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Abstract

In this preliminary work, left and right conjugate direction vectors are defined

for nonsymmetric, nonsingular matrices A and some properties of these vectors are

studied. A left conjugate direction (LCD) method for solving general systems of
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linear equations is proposed. The method has no breakdown for real positive defi-

nite systems. The method reduces to the usual conjugate gradient method when A

is symmetric positive definite. A finite termination property of the semi-conjugate

direction method is shown, providing a new simple proof of the finite termina-

tion property of the conjugate gradient methods. Some techniques for overcoming

breakdown are suggested for general nonsymmetric A. The connection between

the semi-conjugate direction method and LU decomposition is established. The

semi-conjugate direction method is successfully applied to solve some sample linear

systems arising from linear partial differential equations, with attractive convergence

rates. Some numerical experiments show the benefits of this method in comparison

to well-known methods.

Key Words: Left conjugate direction vectors, left conjugate direction method, semi-

conjugate direction method, LU decomposition, Gaussian elimination, conjugate gradient

method, solution of nonsymmetric linear systems, real positive definite system.

AMS Subject Classification 65F10

1 Introduction.

The conjugate gradient method for solving symmetric and positive definite systems of

linear equations

Ax = b, (1.1)

where A ∈ Rn×n, is quite attractive, see e.g. [12, p. 520]. A short recurrence relation

for computing the iteration vectors can be derived for certain nonsymmetric systems, for

example the BiCG method [15]. But there is evidently no short recurrence relation [9] that

corresponds to the minimization of any norm. Research on nonsymmetric system solvers

has attracted much attention in recent years. Several effective Krylov subspace methods

have been established to solve nonsymmetric systems, for example various generalization

of the conjugate gradient method [1, 6], GMRES [15], QMR [10] and some of their variants

[11, 14]. Generally, Krylov subspace methods look for some basis of the Krylov subspace

such that the method still keeps the finite termination property or/and short recurrence

for nonsymmetric A. In fact, the conjugate gradient method finds a basis with which

the exact solution of the system can be determined by a diagonal system, thanks to the

A−conjugate orthogonality property when A is symmetric and positive definite. For the
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nonsymmetric case, the usual A−conjugate orthogonality does not hold when A is real

positive definite. In general, after obtaining a basis, we can determine the solution over

the basis by solving one dense linear system, but this procedure has the same difficulty

as the original problem. The methods above find special bases for the Krylov subspace

such that one can obtain the solution by cheaply solving a linear system. For example,

the GMRES method approaches the solution by minimizing the residual, and the QMR

method by minimizing the generalized residual in part. The GMRES method solves a

least squares problem, whereas the QMR method solves a simplified one at each step.

From this point of view, we cannot find a basis for the Krylov subspace such that

the exact solution can be determined by solving one diagonal system for nonsymmetric

systems, but it is possible to find a special basis of the Krylov subspace where the exact

solution can be determined by some easily solved systems. Certainly the solution of

triangular systems is cheaper than that of solving general least squares problems and

other dense systems. The key problem is how to find such a basis. The main work of this

paper is to develop this type of method for solving nonsymmetric linear systems.

We introduce the concepts of left conjugate direction vectors and right conjugate

direction vectors (see Definitions 2.1 and 2.2 in Section 2), which we called semi-conjugate

direction vectors. The new concepts coincide with the concept of the conjugate gradient

vector whenever A is symmetric and positive definite. We prove that the set of left

(or right) conjugate direction vectors forms a basis of the vector space and the exact

solution of the nonsymmetric system (1.1) can uniquely be represented in this basis. The

benefit of this concept is that the exact solution can be uniquely determined in this basis

by solving triangular systems. We call the method the Semi-Conjugate Direction

Method (SCD). Here we mainly discuss the Left Conjugate Direction (LCD) Method.

The new method keeps some key properties of the conjugate gradient method, for example

the finite termination property. Of course, the new method loses some good properties of

the conjugate gradient method, such as A−orthogonality and short recurrence relations to

create the set of left conjugate direction vectors. In our derivation of the new method we

also give a new simple proof of the finite termination property of the conjugate gradient

method which may be useful for instructional purposes.

Unlike the conjugate gradient method, we cannot arbitrarily choose the initial left

conjugate direction direction vector p1 for the left conjugate direction method. For sym-

metric and positive definite systems, every choice of p1 6= 0 can guarantee pT
k Apk > 0,
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but this is not true for nonsymmetric or symmetric but indefinite A. Therefore, we must

choose p1 such that pT
k Apk 6= 0 for k = 1, . . ., which is still an open problem for the general

nonsymmetric case. Note that the LCD concept is the special case of the Stewart’s con-

jugate gradient direction [17] which however is the special case of our SCD concept. Here

we concentrate our attention on real positive definite systems. The method can easily be

generalized to general nonsymmetric systems. But its stability is not guaranteed.

