
Demonic Nondeterminacy: A Tribute to Edsger Wybe Dijkstra
Jayadev Misra
August 25, 2003

Please permit me to talk about the paper ”Guarded Commands, Nondeter-
minacy, and the Formal Derivation of Programs”[1], which Dijkstra published
in 1975 in the Communications of the ACM. Specifically, I will talk about only
one of the aspects, nondeterminacy.

By 1975, programming theory seemed to have addressed all reasonable fea-
tures of programming languages. Scott’s work on denotational semantics laid a
foundation for mathematical treatment of language features. In particular, con-
tinuity of program composition operators —sequencing, conditionals, looping
constructs and function composition— held the hope that a theory of correct-
ness, based on manipulations of functions, is just around the corner. A very
important, and highly overlooked piece of work, An Axiomatic Definition of the
PASCAL programming language, by two of my co-panelists, showed that even
sinful features, such as the GOTO, can meet redemption.

I was astounded, therefore, when I read Dijkstra’s paper in 1975. I remember
complaining to a friend that Dijkstra has needlessly complicated the program-
ming problem, introducing a feature for which there is no demand. I first met
Dijkstra in 1976, and by 1977 I had developed enough courage to ask him why he
thought this feature was important. He sketched a little program on the black-
board, to compute the maximum of two numbers x and y, in which the guards
x ≤ y and y ≤ x are completely symmetric, and it is unspecified which guarded
command is executed when x = y. I was unconvinced that the appropriate
treatment of this trivial example deserved introduction of a new programming
feature. Dijkstra probably wrote me off as being mentally deficient.

I became even more convinced in my position by misinterpreting two sig-
nificant works: (1) the treatment of nondeterminacy in automata theory, and
(2) the lack of continuity when fairness is added to nondeterminacy. Let me
articulate the first concern, the second one is somewhat more technical.

Automata theory treats nondeterministic choice with clairvoyance. An exe-
cution with nondeterministic choices can be depicted as a tree, and a particular
choice as a branch from a parent to a child. A nondeterministic machine chooses
the appropriate branch at every point during execution so that a leaf node with
the desired properties is reached eventually. Let us call this angelic nondeter-
minacy, for obvious reasons. To a large extent, Prolog has embraced angels.

What Dijkstra had proposed was to not only banish angels, but embrace
demons. Not only was no clairvoyance allowed, but the programmer was asked
to design the program assuming that the worst possible choice is taken at each
stage. This was complete madness. The programmer’s task was burdensome
enough already. He had been doing a decent job of producing shoddy software
with the existing programming language features, and really had no need for
additional chaos.

The story would have ended happily there with my continued ignorance on
this subject had I not attended a series of lectures on Communicating Sequential

1



Processes, given by Tony Hoare. Tony articulated the aspects of nondetermi-
nacy which I could appreciate, that if a process is waiting to receive a message
from one of several processes, its execution has to be described by some nonde-
terministic construct; nondeterminacy is not a luxury but a necessity! And the
receiving process has to be coded so that independent of the message received
it produces the correct output.

It became clear to me then that no clairvoyance is needed provided all leaf
nodes in an execution tree have the desired property. The task of program design
is not to implement angels, but to ensure that all possible outcomes meet the
specification. This is particularly important when some of the choices may be
outside the programmer’s control, as is the case in concurrent computing or
when operating in a failure-prone environment.

Later, during the mid 80s, my colleague Mani Chandy and I found another
strong reason to embrace nondeterminacy. We observed that quite often the
same algorithm is implemented very differently on different computing plat-
forms. Fast Fourier Transform is coded differently on sequential machines, on
parallel machines with shared memory and on machines which communicate
through messages. The differences are significant enough that a correctness
proof of the original algorithm is not sufficient to guarantee correctness of the
clones. Adopting a high-level language to describe an algorithm for a specific
platform made matters worse; the central algorithm receded to the background
while the details of communication became the significant factor.

We realized that we could start with a highly nondeterministic algorithm and
by limiting the nondeterministic choices differently, we would obtain programs
suitable for different computing platforms. That is, demonic nondeterminacy
allowed us to express a family of programs succinctly. Proving a single non-
deterministic program resulted in proving the correctness of the entire family.
Any restriction of nondeterministic choice yields a correct program provided a
technical condition —fairness— is met.

Nondeterminacy has played an essential role in the works of Hoare and Mil-
ner, where the distinction between external and internal nondeterminacy be-
came clearer. And, Hoare, Bird and de Moor, and others, have shown that
relations may be as important as functions as the basis of our discipline. Non-
determinacy now permeates designs of programming languages, software sys-
tems, and, even, hardware systems. Dijkstra wrote a classic book[2] in which he
demonstrated the importance of “keeping your options open as long as possible”
by employing nondeterminacy. Yet, computing scientists, by and large, have not
appreciated the radical novelty of this invention, and how it went against the
grain when it was published in 1975.

References

[1] Edsger W. Dijkstra. Guarded commands, nondeterminacy, and the formal
derivation of programs. Communications of the ACM, 8:453–457, 1975.

[2] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

2


