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SUMMARY

In this work we evaluate the performance of the Left Conjugate Direction method recently introduced
by Yuan, Golub, Plemmons and Cećılio for the solution of nonsymmetric systems of linear equations
arising from the implicit semi-discrete SUPG finite element formulation of advective-diffusive and
inviscid compressible flows. We extend the original algorithm to accommodate restarts and typical
element-by-element preconditioners. We also show how to select the first left conjugate vector to start
LCD. Several problems are solved, accessing performance parameters such as number of iterations,
memory requirements and CPU times, and results are compared with other algorithms, such as
GMRES, TFQMR and Bi-CGSTAB. Copyright c© 2003 John Wiley & Sons, Ltd.

key words: Stabilized finite elements; Left Conjugate Direction method; Krylov space methods;

compressible flows

1. Introduction

Implicit finite element strategies for compressible flow problems in science and engineering often
requires repeated solution of nonlinear systems of equations involving millions of unknowns.
After some form of linearization, these systems are usually solved by generalizations of the
conjugate gradient method, GMRES or QMR and its variants [1]. The success of this solution
strategy requires an efficient implementation of matrix-vector products and the choice of a
suitable preconditioner. Within the finite element method, implementations of global matrix-
vector products are performed by element level products followed by global assembly, which
forms the core of element- by-element strategies as introduced in the finite element simulation
of compressible flow by Shakib, Hughes and Johan [2]. Several different parallel element-by-
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element preconditioners, using the same data structures of the matrix-vector product, have
been proposed earlier [2, 3].

Recently Yuan, Golub, Plemmons and Cećılio [4] introduced a new algorithm for solving
nonsymmetric, nonsingular linear systems, the Left Conjugate Direction (LCD for short)
method. This method is based on the concept of left and right conjugate vectors for
nonsymmetric and nonsingular matrices and possesses several theoretical advantages: (i) it
has a finite termination property; (ii) breakdown for general matrices can be avoided and (iii)
there is a connection between LCD and LU decomposition. Initial experiments in [4] using
a MATLAB implementation have shown that LCD has attractive convergence rates when
compared to Bi-CGSTAB, QMR and GMRES algorithms. Silva, Raupp and Almeida [5] have
applied the LCD method to solve linear systems arising from the stabilized finite element
solution of thermal pollution problems. That motivated us to investigate the performance
of LCD. Therefore, in this work we evaluate the performance of LCD in the solution of
nonsymmetric systems of linear equations arising from the implicit semi-discrete SUPG
finite element formulation for advection-diffusion and inviscid compressible flows described
in [6, 7]. We extend the original algorithm to accommodate restarts and typical finite element
preconditioners very much in the same manner Shakib, Hughes and Johan [2] did for GMRES.
We also study how to select the first left conjugate vector to start LCD.

The remainder of this work is organized as follows. In the next section we review the
stabilized finite element formulations for advection-diffusion and the two-dimensional Euler
equations. In section 3 we describe LCD algorithm, with particular emphasis on element-
by-element matrix-vector products and preconditioners, the introduction of restarts and the
options to select the first left conjugate vector. Section 4 shows several numerical experiments,
where we compare the performance of LCD with GMRES, Bi-CGSTAB and TFQMR in
advective-diffusive and compressible flow problems. Finally the paper ends with a summary of
our main conclusions.

2. Governing equations and finite element formulation

2.1. Advection-diffusion equation

Let us consider the following time-dependent advection-diffusion equation in conservative form
defined in a domain Ω with boundary Γ :

u,t + σa
i,i + σd

i,i = f, (1)

where u represents the quantity being transported (e.g. temperature, concentration), σa
i = βiu

is the advective flux, βi is the flow with ∇.β = 0, σd
i = −κiju,i is the diffusive flux and κij is

the volumetric diffusivity given as,

κ =

[

κx 0
0 κy

]

. (2)

Substituting the divergence free condition, equation (1) can be rewritten as

∂u

∂t
+ β.∇u −∇.(κ∇u) = f. (3)
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The essential and natural boundary conditions appended to equation (3) are:

u = g on Γg,

n.κ∇u = h on Γh, (4)

where g and h are given functions of x = (x, y) and t, n is the unit outward normal vector at
the boundary, Γg and Γh are the complementary subsets of Γ where boundary conditions are
prescribed. Initial conditions are given by,

u(x, 0) = uo(x) on Ω. (5)

