who 
has asked for  it. During all this phase,  the LC2 
controller is waiting. Once it is released, the controller 
is sure to hold the privi lege and can now per form 
protraction, then give up the privi lege at the end o f  
protraction. 

The privilege objects are shared and must be able to 
suspend the calling tasks. That  is why  protected objects 
b e c o m e  necessa ry .  F o r  eas i e r  m a n a g e m e n t  o f  
privileges, each privilege object is assisted by 2 agents 
(or Brokers) that memorize  the current privilege state 
and negotiate the privileges with the neighbors.  The 
previous schema is thus improved (Fig. 17). The whole 
coordination layer acts like a ring o f  mediators. 

~_d~JJgg~ ~ .  :Privlleoe ~ : P r i v i l ~ e  

F i g u r e  1 7 .  C h a i n i n g  o f  b r o k e r s  a n d  p r i v i l e g e s  

The Ada specification is: 

package P r i v i l e g e  i s  
t]rpe Sides  i s  (Zmftr R i g h t ) ;  
tTpe States is (Used, Not Granted, 

Granted, In_Use); 
subtype Initial States is States gangs 

Used..Not Granted; 
t3ppe Object; 
tTpe Ref is at=ass Object; 
type BEaker(Side: Sides; Initial_State: 

Initial States) in re=ord 
Needed : Boolean :- False; 
State z States :-- Inltial_State; 
Requested : Boolean :o 

Znitlel State = Not Granted; 
Neighbour ~ Prlvilege.Ref; 

e n d  r e c o r d ;  
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protested type Object (Initial_State : 
Initial_States ) As 

e n t r y  Acquire ; 
p r o c e d u r e  Release; 
procedure Bequest (Side : Sides ; 

Granted: out Boolean, 
Needed : out Boolean); 

procedure Grant (Side : Sides ) ; 
procedure Link_To(Left, Right: Ref); 

private 
entry Wait; 
Left Broker: Broker(Left, Tnitial_State) ; 
Right Broker:Broker(Bight, Initial State) ; 

end ; 
end Privilege; 

As for the state memorized in the Broker: 
- N e e d e d  indicates that a privilege is needed, whether 

it has been obtained or not_ 
- R e q u e s t e d  is the token; it is true when the neighbor 
has asked for a privilege, whether he has obtained it or 
not. 
- S t a t e  memorizes  the privilege state associated with 
one side. 

The  discriminants  al low correct  ini t ia l izat ion 
during the object construction phase. Acquire delegates 
the negotiat ion o f  privileges to the 2 brokers,  then 
starts waiting at the Wait private entry. The  Request 
method has 2 output parameters. Indeed, a request may  
be fo l lowed by an immediate  al location (Granted 
parameter). A privilege may also be given up because 
it has already been used while it is still needed; the 
Needed parameter encodes this fact. So, an allocation 
can be immediate  (parameter)  or pos tponed  (Grant 
message). In the same way, a request for  a privi lege 
can occur when a privilege is lost (Needed parameter) 
or when a Request message is sent. This construction 
avoids an indirect entry call during the execution o f  a 
protected action (cf. ARM 9.5). Fig. 18 shows the 
finite state machine for privilege allocation. 

• ~ e l s e  

~ q u i r e /  / Errant ~ / 

o;. / /  
('oo 7 

Figure  18. Privilege allocation F SM 
The Privilege body is the following: 

package body Privilege is 
function Has P(B: Broker) return Boolean ls 
b e g i n  

return S.State /a Not_Granted; 
end; 
procedure Grant_P(B: in out Broker) is 
b e g i n  

B.State : --  Granted; 
e n d ;  
p r o c e d u r e  Need_P(B: i n  o u t  Broker) is 

Granted, Requested: Boolean; 
begin 

B.Needed := True; 
if B.State - Not_Granted thee 

B.Requested :m False; -- send token 
ease B.Side is 

when Left => 
B.Neighbour.Request(Right, 

Granted, Requested); 
when Right -> 

B.Neighbour.Request(Laft, 
Granted, Requested); 

e n d  c a s e ;  
if Granted t h e n  Grant_P(B); e n d  if; 
if Requested then 

B.Requested :n True; 
and if; 

e n d  if; 
e n d ;  
p r o c e d u = e  O s e _ P ( B ;  i n  o u t  B r o k e r )  I s  
b e g i n  

B.State :m In_UBe; 
a n d ;  
p r o c e d u r e  Release P (B; £ n  ~ t  Broker) is 
b e g i n  

B.Needed ; -  False; 
if B.Requested t h e e  

e a s e  B . S i d e  i e  
w h e n  Left --> 

B-Neighhour.Grant(Right); 
when Right -> 

B.Neighbour.Grant(Left); 
e n d  e a s e ;  
B.State :- Not_Granted; 

e l s e  
B.State : =  Used; 

e n d  if; 
end; 
p r o c e d u r e  R e q u e s t  P (Be i n  o u t  B r o k e r ;  

G r a n t e d :  o u t  B o o l e a n ;  
Needed: out Boolean) in 

b e g i n  
Granted : =  False; 
Needed :: B.Needed; 
B.Requested :m True; 
if B.Statn - Used t h e n  