The outline of this paper is as follows. For general nonsymmetric matrices A, the

concepts of the left conjugate direction vectors and right conjugate direction vectors are

introduced in Section 2. We study the properties of these vectors in the same section. In

Section 3, we propose the Left Conjugate Direction Method for solving nonsymmetric lin-

ear systems. We prove the finite termination property and truncation property of the new

method as well. In particular we give the explicit form of summation of rank one matrices

for the inverse matrix of A. In Section 4, we develop an algorithm to generate the set of

left conjugate direction vectors of a real positive definite A and provide some properties of

the left conjugate direction algorithm. The determination of left conjugate direction vec-

tors may have breakdown problems for general nonsymmetric matrices, and does not work

at all for skew-symmetric matrices A. Some remedies to overcome the breakdown prob-

lem are suggested. Hestenes and Stiefel established the connection between the conjugate

gradient method and Gaussian Elimination for symmetric and positive definite matrices

in 1952 [13, p. 426]. Here, we give a new simple proof for their result and also establish

the connection between the left conjugate direction method and the LU decomposition

in Section 5. Through this connection, the left conjugate direction method executes the

LU decomposition for nonsingular matrices if it runs n steps with a certain choice of p1.

On the other hand, the row vectors of the unit lower triangular matrix given by the LU

decomposition form the left conjugate direction vectors for the left conjugate direction

method. Finally, in Section 6 we apply this new method to solve the approximation to

certain linear partial differential equations. The convergence behavior of this new method

appears very attractive. We conclude this paper with some comments.

After the completion of this paper, one of the authors with Dai [8] has shown the

existence of the left conjugate direction vectors for all nonsingular matrices except skew-

symmetric matrices. They have suggested augmented technique to overcome the break-

down problem for general nonsymmetric systems, and proposed limited-memory left con-

jugate direction method. Recently Silva, Raupp and Almeida [16] have applied the LCD
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method to solve linear systems arising from Petrov-Galerkin finite element method for

the thermal pollution problem, and compared with traditional methods. From their com-

parisons, the LCD method seems to be very promising.

2 Left and Right Conjugate Direction Vectors

We begin by giving the definitions and some basic properties of left and right conjugate

direction vectors.

Definition 2.1 Vectors p1, p2, . . . , pn ∈ Rn are called left conjugate direction vec-

tors (LCD) of an n× n real nonsingular matrix A if





pT
i Apj = 0 for i < j,

pT
i Apj 6= 0 for i = j,

(2.1)

that is,

P T AP = L = ( �| o

),

where P = [p1, p2, . . . , pn].

Definition 2.2 Vectors p1, p2, . . . , pn ∈ Rn are called right conjugate direction vec-

tors (RCD) of an n× n real nonsingular matrix A if





pT
i Apj = 0 for i > j

pT
i Apj 6= 0 for i = j,

(2.2)

that is,

P T AP = U = (�|o ),

where P = [p1, p2, . . . , pn].

Remark 2.1 If p1, p2, . . ., pn are left conjugate direction vectors of A, then they are right

conjugate direction vectors of AT , and also pn, pn−1, . . ., p1 are right conjugate direction

vectors of A.
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Definition 2.3 Vectors p1, p2, . . . , pn ∈ Rn are called conjugate gradient vectors

(CG) of an n× n real nonsingular matrix A if





pT
i Apj = 0 for i 6= j

pT
i Apj 6= 0 for i = j,

(2.3)

that is,

P T AP = D = (o�o),

where P = [p1, p2, . . . , pn].

Definition 2.4 Vectors p1, p2, . . . , pn ∈ Rn are called Semi-conjugate direction vec-

tors (SCD) of A if they are LCD vectors or RCD vectors of A.

Remark 2.2 If A is symmetric and nonsingular, then we observe that the left conjugate

direction vectors of A are also right conjugate direction vectors of A. In this case, we call

the vectors conjugate gradient vectors of A.

Lemma 2.1 Let A ∈ Rn×n be nonsingular, and {p1, p2, . . . , pn} ⊂ Rn be left (or right)

conjugate direction vectors of A. Then p1, p2, . . . , pn are linearly independent.