Consider a finite element discretization of Ω into elements Ωe, e = 1, . . . , nel, where nel is
the number of elements. We consider piecewise linear basis spanning finite-dimensional trial
solution and test function spaces Sh and Vh. The stabilized finite element formulation of
equation (3) can then be written as follows. Find uh ∈ Sh such that ∀ wh ∈ Vh:

∫

Ω

(

wh ∂uh

∂t
+ whβh.∇uh −∇wh.κ∇uh

)

dΩ +

nel
∑

e=1

∫

Ωe

τSUPGβh.∇wh

(

∂uh

∂t
+ βh.∇uh

)

dΩ =

∫

Ω

whfdΩ +

nel
∑

e=1

∫

Ωe

τSUPGβh.∇whfdΩ, (6)

where τSUPG is the SUPG stabilization parameter which may computed as suggested in [8]
and [9]. Let the standard finite element approximation be given as follows:

uh(x) ∼=

nnodes
∑

i=1

Ni(x)ui, (7)

where nnodes is the number of the nodes, Ni is a shape function corresponding to node i and
ui are the nodal values of u. Then, substituting (7) into (6) we arrive at a system of ordinary
differential equations,

Ma + Kv = F , (8)

where v = {u1, u2, . . . , unnodes}
t is the vector of nodal values of u, a is its time derivative,

M is called the “mass” matrix, K is called the “stiffness” matrix and F is called the “load”
vector. In this work we restrict ourselves to linear triangles only. Thus, the interpolation within
an element is simply,

ue(x) ∼=

3
∑

i=1

Ni(x)ui, (9)

where N1,N2 and N3 are the conventional shape functions [10]. Proceeding in the standard
manner, matrix M and K are built from element contributions and it is convenient to identify
their terms:
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M =

nel

A
e=1

(me)

me = me
g + me

pg =

∫

Ωe

NT NdΩe +

∫

Ωe

τSUPGBT βhNdΩe (10)

K =

nel

A
e=1

(ke)

ke = ke
g + ke

pg

=

∫

Ωe

(NT (βh)T B + BT kB)dΩe +

∫

Ωe

τSUPGBT (βh)(βh)T BdΩe (11)

where A is the assembling operator, N = {N1, N2, N3}
t is a vector containing the shape

functions and B is a matrix containing the derivatives of N with respect to the spatial
coordinates. The subscripts g and pg and in equations (10) and (11) identify the terms of
the element matrix emanating respectively from the Galerkin and SUPG integrals.

2.2. Compressible flows - Euler Equation

The system of conservation laws governing inviscid, compressible flows are the Euler equations.
In two dimensions these equations can be written in terms of the conservation variables,
U = (ρ, ρu, ρv, ρe), as

U ,t + F x,x + F y,y = 0 on Ω × [0, T ]. (12)

Here ρ is the fluid density, u = (u, v) is the velocity vector, e is the total energy per unit mass,
F x and F y are the Euler fluxes, Ω is a domain in IR2, and T is a positive real number. We
denote the spatial and temporal coordinates respectively by x = (x, y) ∈ Ω and t ∈ [0, T ],
where the superimposed bar indicates set closure, and Γ is the boundary of domain Ω. We
consider ideal gases. Alternatively, Equation (12) can be written as

U ,t + AxU ,x + AyU ,y = 0 on Ω × [0, T ], (13)

where Ax = ∂F x

∂U
and Ay =

∂F y

∂U
. Associated to Equation (13) we have proper set of boundary

and initial conditions.
Considering a standard discretization of Ω into finite elements, the SUPG formulation for

the Euler equations in conservation variables introduced in [11] and [12] is written as,

∫

Ω

W h.

(

∂Uh

∂t
+ Ah

x

∂Uh

∂x
+ Ah

y

∂Uh

∂y

)

dΩ +

nel
∑

e=1

∫

Ωe

τ

(

∂W h

∂x
Ah

x +
∂W h

∂y
Ah

y

)

.