B.State : =  Not Granted; 
Granted :: True; 
i f  N e e d e d  t h e n  

B . R e q u e s t e d  :m F a l s e ;  - -  t o k e n  s e n t  
a n d  if; 

end if; 
e n d ;  

p r o t e c t e d  b o d y  Object AS 
p r o c e d u r e  L i n k _ T o ( L e f t ,  R i g h t :  R e f )  £s 
b e g a n  

L e f t _ B r o k e r  : -  L e f t ;  
R i g h t  B r o k e r  : =  R i g h t ;  

e n d ;  
entzT Acquire when True is 
b e g i n  
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N e e d . . P ( L e £ t  B r o k e r ) ;  
Need  P ( R l g h t . _ B r o k e r ) ;  
r e q u e u e  Wait with a b o r t ;  

e n d ;  
e n t z ~  W a l t  when  Has P ( L e f t B r o k e r )  

and  Has P ( n i g h t _ a r o k e r )  I s  
b e g i n  

U s e _ P ( L e f t  B r o k e r ) ;  
Use_P(Right_Rrmker); 

end; 
p E o c e d u w e  Release is 
b e g i n  

Release_P(Left_Sreker}; 
Release_P(Right_BEoker); 

e n d ;  
p r e m n d u w e  B e q u e s t  ( S i d e :  S i d e s :  

Granted: o u t  Boolean, 
Needed  : e a t  ~ o l e a n )  i s  

b e g i n  
e a s e  S i d e  is 

when  Left m> 
Request P(Laft.Broker, Granted, 

N e e d e d ) ;  
w h e n  R i g h t  m> 

Request_P(aightBroker, Gran~edp 
Needed); 

e n d  e a s e ;  
e n d ;  
p z o c e d u r n  G r a n t  ( S i d e :  S i d e s )  i n  
b e g L n  

anne  Side i s  
when  Left ~ G r n n t _ P ( L e f t _ B r o k e : ) ;  
whoa  Bight -~ G r a n t  P ( R i g h ~  B r o k e r ) ;  

e n d  c a m e ;  
e n d ;  

e n d ;  
end Privilege; 

operands and the "dilatation" operator is typically 
obtained using the square root function. Fig. 19 shows 
the fuzzy membership functions. 

~ M ~ r s h i p  
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Figure 19. Fuzzy membership functions 

The speed ratio is adjusted through the 
defuzzification of the control law, according to: 

K = Kreference * (not Leg,_Are Stretched) 

This control law is implemented through the 
addition of  a periodic controller task which observes 
the stretching of  the legs and adjusts the speed of  the 
platform according to the desired speed. 

Finally, all the objects and tasks that have been 
described are assembled using a Hexapod class. 

9. Conclusion 

8. Speed control 

By continuously changing the reference speed, and 
despite the automatic transition between the different 
walking gaits when the reference speed changes, some 
of  the legs may drag for a while in the PEP position, 
waiting for a privilege. To avoid such leg dragging, the 
speed of  the robot is controlled and reduced until the 
stretched legs can start their protraction. The control 
law is simple: I f  one or the other leg o f  the robot 
searches too far, the speed must be reduced. This law 
can be implemented using a small controller based on 
fuzzy logic [15, 16]. The source of this part will not be 
described in detail, but the general principle is the 
following: an Is_Stretched fuzzy predicate is added to 
the Leg class and a L e g s _ A r e _ S t r e t c h e d  fuz zy  
predicate is added to the Platform task. These 
predicates correspond to the fuzzification of  the 
position of  the legs. A small kinematic margin is 
provided for the PEP position. Thus, a leg can continue 
to move beyond PEP, but starts to stretch; Is_Stretched 
expresses  this fact. The fuzzy predica te  
Legs_Are_S t re t ched  is the "dilatation" of  the "or" 
between the 6 Is_Stretched predicates of  the legs. The 
f n ~ y  "or" operator is typically the maximum of  the 2 

This paper has described an example o f  
coordinat ion and synchronizat ion of  the leg 
movements of  a hexapod robot, using several more or 
less redund-nt mechanisms. The whole set leads to a 
graph of  objects which ensure an adaptive behavior. 
Fig. 20 shows the main points of  this object graph. 

| L,. 

Figure 20. Complete object graph 
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This is a very comprehens ive  project insofar as it 
deals with most  of the Ada language constructions,  
focuses on architectural aspects and takes great account 
o f  concurrent  p rogramming .  It is complex  enough to 
r equ i re  an a p p r o p r i a t e  a rch i t ec tu re .  N u m e r o u s  
extensions can be imagined,  including a more accurate 
leg model ,  a 3D graphic rendering using a binding to 
OpenGL,  an off - l ine  graphic  rendering o f  walking 
sequences  (e.g. us ing  P e r - R a y ,  Fig. 21 and [8]), 
embedding the software on a real platform, the use o f  a 
distr ibuted p la t form,  more  sophist icated m o v e m e n t s  
wh ich  a l low rotat ion,  naviga t ion  and p lanning  o f  
trajectories, etc. 
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F i g u r e  21. P e r - R a y  r ende r ing  

The  p a p e r  is also an incent ive  to explore  non-  
traditional fields o f  soft 'ware engineering.  There  is, 
indeed, much  to be learnt f rom nan-technical examples 
(in biology, for  instance) as regards synchronization or 
coordination patterns, or as regards complex behaviors.  
In this respect, mobi le  robotics is an ideal field to learn 
how to integrate hie- inspired algorithms and advanced 
software technologies. 
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