Proof: Assume that P = [p1, p2, . . . , pn]. By the definition, there is

P T AP = T

where T is lower triangular matrix and tii 6= 0. Then,

det(P T AP ) = det(T ) 6= 0

which implies det(P ) 6= 0. Therefore, {p1, . . . , pn} are linearly independent.¶

Remark 2.3 Let A ∈ Rn×n be nonsingular, and {p1, p2, . . . , pn} be left (or right) con-

jugate direction vectors of A. For any fixed vector x0 ∈ Rn, every vector x ∈ Rn can

uniquely be represented with a linear combination of {p1, p2, . . . , pn} in the form

x = x0 +
n∑

i=1

αipi, (2.3)
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where each αi (i = 1, . . . , n) is uniquely determined by {p1, p2, . . . , pn} and x0. With

x0 = 0, it follows from Ax = b that

P T APP−1x = P T b,

that is,

TP−1x = P T b.

Then,

Tα = P T b

and
x = Pα.

Note that the SCD definition is slightly different from the definition of the conju-

gate direction given by Stewart in [17]. In terms of Stewart’s definition, U and V are

A−conjugate if V T AU is lower triangular. Of course Stewart’s A−conjugate direction is

the left conjugate direction when U = V = P .

3 The Left Conjugate Direction Method

Suppose that the solution of the system (1.1) is x∗, and {p1, p2, . . . , pn} are left conjugate

direction vectors of A. Then it follows that

x∗ = x0 +
n∑

i=1

αipi (3.1)

for every fixed vector x0, where αi (i = 1, 2, . . . , n) are unknowns. From Ax∗ = b it follows

that

Ax0 +
n∑

i=1

αiApi = b. (3.2)

Let r denote the residual vector defined by

r = b− Ax∗ = b− Ax0 −
n∑

i=1

αiApi = r0 −
n∑

i=1

αiApi. (3.3)
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Now we shall determine αi, for i = 1, . . . , n, such that r = 0. Since p1, . . . , pn are linearly

independent, r = 0 if r is orthogonal to all pi (i = 1, . . . , n), that is

pT
i r = 0, ∀i = 1, . . . , n. (3.4)

Since the pi’s are LCD vectors of A, from (3.4) we can obtain

αi =
pT

i ri−1

pT
i Api

(3.5)

where

ri = b− Axi = ri−1 − αiApi, (3.6)

xi = x0 +
i∑

k=1

αkpk = xi−1 + αipi. (3.7)

Therefore we have established the left conjugate direction method to solve (1.1). The

formal algorithm can be given as follows.

Algorithm 3.1

1. Input x0, A and b;

2. Choose a left conjugate direction vector set {p1, . . . , pn} for A;

3. Calculate r0 = b− Ax0;

4. For k = 1 until stop do

αk =
pT

k rk−1

pT
k Apk

, if pT
k Apk 6= 0, otherwise stop;

xk = xk−1 + αkpk,

rk = b− Axk = rk−1 − αkApk.

The total number of flops per iteration step of this algorithm is a matrix-vector mul-

tiplication plus 6n. As is the case for the conjugate gradient methods, convergence in at

most n iterations is guaranteed, as shown later, and preconditioning can be expected to

reduce the number of iterations to an acceptable approximate solution considerably. Note

that in the conjugate gradient method, the pk are computed at the kth step, not before

the iteration starts.
We show next that the left conjugate direction method has a finite termination prop-

erty in the absence of roundoff errors.
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Theorem 3.1 Let A ∈ Rn×n be nonsingular, and {p1, . . . , pn} be a set of left conjugate

direction vectors of A. Then the left conjugate direction method obtains the solution of

the system (1.1) in at most n steps in the absence of roundoff errors.

Proof: By Lemma 2.1 and remark 2.3, the solution x∗ of the system (1.1) can be

uniquely determined by p1, . . . , pn with every fixed x0 as follows

x∗ = x0 +
n∑

i=1

αipi.

The method obtains the solution if for some j, rj = 0 where j < n. Suppose all rj 6= 0

for j = 1, 2, . . . , n. Then

rn = b− Axn = b− Ax0 −
n∑

i=1

αiApi. (3.8)

In the method, all αi were decided such that rn is orthogonal to all n linearly independent

vectors p1, . . . , pn. Hence, the vector rn must be null. Therefore xn is the solution of the

system (1.1).¶

Corollary 3.2 If A is symmetric and positive definite the conjugate gradient method

has a finite termination property.

Proof: The conjugate gradient method is one special case of the left conjugate direc-

tion method.¶

Remark 3.1 Let the sequence {xk} be generated by the left conjugate direction method.

Then xk is a truncated approximation of x∗ in the subspace x0 + Span{p1, p2, . . . , pk},
where x∗ is the exact solution of the system (1.1).

Remark 3.2 The LCD method is different from other Krylov subspace methods, such

as the QMR and GMRES methods, because we do not minimize the residual norm in a

Krylov subspace.