(

∂Uh

∂t
+ Ah

x

∂Uh

∂x
+ Ah

y

∂Uh

∂y

)

dΩ +

nel
∑

e=1

∫

Ωe

δ

(

∂W h

∂x
.
∂Uh

∂x
+

∂W h

∂y
.
∂Uh

∂y

)

dΩ = 0, (14)
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where W h and Uh are the finite-dimensional test and trial functions that are defined on
standard finite element spaces. In Equation (14) the first integral corresponds to the Galerkin
formulation, the first series of element-level integrals are the SUPG stabilization terms, and the
second series of element-level integrals are the shock-capturing terms added to the variational
formulation to prevent spurious oscillations around shocks. The scalar stabilization parameter
τ is the same as the one used in [13], which is a slightly modified version of the one introduced
in [11, 12]. The shock-capturing parameter, δ, is evaluated here using the approach proposed
by [14].

Considering the standard finite element approximation we have:

Uh = Nv,

W h = Nc,

Uh
,t = Na, (15)

where v is the vector of nodal values of U (depending on time only), c is a vector of
arbitrary constants, a is the time derivate of v (a = dv

dt ) and N is a matrix containing
the space dependent shape functions. Restricting ourselves to linear triangles, the element
shape functions may be represented in matrix form as,

N e =
[

N1I N2I N3I
]

, (16)

where N1, N2 e N3 are usual element shape functions [10] and I is the identity matrix of
order 4. Using theses approximations the spatial discretization of equation (14) leads to a set
of coupled non-linear ordinary differential equations,

Ma + C(v) = 0, (17)

where M is the generalized ”mass” matrix and C is a non-linear vector function of v. To
solve the system of non-linear ordinary differential equations (17) towards steady-state we
employ here the implicit predictor/multicorrector scheme described in detail in Hughes and
Tezduyar [15]. In this scheme at each non-linear iteration (or multicorrection) we have to solve
the following non-symmetric algebraic system of equations,

M∗∆a = R, (18)

where M∗ = M +α∆tK is a N×N sparse matrix, R = −[Ma∗+Kv∗] is the residual vector,
function of the predicted values of v and a, that is, v∗, a∗ and ∆a is the correction in the
nodal values of a from an iteration to the next. We adopt here α = 0.5, which is second-order
accurate in time. Both M and K are built from element contributions and it is convenient to
identify their terms:

M =

nel

A
e=1

(me)

me = me
g + me

pg =

∫

Ωe

NT NdΩe +

∫

Ωe

τ (BT
x Ah

xN + BT
y Ah

yN)dΩe, (19)
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K =

nel

A
e=1

(ke)

ke = ke
g + ke

pg + ke
dc

=

∫

Ωe

(

NT Ah
xBx + NT Ah

yBy

)

dΩe +

∫

Ωe

τ BT

[

Ah
xAh

x Ah
xAh

y

Ah
yAh

x Ah
yAh

y

]

BdΩe +

∫

Ωe

δ BT BdΩe, (20)

where A is the assembly operator, N is a matrix containing the shape functions and Bx,

By denotes respectively the derivatives of N with respect to the spatial coordinates. The
subscripts g, pg and dc in equations (19) and (20) identify the terms of the element matrix
emanating respectively from the Galerkin, SUPG and discontinuity capturing integrals.

3. The Left Conjugate Direction algorithm

The finite element discretization of the scalar advective-diffusive equation and the Euler
equations described on the previous section leads to a linear or nonlinear time-marching
problem, respectively given in (8) for the advection-diffusive equation or in (17) for the
compressible Euler equation. In any case we have to solve at each time step or nonlinear
iteration a system of linear equations of the form,

Ax = b, (21)

where A is a N × N nonsymmetric sparse matrix, x is the vector of nodal unknowns and b

is the out-of-balance force or residual vector. Both A and b are constructed assembling the
element contributions:

