
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2004; 60:1383–1399 (DOI: 10.1002/nme.983)

Study on semi-conjugate direction methods
for non-symmetric systems

Yu-Hong Dai1,‡ and Jinyun Yuan2,∗,†

1State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics
and Scientific/Engineering Computing, Academy of Mathematics and System Sciences,

Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China
2Departamento de Matemática, Universidade Federal do Paraná, Centro Politécnice, CP: 19.081,

CEP: 81531-990, Curitiba, Brazil

SUMMARY

Some theoretical problems and implementation problems are studied here for the semi-conjugate
direction method established by Yuan, Golub, Plemmons and Cecilio (2002). The existence of semi-
conjugate directions is proved for almost all matrices except skew-symmetric matrices. A new technique
is proposed to overcome the breakdown problem appeared in the semi-conjugate direction method.
In the implementation of the semi-conjugate direction method, the generation of the semi-conjugate
direction is very important and necessary, but very expensive. The technique of limited-memory is
introduced to economize the cost of the generation of the semi-conjugate direction in the Yuan–Golub–
Plemmons–Cecilio algorithm. Finally, some numerical experiments are given to confirm our theoretical
results. Our results illustrate that the semi-conjugate direction method is very nice alternative for
solving non-symmetric systems, and the limited-memory left conjugate direction method is a good
improvement of the left conjugate direction method. Copyright � 2004 John Wiley & Sons, Ltd.

KEY WORDS: non-singular matrix; linear system; semi-conjugate direction; left conjugate direction;
left conjugate direction method; left conjugate direction method; existence; break-
down; limited-memory left conjugate direction method; conjugate gradient method

1. INTRODUCTION

Consider the non-symmetric linear system

Ax = b (1)

∗Correspondence to: Jinyun Yuan, Departamento de Matemática, Universidade Federal do Paraná, Centro
Politécnice, CP: 19.081, CEP: 81531-990, Curitiba, Brazil.

†E-mail: jyuan@cs.ubc.ca
‡E-mail: dyh@lsec.cc.ac.cn

Contract/grant sponsor: Chinese NSF; contract/grant number: 19801033 and 10171104

Received 6 August 2002
Revised 28 May 2003

Copyright � 2004 John Wiley & Sons, Ltd. Accepted 5 August 2003



1384 Y.-H. DAI AND J. YUAN

where A ∈ Rn×n is non-singular, b ∈ Rn is a vector. To solve (1), a class of iterative methods
called semi-conjugate direction (SCD) methods was proposed in Reference [1]. The methods
can be regarded as some kind of extension of conjugate direction methods for symmetric
and positive definite linear systems. Meanwhile, similarly to References [2, 3], the relationship
between semi-conjugate direction methods and the LU decomposition was discussed in Ref-
erence [1]. The preliminary numerical results in the paper showed that one member of the
methods, called left conjugate direction (LCD) method, is very promising for solving non-
symmetric systems. Recently, Silva et al. [4] have applied the LCD method to solve linear
systems arising from Petrov–Galerkin finite element method for the thermal pollution prob-
lem, and compared with traditional methods. From their comparisons, the LCD method has
nice performance. However, there are still at least three important questions related to the
methods:

(i) For any A ∈ Rn×n non-singular, do there exist n left conjugate directions? The finite
termination property of the left conjugate direction method requires a positive answer
of this question.

(ii) How to overcome the breakdown problem efficiently appeared in the left conjugate
direction method?

(iii) Is it possible not to store all left conjugate directions and meanwhile to save the algebraic
computation amount per iteration? This question is important for the implementation of
the left conjugate direction method because it implies the possibility of decreasing the
cost of the method.

The above questions motivated the study of this paper on semi-conjugate direction methods.
After a concise review on the methods in Section 2, we will give an answer or a partial
answer to each of the questions in Sections 3–5, respectively. For simplicity, we shall discuss
only the left conjugate direction method in this paper instead of the semi-conjugate direction
method because the left conjugate direction method is one important type of the semi-conjugate
direction method. Some discussion will be made in the last section.

The outline of this paper is as follows. We shall briefly review the left conjugate direction
method with two algorithms in Section 2. The existence of the left conjugate direction vectors
is showed in Section 3. A new technique to overcome breakdown problem is implemented
in Section 4. The limited-memory left conjugate direction method is proposed with numerical
experiments in Section 5. The discussions and conclusions are given in the last section.

2. RESTRUCTURING THE LEFT CONJUGATE DIRECTION METHOD

In this section, we will recall the definition of the left conjugate direction in Reference [1] and
describe the left conjugate direction method in a different way.

Definition 2.1
Vectors p1, p2, . . . , pl are called left conjugate directions of an n × n real non-singular matrix
A if pT

i Apj = 0 for i < j , and pT
i Apj �= 0 for i = j .