As an application of the Left Conjugate Direction Method, one can obtain a represen-

tation of the inverse of A in the form of a summation of rank one matrices.
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Theorem 3.3 Let P denote the matrix given by P = [p1, . . . , pn] where pi (i = 1, . . . , n)

are left conjugate direction vectors. Then, for every nonsingular matrix A, A−1 can be

expressed as

A−1 = PT−1P T , (3.9)

where T defined by [T ]ij = pT
i Apj is a nonsingular lower triangular matrix.

Proof: It follows from Lemma 2.1 that P is nonsingular. From the definition of left

conjugate direction vectors pi, we have

P T AP = T, (3.10)

where T is triangular and nonsingular.¶
From Theorem 3.3 we have the following expression for A−1:

A−1 =
n∑

i=1

piy
T
i (3.11)

where

yi =
1

pT
i Api

[pi −
i−1∑
j=1

pT
j Apiyj]. (3.12)

Corollary 3.4 Assume that A is symmetric and positive definite. Then A−1 is given

by

A−1 = PD−1P T =
n∑

i=1

pip
T
i

pT
i Api

, (3.13)

where

D = diag(pT
1 Ap1, . . . , p

T
nApn). (3.14)

Note that the existence of the left conjugate direction vector was proved by Stewart

in [17].
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4 Determination of Left Conjugate Direction Vectors

The main problem for implementing the left conjugate direction method is how to find a

set of linearly independent vectors p1, . . . , pn which are left conjugate direction vectors of

A. For a symmetric and positive definite matrix A, there is a short recurrence to compute

the conjugate gradient vectors. Now we are interested in the general nonsymmetric case.

For the nonsymmetric case, there is no short recurrence to compute the left conjugate

direction vectors. However, there is still a recurrence relation among p1, . . . , pk and rk to

compute the left conjugate direction vector pk+1.

Suppose

pk+1 = rk +
k∑

i=1

βipi. (4.1)

By the definition of left conjugate direction vectors, for all j = 1, . . . , k

pT
j Apk+1 = 0, (4.2)

that is, 


pT
1 Ap1 0 0 . . . 0

pT
2 Ap1 pT

2 Ap2
. . . . . . 0

...
...

. . . . . .
...

pT
k Ap1 pT

k Ap2 . . . . . . pT
k Apk







β1
...

βk


 = −




pT
1 Ark

...
pT

k Ark


 , (4.3)

once p1 is chosen so that pT
1 Ap1 6= 0. It follows from (4.1) and (4.3) that the recurrence

can be obtained as follows.





q0 = rk

βi = −pT
i Aqi−1

pT
i Api

qi = qi−1 + βipi (i = 1, . . . , k)

pk+1 = qk.

(4.4)

The total number of flops for generating pk+1 is kn2 + 3kn. This is certainly a long

recurrence formula. We now shall show pT
k+1Apk+1 6= 0 where pk+1 is defined by (4.4) for

matrices with a positive definite symmetric part. In fact, this is obvious for a real positive

matrix. It can only fail if pk+1 = 0.
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Theorem 4.1 Suppose that A+AT is positive definite. Let {p1, . . . , pk} be left conjugate

direction vectors of A. Then pk+1 is well defined by (4.4), that is, the left conjugate vectors

are well defined.

Proof: In order to prove that the vector pk+1 is well defined, we must prove that

pT
k+1Apk+1 > 0 for pk+1 given by (4.4). We shall first prove that rk, p1, . . . , pk are linearly

independent, then show that pk+1 6= 0. It follows immediately from positive definite

A + AT that pT
k+1Apk+1 > 0.

Suppose there exist γ0, γ1, . . . , γk such that

γ0rk + γ1p1 + . . . + γkpk = 0, (4.5)

with all γi 6= 0 (i = 0, 1, . . . , k) or at least γ0 6= 0 because p1, . . . , pk are linearly inde-

pendent by Lemma 2.1. There is no more to do if all γi = 0. Otherwise, rk can be

linear combination of p1, . . . , pk which means the solution x∗ = xk is in the subspace

x0 + Span{p1, . . . , pk}. However the hypothesis rk 6= 0 means xk is not the solution of the

system (1.1) or the solution x∗ is not in the subspace x0 + Span{p1, . . . , pk}. Then we get

a contradiction. Thus rk, p1, . . . , pk are linearly independent.

Since rk, p1, . . . , pk are linearly independent, pk+1 6= 0 follows from (4.4) whenever

rk 6= 0. Then, pk+1 is well defined from pT
k+1Apk+1 > 0.¶

Corollary 4.2 Let A be symmetric and positive definite. Then the determination of

pk+1 in (4.1) will be a short recurrence, that is, the A−conjugate vectors pk in the conjugate

gradient method can be determined by a short recurrence.