A =

nel

A
e=1

Ae, (22)

b =

nel

A
e=1

be, (23)

where A is the assembly operator, nel is the number of elements and Ae and be are the

element matrices described in detail earlier.
The LCD method was recently introduced by Yuan et al [4]. In this method vectors

p1, p2, . . . , pN ∈ IRN are called left conjugate gradient vectors of an N × N real nonsingular
matrix A if
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LCD ALGORITHM FOR SOLVING LINEAR SYSTEMS 7

pT
i Apj = 0 for i < j,

pT
i Apj 6= 0 for i = j. (24)

Suppose that the solution of the system (21) is x∗, and {p1, p2, . . . , pN} are left conjugate
gradient vectors of A. Then it follows that

x∗ = x0 +

N
∑

i=1

αipi, (25)

for every fixed vector x0. If r denotes the residual vector then

r = r0 −

N
∑

i=1

αiApi, (26)

where r0 is the initial residual vector. To determine αi, since p1, p2, . . . , pN are linearly
independent, then take r orthogonal to all pi, that is

pT
i r = 0 ∀i = 1, . . . , N. (27)

From (27) we obtain

αi =
pT

i ri−1

pT
i Api

. (28)

We also can write

ri = b − Axi = ri−1 − αiApi, (29)

xi = x0 +

i
∑

k=1

αkpk = xi−1 + αipi. (30)

From (28), (29) and (30) we can implement the left conjugate direction method if we know
the set of linearly independent vectors p1, p2, . . . , pN such that they are left conjugate gradient
vectors of A. There is still a recurrence relation among p1, p2, . . . , pk and rk to compute the
left conjugate gradient vector pk+1, given in [4]:

q0 = rk,

βi = −
pT

i Aqi−1

pT
i Api

,

qi = qi−1 + βipi for i = 1, . . . , k,

pk+1 = qk. (31)

In this case we need to know the first vector p1 such that pT
1 Ap1 6= 0. Putting all together,

Yuan et al [4] described the complete left conjugate direction method as follows:

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1–22
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Algorithm 3.1
1. Input x0, A, p1 such that pT

1 Ap1 6= 0 and b;
2. Calculate r0 = b − Ax0;
3. For k = 1, . . . , N do

3.1 qk = AT pk,

αk =
pT

k rk−1

qT
k

pk
,

xk = xk−1 + αkpk,
rk = b − Axk = rk−1 − αkApk;

3.2 pk+1 = rk,

βi = −
qT

i pk+1

qT
i pi

,

pk+1 = pk+1 + βipi for i = 1, . . . , k.

In Algorithm 3.1 we need to store N vectors pk and N vectors qk to obtain the solution xN .
In this paper we considered a similar algorithm but with restart as in the GMRES algorithm
implemented by Shakib et al [2], resulting in the LCD(k) algorithm with restart given below:

Algorithm 3.2 - LCD(k)
1. Given x0, A, b, lmax, k and εtol ;
2. r0 = b − Ax0;
3. ε = εtol‖r‖;
4. Choose p1 such that pT

1 Ap1 6= 0;
5. For l = 1, . . . , lmax do

5.1. For i = 1, . . . , k do

5.1.1. qi = AT pi,

αi =
pT

i ri−1

qT
i pi

,

xi = xi−1 + αipi,
ri = ri−1 − αiApi;

5.1.2. if ‖ri‖ < ε then Exit l loop and xi is the solution;
5.1.3. pi+1 = ri,

For j = 1, . . . , i do

βj = −
qT

j pi+1

qT
j pj

,

pi+1 = pi+1 + βjpj ,
5.2. Choose the new p1 such that pT

1 Ap1 6= 0;

where lmax is the maximum number of iterations, εtol is the user supplied tolerance and k is
number of left conjugate directions considered in the restart.

Remarks:

1. We need to store 2k N -dimensional vectors ({p1, . . . , pk} and {q1, . . . , qk}).
2. For each iteration l we need two matrix-vector products (qk = AT pk and rk =

rk−1−αkApk - step 5.2.1). Note that in GMRES we just need one matrix-vector product
per iteration.

3. To start LCD(k), we have to choose p1 (step 4 in the Algorithm 3.2). We have the
following options: p1 = b, p1 = diag(A)−1b or p1 = diag(A).

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1–22
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LCD ALGORITHM FOR SOLVING LINEAR SYSTEMS 9

4. In every restart l there is the need to choose a new pl
1 (step 5.2 in Algorithm 3.2). The

options here are: pl
1 = pl−1

k+1
, pl

1 = rl−1 or pl
1 = xl−1.