Proof: Since A is symmetric and positive definite, take p1 = r0 = b−Ax0 and (4.3) is

a diagonal system. We obtain the final result by considering the right hand side of (4.3).¶
We now give the complete left conjugate direction method (or semi-conjugate direction

method) as follows.

Algorithm 4.1

1. Input x0, A, b and Choose p1 such that pT
1 Ap1 6= 0;

2. Calculate r0 = b− Ax0;

3. For k = 1 until stop do
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3.1) uT
k = pT

k A,

γk = uT
k pk,

αk =
pT

k rk−1

γk
,

xk = xk−1 + αkpk,

rk = b− Axk = rk−1 − αkApk;

3.2) For i = 1, . . . , k
pk+1 = rk,

βi = −uT
i pk+1

γi
,

pk+1 = pk+1 + βipi.

The flop count per iteration step of Algorithm 4.1 is 2 matrix-vector multiplications,

k + 2 vector-vector multiplications, k + 2 number-vector multiplications, k + 1 divisions

plus k+2 vector additions. The A−conjugate vectors will be obtained if A is real positive

definite because pT
k+1Apk+1 > 0 always in this case. From the system (4.3), we can get a

short recurrence for obtaining the vector pk+1 since the system (4.3) is diagonal. In this

sense, our proof of the finite termination of the conjugate gradient method is simple.

We now summarize and prove other properties of the left conjugate direction Algorithm

4.1.

Theorem 4.3 Suppose that in (1.1) A ∈ Rn×n is nonsingular and nonsymmetric with

positive definite symmetric part, and let Lk = Span{p1, . . . , pk} where pi are left conju-

gate direction vectors of A. Then the left conjugate direction method has the following

properties:

1. For any k ≥ 1,

Lk = Span{p1, r1, . . . , rk−1}.

2. For any k ≥ 1,

Lk = Span{δ0, δ1, . . . , δk−1}
where δk = xk+1 − xk.

3. The sequence xk generated by the left conjugate direction Algorithm 4.1 is finite.

4. For any k < i, pT
i Apk 6= 0 and pT

k Api = 0.
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5.
xk+1 = xk + αkpk,

where

αk =
pT

k rk−1

pT
k Apk

.

6.
rk+1 = rk − αkApk.

7.

pk+1 = rk +
k∑

i=1

βipi,

where
q0 = rk,

βi = −pT
i Aqi−1

pT
i Api

,

qi = qi−1 + βipi, (i = 1, . . . , k).

8. Lk is not necessarily a Krylov subspace. But Ln = Rn.

9. The vectors pj for all j ≤ i − 1 are orthogonal to all linearly independent vectors

ri − ri−1, or equivalently (ri − ri−1)⊥Span{p1, p2, ..., pi−1}.

Proof:

1. Property (1) is from (4.1) and a choice p1 such that pT
1 Ap1 6= 0. If A is symmetric

and positive definite, and p1 = r0, then the results is the same as the conjugate

gradient method, that is, Lk = Span{r0, . . . , rk−1}.

2. This follows from (3.7), or δk = αkpk.

3. This is Theorem 3.1.

4. This follows from the definition of the left conjugate direction vectors (Definition

2.1) and (4.2).
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5. This is from (3.7).

6. This follows from (3.7).

7. This is (4.4) from Theorem 4.1.

8. The conclusion comes from the determination of pi (i = 1, . . . , n) and 1 or 2 in this

theorem.

9. Since ri = ri−1 − αiApi, multiplying the equation by pj, we obtain

pT
j ri = pT

j ri−1 − αip
T
j Api.

By the definition of left conjugate direction vectors of A we have that pT
j Api =

0 for all j < i. Then the inner product pT
j (ri − ri−1) = 0.¶

It is clear that the left conjugate direction method is different from the conjugate

gradient method in the following ways when A is not symmetric positive definite.

1. We cannot arbitrarily choose the initial left (or right) conjugate direction vector p1.

2. Lk 6= Span{r0, r1 . . . , rk−1} unless p1 = r0.

3. r0, . . . , rk are not necessarily orthogonal, but are linearly independent.

4. For any p ∈ Lk, p and rk are generally not orthogonal.

5. If k 6= i then δT
i Aδk 6= 0 is possible.

6. There is generally no short recurrence to determine the left conjugate vectors of A.

Remark 4.1 For general nonsymmetric systems, the method might break down. The

method fails for all skew-symmetric matrices A, since then pT
k Apk = 0 for all pk. One

remedy to overcome the problem is to use regularization, the Lanczos method or row per-

mutation to change skew-symmetric structure.

Another remedy is to update pk by p̂k = cpk + pk+1 where

c =

{
1 if (pT

k Apk)(p
T
k+1Apk) ≥ 0

1− (pT
k+1Apk)/(p

T
k Apk) otherwise

whenever pk+1 defined by (4.4) satisfying pT
k+1Apk+1 = 0.

Also, note that if A is real, positive, KT AK is also real, positive if rank(K) = n.
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5 Connection between the LCD method and Gaus-

sian Elimination

We begin by establishing some basic connections. This is followed by some examples.

Here we consider only matrices A having a triangular factorization A = L−1U , where L is

unit lower triangular and U is upper triangular. Of course always this holds in the special

case that A is symmetric positive definite.

Lemma 5.1 Let P = [p1, p2, . . . , pn]. Then P T AP = T nonsingular and lower triangular

matrix if and only if {p1, p2, . . . , pn} are LCD vectors.

Lemma 5.2 Let P = [p1, p2, . . . , pn]. Then P T AP = T nonsingular and upper triangular

matrix if and only if {p1, p2, . . . , pn} are RCD vectors.

Theorem 5.3 Let A ∈ Rn×n be nonsingular. Then, the Left Conjugate Direction method

with special choices of p1 is equivalent to Gaussian elimination.

Proof: To prove the equivalence, we must show that from the unit lower triangular

L given by the Gaussian Elimination, we can define the matrix P = [p1, . . . , pn] whose

columns are left conjugate vectors of A, so P T AP is lower triangular by Lemma 5.1.

It follows from the Gaussian elimination process that A = LU where L is unit lower

triangular, and U is upper triangular. Also, the LU factorization is unique if there is no

permutation.

Let P = L−T Q, where (e1, . . . , en) are canonical vectors, and

Q =




en

en−1

en−2
...
e1




is a permutation matrix. Then, we have

P T AP = (QT L−1)A(L−T Q) = (QT L−1)LU(L−T Q) = QT UL−T Q

is lower triangular. The nonsingularity is obvious. Another proof can be seen in Example

5.1 and [5]¶
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With P = L−T , we can prove that the RCD method is equivalent to Gaussian elimina-

tion because P T AP is upper triangular. By Lemma 5.2, we have the following corollary.

Corollary 5.4 The RCD method is equivalent to triangular decomposition for nonsym-

metric matrices. In particular, the CG method is equivalent to triangular decomposition

for symmetric and positive definite matrices.

We can also consider the UL decomposition A = UL where U is unit upper triangular

and L is lower triangular. Then, taking P = U−T , we can obtain that P T AP = LU−T

is lower triangular. By Lemma 5.1, we have shown that the LCD method is equivalent

to the UL decomposition. With this connection, the LCD method executes the Gaussian

elimination when p1 is the last row of L−1 for A = LU . Of course, there are more choices

of p1 for the LCD method in Algorithm 4.1. The following examples will illustrate the

connection. The numerical tests here were carried out using Matlab 6.0. To illustrate the

proof of Theorem 5.3, we give examples with some artificial properties. The first matrix A

is positive definite, the second one nonsymmetric with negative and complex eigenvalues,

and the third is symmetric positive definite.

Example 5.1 Let

A =




24 1 2
15 19 6
12 6 26




By Gaussian Elimination, we obtain A = LU

U =




24 1 2
0 18.3750 4.7500
0 0 23.5782


 , L−1 =




1 0 0
−0.6250 1 0
−0.3129 −0.2993 1


 .

Choose

P = U−1D =




1.0000 −0.0417 −0.0726
0 1 −0.2585
0 0 1


 ,

where D = diag(24, 18.3750, 23.5782). Then,

P T AP = DU−T LD =




24 0 0
14 18.3750 0

6.3810 0.7500 23.5782


 = T
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is lower triangular whose columns {p1, p2, p3} are left conjugate direction vectors.

Example 5.2 Consider nonsymmetric matrix A with negative and complex eigenvalues

as follows

A =




6 3 12
87 7 9
5 3 9


 .

By Gaussian Elimination, A = LU where

U =




6 3 12
0 −36.5000 −165
0 0 −3.2603


 , L−1 =




1 0 0
−14.5000 1 0
−1.0320 0.0137 1


 .

Choose

P = L−T Q =



−1.0320 −14.5000 1
0.0137 1 0

1 0 0


 .

It follows that

P T AP =




−3.2603 0 0
−165.5000 −36.5000 0

5.8493 −84 6


 = T,

a lower triangular matrix.

Example 5.3 Let A be symmetric and positive definite given by

A =




7 1 2
1 16 5
2 5 15


 .