5. Our numerical experiments will indicate which are the best options to select the initial
vector in both cases.

3.1. LCD Element-by-Element Preconditioning

To accelerate convergence of the LCD algorithm, we have used an element-by-element
preconditioning strategy. For the advective-diffusive equation the element-by-element Gauss-
Seidel preconditioner begins by rewriting the system of linear equations (21) in scaled form,

Ãx̃ = b̃. (32)

Ã = W−1/2AW−1/2, x̃ = W 1/2x, b̃ = W 1/2b and W = diag(A). Thus we define the
preconditioned system of equations to be solved as,

Āx̄ = b̄, (33)

where Ā = L−1ÃU−1, x̄ = Ux̃ and b̄ = U−1b̃. The matrices L and U are respectively the left
and right preconditining, defined as

L =

nel

A
e=1

Le, (34)

U =

nel

A
e=1

Ue, (35)

where element matrices Le and Ue are the Gauss-Seidel factors of the regularized element
array,

Le + Ue = Ãe − diag(Ãe) + I. (36)

For the Euler equation a nodal block-diagonal preconditioner is used. In this case, Ã =

BD−1A, b̃ = BD−1b, BD =

nnodes

A
ino=1

BDino and BDino is the 4 × 4 block-diagonal matrix for

each node.

4. Numerical Results

4.1. 2D advection-diffusion problem

We consider a pure convection of a scalar on a square domain, where the advection is skew to
the mesh and the diffusivity is negligible. Figure 1 shows the problem set up. The domain is
the unit square Ω = [0, 1] × [0, 1] and the boundary conditions are

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1–22
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u = 0.0 along y = 0.0,

u = 0.0 along x = 0.0 and 0.0 < y < 0.25,

u = 1.0 along x = 0.0 and 0.25 < y < 1.0. (37)

45ο

u = 0.0

y

x

β
u = 1.0

u = 0.0

0.75

1.0

0.25

Figure 1. Pure convection of a scalar on a square domain - Problem set up

The diffusivity is κx = κy = 1 × 10−7, the flow direction is 45◦ from the x-axis, ‖β‖ = 1
and the stabilization parameter is computed as in [8]. The domain is discretized by grids of
triangular elements with 64×64, 128×128, 256×256 and 512×512 cells. Each cell is subdivided
into four triangles.

Figures 2 and 3 show, respectively, the solution with the GMRES(5) and LCD(5) solutions
for the mesh with 64 × 64 cells. We observed that both solutions are virtually identical. The
solution for other numbers of left conjugate gradient vectors is the same.

Figure 4(a) shows the LCD residual behavior for the three choices of the first left conjugate
vector. The best choice is p1 = b. In Figure 4(b), we can observe that pl

1 = pl−1

k+1
is the best

option for the new left conjugate vector in every restart of the LCD algorithm. Therefore, from
now on we are going to use these two options.

Figure 5 compares the relative residual evolution for LCD(5) and GMRES(5) for the four
meshes defined before. Iterations are halted when relative residual reaches a tolerance of
10−10. Although relative residual in LCD(5) decreases more slowly than in GMRES(5) in the
beginning of the process, the total number of LCD(5) iterations is smaller than the number of
GMRES(5) iterations. A similar behavior is observed for all meshes.

Figure 6 shows the performance of GMRES and LCD methods for k=1, 5, 10 and 20
considering the mesh of 128 × 128 cells. Results for the other meshes are similar. Table 1
shows the number of iterations (Niter) and CPU times for the GMRES and LCD methods
using a relative residual tolerance of 10−10. In this Table Neq is the number of the unknowns.
We can observe that the LCD method converges with less iterations, however it is slower than
GMRES method in all cases.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1–22
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LCD ALGORITHM FOR SOLVING LINEAR SYSTEMS 11

Figure 2. Pure convection of a scalar on a square domain - Mesh with 64 × 64 cells - GMRES(5)
solution.

Figure 3. Pure convection of a scalar on a square domain - Mesh with 64× 64 cells - LCD(5) solution.

Table 2 presents the required memory for each case using the mesh of 128 × 128 cells. We
can observe that the case without restart converges with less iterations than the other cases,
however it is slower and needs more memory than the others. We can also observe that as
more vectors are used, more memory is necessary.

For each iteration the LCD method computes two matrix-vector products, one with A, the
other involving At, while GMRES needs just one. In Table 3 we show for the mesh with
128 × 128 cells the time required for each matrix-vector product for both methods. Note that
times for the product with the transpose are of the same order of magnitude of the Ap product,
thanks to the element-by-element data structure.

Next we study the action of the Gauss-Seidel element-by-element preconditioner in LCD(5)
and GMRES(5) using again the mesh with 128 × 128 and a residual tolerance of 10−10. We
compare in Figure 7 the relative residual evolution of LCD(5), GMRES(5) and two other
popular members of the Krylov family of iterative methods, Bi-CGSTAB [16] and TFQMR
[17], all using the Gauss-Seidel element-by-element preconditioner. We may note in Figure 7
that LCD and GMRES require more iterations than the other methods, but their convergence is

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1–22
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Table I. Computational costs

1 vector
Mesh GMRES(1) LCD(1)

Cells Neq Niter Time(sec) Niter Time(sec)
64 × 64 8192 714 14 654 14

128 × 128 32768 1123 114 1042 114

5 Vectors
Mesh GMRES(5) LCD(5)

Cells Neq Niter Time(sec) Niter Time(sec)
64 × 64 8192 471 6 328 7

128 × 128 32768 888 62 618 70
256 × 256 131072 1661 500 1163 580
512 × 512 524288 3104 4096 2384 4592

10 Vectors
Mesh GMRES(10) LCD(10)

Cells Neq Niter Time(sec) Niter Time(sec)
64 × 64 8192 399 5 356 8

128 × 128 32768 751 56 608 77
256 × 256 131072 1479 490 1091 582

20 Vectors
Mesh GMRES(20) LCD(20)

Cells Neq Niter Time(sec) Niter Time(sec)
64 × 64 8192 448 6 401 10

128 × 128 32768 756 70 655 95
256 × 256 131072 1383 554 1123 699

without restart
Mesh GMRES LCD

Cells Neq Niter Time(sec) Niter Time(sec)
64 × 64 8192 261 11 262 20

128 × 128 32768 533 565 534 609

Table II. Memory requirements for the mesh of 128 × 128 cells

Number of vectors GMRES(Mwords) LCD (Mwords)
1 1.57 1.77
5 1.84 2.36

10 2.16 2.95
20 2.82 4.26

without restart 41.56 80.29
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1e-10

1

0 50 100 150 200 250 300 350 400
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1

Figure 4. Pure convection of a scalar on a square domain - Mesh with 64× 64 cells - Choice of the left
conjugate starting vector on LCD algorithm.

Table III. Time required for matrix-vector operations - mesh 128 × 128 cells

operation Time (sec)
Atp in LCD 0.052

Ap in LCD or GMRES 0.050

smooth, showing an ever decreasing residual. However, as shown in Table 4, LCD is the slowest
method. We may attribute this again to the fact that LCD is the only method requring two
matrix-vector products per iteration.

Table 4 shows the solution times required for each mesh. We can observe the same conclusion
above, that is, the LCD solutions converge with less iterations, however it is more slow than
GMRES in all cases.

Table IV. Computational costs - Mesh with 128 × 128 cells - Gauss-Seidel EBE preconditioner

Method Niter CPU Time(sec)
LCD(5) 247 48

GMRES(5) 288 34
Bi-CGSTAB 149 41

TFQMR 180 34
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(a) Mesh 64 × 64.
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(b) Mesh 128 × 128.
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(c) Mesh 256 × 256.
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(d) Mesh 512 × 512.