By Gaussian Elimination, we can obtain

U =




7 1 2
0 15.8571 4.7143
0 0 13.0270


 , L−1 =




1 0 0
0.1429 1 0
0.2857 0.2973 1


 .
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Setting P = L−T Q, we have

P = L−T Q =




1 −0.1429 −0.2432
0 1 −0.2973
0 0 1







0 0 1
0 1 0
1 0 0




=



−0.2432 −0.1429 1
−0.2973 1 0

1 0 0




and

P T AP = diag(u33, u22, u11) = diag(13.0270, 15.8571, 7).

Then {p1, p2, p3} are conjugate gradient vectors.

It is of interest to compare the relative errors ε = ‖xi − x∗‖2/‖x∗‖2 , x∗ 6= 0 where xi

was obtained by Algorithm 4.1 with x0 = 0 and p1 = r0 for the LCD method, and using

x0 = 0 and pi given by the choices of pi in the proof of Theorem 5.3, which is Gaussian

Elimination. Assume that Ax = b where

A =




1 2 7
2 5 0
−1 0 6


 , and b =




3
9
85


 .

The relative errors are given in the Table 1.

Table 1: Relative Errors

ε = ‖xi − x∗‖2/‖x∗‖2 LCD Method GE Method
ε = ‖x1 − x∗‖2/‖x∗‖2 1.0000 1.0000
ε = ‖x2 − x∗‖2/‖x∗‖2 1.0081 1.0349
ε = ‖x3 − x∗‖2/‖x∗‖2 0.6415 0.9506
ε = ‖x4 − x∗‖2/‖x∗‖2 7.0094e− 016 0

6 Numerical Experiments and Conclusions

We first provide an example where the semi-conjugate direction method is successfully ap-

plied to solve a linear systems arising from the discretization of a linear partial differential

equations. Rapid convergence is obtained.
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6.1 Numerical Experiments

Example 6.1 Consider the test problem derived by discretizing the elliptic partial differ-

ential equation

−∆u + 2δ1ux + 2δ2uy − δ3u = f (6.1)

with constant coefficients δ1, δ2 and δ3 on the unit square Ω = {(x, y) : 0 ≤ x, y ≤ 1}, and

with boundary condition u(x, y) = 0 on ∂Ω. The function f is chosen so that

u(x, y) = xexy sin(πx) cos(πy)

solves (6.1).

This example was taken from [4]. We use symmetric finite differences on a uniform

(n + 2)× (n + 2) grid, including boundary points, and the standard five-point stencil to

approximate ∆u to yield a linear system of N = n2 equations for n2 unknowns uij =

u(ih, jh) (1 ≤ i, j ≤ n):

(4− δ3h
2)uij − (1 + δ1h)ui−1,j − (1− δ1h)ui+1,j − (1 + δ2h)ui,j−1

−(1− δ2h)ui,j+1 = h2fij, (6.2)

where fij = f(ih, jh) and h = 1
n+1

.

We selected three cases with various value of n for the numerical tests, given as follows

(see [4]).

1. Case I: δ1 = 30, δ2 = 40, δ3 = 40.

2. Case II: δ1 = 60, δ2 = 80, δ3 = 40.

3. Case III: δ1 = 80, δ2 = 80, δ3 = 40.

For the purpose of comparison, we also put Calvetti, Golub and Reichel’s results

(denoted CGR) [4] in Table 2. Here r = ‖rlast‖2/‖r0‖2 and e = ‖x − u‖2/‖u‖2 and s is

the time in seconds. All computations were done with the convergence tolerance 10−10

using Matlab 5.0. If we set the tolerance to 10−8, all computations were much faster than

those reported in Table 3, with almost the same relative errors e in the solution. In this

section, the initial vector x0 = 0.
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Table 2: Numerical Tests

Case N h LCD CGR
N = n2 IT r e CPU IT r

I 2500 1/51 107 3.6144e-11 0.0214 34.68(s) 1000 0.52e-4
I 1600 1/41 97 6.0154e-11 0.0201 17.67(s)
I 900 1/31 78 5.0173e-11 0.0198 6.87(s)
I 10000 1/101 235 7.7834e-11 0.0209 1009.16(s)
II 1600 1/41 94 5.7140e-11 0.0111 27.86(s) 231 4.2e-11
II 2500 1/51 122 9.1393e-11 0.0102 42.59(s) 224 3.2e-11
II 10000 1/101 225 8.7524e-11 0.0105 900.9(s) 1000 1.6e-11
III 2500 1/51 119 5.6232e-11 0.0085 41.03(s)
III 10000 1/101 224 7.7053e-11 0.0086 838.53(s)

For the second example, we compared BiCGSTAB, QMR, GMRES, GMRES(1), GM-

RES(5) and GMRES(20) with tolerance convergence 10−10 using MATLAB 6.5 for Case

III with N = 2500(n = 50). Here the initial guess for x is zero, and p1 was chosen as ran-

dom vector for the LCD method. The convergence curves of relative residuals are given

in Figure 1. Comparison results of iteration counts and CPU time are given in Table 3.