Figure 5. Pure convection of a scalar on a square domain - Relative residual evolution for LCD(5) and
GMRES(5).
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(b) LCG

Figure 6. Pure convection of a scalar on a square domain - Relative residual evolution for LCD(k) and
GMRES(k) - mesh of 128 × 128 cells.
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Figure 7. Pure convection of a scalar on a square domain - Mesh with 128×128 cells - Relative residual
evolution for LCD(5), GMRES(5), Bi-CGSTAB and TFQMR with Gauss-Seidel EBE preconditioner.
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4.2. Compressible Flow - Oblique Shock

This problem consists of a two-dimensional steady problem of a inviscid, Mach 2, uniform flow,
over a wedge at an angle of −10◦ with respect to a horizontal wall, resulting in the occurrence
of an oblique shock with an angle of 29.3◦ emanating from the leading edge of the wedge, as
shown in Figure 8. Multi-corrections are fixed to 3 and we considered a fixed time step of 0.01.

x = 0.9

29.3 ο
x

y

M = 2

M = 1.64

Figure 8. Oblique shock - problem description.

The computational domain is the square 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Prescribing the following
flow data at the inflow, i.e., on the left and top sides of the shock, results in the exact solution
with the flow data past the shock:

Inflow































M = 2.0

ρ = 1.0

u = cos100

v = −sin100

p = 0.17857

Outflow































M = 1.64052

ρ = 1.45843

u = 0.88731

v = 0.0

p = 0.30475

(38)

where M is the Mach number, ρ is the flow density, u and v are the horizontal and vertical
velocities respectively, and p is the pressure.

Four Dirichlet boundary conditions are imposed on the left and top boundaries; the slip
condition v = 0 is set at the bottom boundary; and no boundary conditions are imposed on the
outflow (right) boundary. A 20×20 mesh with 800 linear triangles and 441 nodes is employed.
All the solutions are initialized with free-stream values. The number of multicorrections is
fixed to 3. Nodal block-diagonal preconditioning is used here for all methods.

Catabriga and Coutinho presented in [18] a procedure to detect convergence stagnation in the
computation of inviscid flows forcing the solution to converge to steady-state. A simple heuristic
is used to detect convergence stagnation and then to stop updating the shock-capturing term.
As a consequence, the problem converges very fast towards a steady-state solution with no
accuracy degradation. Figure 9(a) shows density along line x = 0.9 for LCD(5), GMRES(5),
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Bi-CGSTAB and TFQMR solutions and Figure 9(b) shows the evolution of density residual
for all methods. Within each multicorrection the linear systems tolerance is set to 0.1 for all
methods. We may observe that all methods yield solutions with comparable accuracy, but the
Bi-CGSTAB solution requeired less iterations than all the others to reach machine zero. In
Table 5 we list the number of steps (Nsteps), the total number of iterations (Niter) and the
CPU times to reach a relative density residual of 10−10. The fastest solution was obtained by
GMRES, although it required more steps and iterations than the Bi-CGSTAB and TFQMR
solutions. The slowest solution was obtained by LCD.
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1.5

1.6

0 0.2 0.4 0.6 0.8 1
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LCD(5)

Bi-CGSTAB
TFQMR

exact

(a) Density profile at x = 0.9.
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(b) Evolution of density residual.

Figure 9. Oblique shock - Solution with both methods.

Table V. Oblique shock - Computational costs.

Method Nsteps Niter Time(sec)
LCD(5) 870 5285 134
GMRES(5) 869 5226 117
Bi-CGSTAB 746 3520 128
TFQMR 843 4296 142

4.3. Compressible flow - Reflected Shock

This two-dimensional steady problem consists of three regions (R1, R2 and R3) separated by
an oblique shock and its reflection from a wall, as shown in Figure 10. Prescribing the following
Mach 2.9 flow data at the inflow, i.e., the first region on the left (R1), and requiring that the
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incident shock to be at an angle of 29◦, leads to the exact solution (R2 and R3):

R1























M = 2.9
ρ = 1.0
u = 2.9
v = 0.0
p = 0.714286

R2























M = 2.3781
ρ = 1.7
u = 2.61934
v = −0.50632
p = 1.52819

R3























M = 1.94235
ρ = 2.68728
u = 2.40140
v = 0.0
p = 2.93407

(39)

ο

x

y

y=0.25
1

2
3

M=2.9

M=2.378

M=1.942
29 ο

23.28

Figure 10. Reflected Shock - Problem Description.

We prescribe density, velocities and pressure on the left and top boundaries; the slip
condition is imposed on the wall (bottom boundary); and no boundary conditions are set
on the outflow (right) boundary. Multicorrections are fixed to 3 and we considered a fixed
time step of 0.01. We consider a structured mesh with 60 × 20 cells, where each cell was
divided into two triangles (1281 nodes and 2400 elements) and an unstructured mesh with
1,837 nodes and 3,429 elements covering the domain 0 ≤ x ≤ 4.1 and 0 ≤ y ≤ 1. The tolerance
of the preconditioned LCD(5), GMRES(5) Bi-CGSTAB and TFQMR methods for each step
is 0.1 and all the solutions are initialized with free-stream values.

Figure 11(a) shows the density along line y = 0.25 of the structured mesh for LCD(5),
GMRES(5), Bi-CGSTAB and TFQMR solutions. Figure 11(b) shows the evolution of density
residual when the convergence stagnation detection procedure is used. Table 6 shows the
number of steps (Nsteps) and CPU times of all solutions to reach a relative density residual
of 10−10. In this case GMRES and Bi-CGSTAB solution are the fastest, although the latter
solution required less steps and iterations. Again the CPU time of LCD solution was not
competitive with the others.

Table VI. Reflected shock - Computational costs - Structured mesh.

Method Nsteps Niter Time(sec)
LCD(5) 618 4159 332
GMRES(5) 612 4977 276
Bi-CGSTAB 610 1905 279
TFQMR 589 2603 298

Figures 12 shows the density contours for the unstructured mesh, for solutions obtained
with all iterative methods. We observe that contours are virtually identical.
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(a) Density profile at y = 0.25.
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(b) Evolution of density residual.

Figure 11. Reflected shock - Structured mesh - Solution with all methods.

(a) GMRES(5) - Density contours. (b) LCD(5) - Density contours.

(c) Bi-CGSTAB - Density contours. (d) TFQMR - Density contours.

Figure 12. Reflected shock - Unstructured mesh.
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Figure 13 shows the evolution of density residual when the convergence stagnation detection
procedure is used and Table 7 shows the number of steps, iterations and CPU times to reach
a relative density residual of 10−10. Here also GMRES converges in less time than all other
methods. The most time consuming solution was obtained by LCD.
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Figure 13. Reflected shock - Evolution of density residual in the unstructured mesh.

Table VII. Reflected shock - Computational costs - Unstructured mesh.

Method Nsteps Niter Time(sec)
LCD(5) 838 13498 1222
GMRES(5) 836 9573 730
Bi-CGSTAB 863 7930 1025
TFQMR 798 10286 1000

5. Concluding remarks

In this work we studied the performance of LCD algorithm, a new iterative method where a
special Krylov subspace is built, obtaining the exact solution by solving a triangular system
rather than a general least-squares problem. Its nice mathematical properties and a prototype
MATLAB implementation have shown the effectiveness of LCD when compared to QMR,
Bi-CGSTAB and GMRES.

That motivated us to investigate the performance of LCD within a finite element computer
program to solve inviscid flow problems. We have extended the original algorithm to
incorporate restarts and typical finite element preconditioners. We have shown by numerical
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experimentation that starting the iterations taking as the first left conjugate vector the right
hand side vector is the best choice. However, to restart the iterations we need to take as
starting vector the last left conjugate vector from the previous cycle.

Comparisons with other Krylov space methods with or without preconditioning
unfortunately do not favour LCD. Although requiring usually less iterations, CPU times and
memory are larger than GMRES, Bi-CGSTAB and TFQMR. The main reason is the need to
compute two matrix-vector product per iteration, one with the coefficient matrix and the other
with its transposed matrix. Those are the dominant costs, although thanks to the element-by-
element data structure both are performed with the same efficiency.

Recently, Dai and Yuan [19] proposed a new technique to overcome the breakdown problem
appearing in the semi-conjugate direction method and a memory limitation scheme similar to
the limited-memory BFGS method to minimize memory requirements of the original algorithm
[4]. Those results should be viewed as a first attempt to incorporate LCD into the methods
available for solving finite element systems of equations and certainly much more experiments
are needed before reaching a final conclusion on its effectiveness.
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