Unfortunately we cannot give a flop count comparison because Matlab 6.5 does not offer

such information. The LCD method has nice convergence properties for several different

initial left conjugate direction vector p1 in this case.

Note that the solution to (6.2) becomes more difficult for large δ3 since if δ3 is chosen

too large the matrix is no longer positive and definite. Our method works very well for

δi = 2000 (i = 1, 2, 3).

After finishing this paper, we became aware that Silva, Raupp and Almeida applied

the left conjugate direction method to solve linear systems arising from Petrov-Galerkin

finite element method for the thermal pollution problem, and gave parallel versions of

the left conjugate gradient method in Fortran and compared it with the most traditional

methods[16]. By their comparison, the left conjugate direction method seems to be very

promising.
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Table 3: Comparison Results for Case III with N = 2500

Method IT CPU ‖x−u‖2
‖u‖2

‖xLCD−x‖2
‖u‖2

LCD 102 10.365 0.0093 0.0
QMR 403 101.784 0.0093 5.1803e-10

BiCGSTAB 437 96.808 0.0093 9.7320e-12
GMRES 107 61.547 0.0093 6.2846e-12

GMRES(1) 295 78.472 0.0093 5.1503e-12
GMRES(5) 211 77.610 0.0093 2.0303e-11
GMRES(10) 268 53.846 0.0093 1.5335e-11
GMRES(20) 334 57.4320 0.0093 4.0886e-11

Figure 1: Convergence Curves for Case III with N = 2500
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6.2 Comments and Conclusions

We first provide a simple example to illustrate the importance of the choice of the first left

conjugate direction vector p1. Consider the following small nonsymmetric linear system

Ax = b: 


1 4 1
5 −1 2
3 −2 −1







x1

x2

x3


 =




6
6
0


 .

Here, the exact solution is x = (1, 1, 1)T . The left conjugate direction method does not

work at all if we choose p1 = (
√

5 − 2, 0, 1)T because pT
1 Ap1 = 0 in this case. The left

conjugate direction method obtains the solution with three steps if p1 = b, and just one

step if p1 = (−1,−1,−1). These numerical tests illustrate that the choice of p1 is very

important for convergence of the left conjugate direction method. In fact, the best choice

of p1 is any vector parallel to the solution x = A−1b whenever x0 = 0, because the method

can arrive at the exact solution in just one step in this case. On the other hand, the worst

choice is to choose p1 as any vector orthogonal to the solution x = A−1b, because in this

case the projection of p1 is zero in the direction of the solution x = A−1b. This means that

the choice of p1 cannot improve the initial choice of the approximate solution. In general,

it may not be possible to obtain a very good choice of p1 for real applications. We want to

avoid the worst choice of p1. Therefore, we must choose p1 such that pT
1 x = pT

1 A−1b 6= 0.

We suggest choosing p1 = AT z where zT b 6= 0, for example z = b when A is not very

ill-conditioned. If A is very ill-conditioned, this choice leads to p1 almost orthogonal to

x = A−1b, since |ztb|/(‖p1‖‖A−1b‖) ≈ 0.

Compared with the GMRES method, the work space is the same, but our computation

at each step is cheaper because the new method solves triangular systems rather than least

squares problems. Our numerical tests confirmed this advantage from Table 3 and Figure

1. Compared with the QMR method, the LCD method is much better because the QMR

method did not reduce the error after 293 iterations (see Figure 1). The CPU time of the

LCD method is much less than that of all compared methods.

The procedure of the left conjugate direction method can simply and easily be gener-

alized to the right conjugate direction vector set to obtain the right conjugate direction

method. The properties and convergence of the right conjugate direction method are the

same as the left conjugate direction method. The algorithm is also very similar. We shall

not discuss the details here.
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Note that the left conjugate direction method is different from Stewart’s conjugate

direction method when U = V [17] in the sense of implementation. Our process is cheaper

than his method because at each step Stewart’s method needs two triangular system

solutions to create one left conjugate direction vector. The proof of the equivalence of the

LCD method and the LU decomposition in [17] is simpler than ours.

As mentioned earlier, this paper is expository in nature. A formal process for finding an

effective left conjugate vector set for the general nonsymmetric or the symmetric indefinite

case is left as a problem for future research.
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