Assuming that n left conjugate directions {p1, p2, . . . , pn} of A have been generated in some
way, the left conjugate direction method can be described as follows:

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



STUDY ON SEMI-CONJUGATE DIRECTION METHODS 1385

Algorithm 2.2 (Left conjugate direction method)

1. Input x1, A and b;
2. Calculate r1 = b − Ax1;
3. For k = 1, 2, . . . , n, do

�k = pT
k rk

pT
k Apk

, xk+1 = xk + �kpk, rk+1 = rk − �kApk.

As shown in Reference [1], the left conjugate direction method terminates at some point xk

with k � n + 1 and rk = 0. However, this finite termination property depends on the existence
of n left conjugate directions of A. In the case of skew-symmetric matrices, namely, AT = −A,
there is no left conjugate direction because of pTAp = 0 for all p. Nevertheless, the existence
of n left conjugate directions can be proved for all non-skew-symmetric and non-singular
matrices (see Section 3).

Here, we describe the left conjugate direction method in a different way where only one
matrix–vector multiplication is required at each step. This nice property does not be possessed
by some other iterative methods for example Bi-CG.

Algorithm 2.3 (Left conjugate direction method)

1. Input x1, A, p1 and b;
2. Calculate r1 = b − Ax1 and q1 = Ap1;
3. For k = 1, 2, . . . , n, do

(3.1) �k = pT
k rk/p

T
k qk, xk+1 = xk + �kpk, rk+1 = rk − �kqk;

(3.2) pk+1 = rk, qk+1 = Apk+1, for i = 1, . . . , k, do

�i = pT
i qk+1

pT
i qi

, pk+1 = pk+1 − �ipi, qk+1 = qk+1 − �iqi

In practical computations, the left conjugate direction method may breakdown [1]. It is
then important to study how to overcome the breakdown problem efficiently. Another dis-
advantage of the method is to store all the generated left conjugate directions {p1, . . . , pk}
and their coupled vectors {q1, . . . , qk}. Meanwhile, at the kth iteration, 5k vector(scalar)–
vector operations are required to generate pk+1 and qk+1 besides one matrix–vector multipli-
cation. This may be very crucial to the performance of the method if the matrix A is sparse.
The technique of limited-memory will be introduced in Section 5 to save the storage and
multiplications.

3. EXISTENCE OF LEFT CONJUGATE DIRECTIONS

In this section, we shall discuss the existence of left conjugate directions of a non-singular
matrix A. By the relationship [1] between the left conjugate direction method and the Gaussian
elimination, it is easy to know that a non-singular matrix A has n left conjugate directions if
its Gaussian elimination exists.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



1386 Y.-H. DAI AND J. YUAN

However, the following example shows that the existence of Gaussian elimination is not

necessary for the existence of n left conjugate directions. Consider A =
(
0
1

1
0

)
. This matrix

has no Gaussian elimination since its first leading principal submatrix is zero. But we can

directly check that p1 =
(
1
1

)
and p2 =

(
1

−1

)
are two left conjugate directions of the above

matrix.
If the matrix A is skew-symmetric, namely, AT = −A, then A has no any left conjugate

direction since pTAp = 0 for every p ∈ Rn. It is then interesting to investigate some matrix
‘close to’ a skew-symmetric matrix.

Example 3.1
Consider the matrix

A =




0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 1




The fourth leading principal matrix of the above matrix is skew-symmetric and hence A can be
regarded as an augmented matrix of a skew-symmetric matrix. We can check that the following
vectors, with their components being either 0 or 1, are 5 left conjugate directions of A:

p1 =




0

0

0

1

1




, p2 =




0

1

1

1

1




, p3 =




1

1

1

1

1




, p4 =




1

0

1

1

1




, p5 =




0

0

1

0

1




In fact, defining P = (p1, . . . , p5), we have that

P TAP =




1 0 0 0 0

2 1 0 0 0

2 2 1 0 0

2 2 2 1 0

2 2 2 2 1




is a lower triangular matrix.
The above example might hint us that every non-singular matrix A has n left conjugate

directions provided that A is not skew-symmetric. We shall prove this conjecture in the
following.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



STUDY ON SEMI-CONJUGATE DIRECTION METHODS 1387

Lemma 3.1
Suppose that p1, . . . , pl ∈ Rn are l left conjugate directions of a non-singular matrix A. Define
Sl = {u ∈ Rn: pT

i Au = 0 for all i = 1, . . . , l}, Then for every u1 ∈ Sl\{0}, there must exist
some vector u2 ∈ Sl such that uT1Au2 �= 0.

Proof
Since p1, . . . , pl are left conjugate directions, they are linearly independent [1]. Thus it follows
from the non-singularity of A that the subspace Sl has the dimension of n−l. Consequently, the
subspace Tl = {v : vTAu = 0 for all u ∈ Sl} has the dimension of l. Since linearly independent
pi ∈ Tl for i = 1, . . . , l, the set {p1, . . . , pl} forms a basis of Tl .

Consider now any vector u1 ∈ Sl\{0}. If u1 ∈ Tl , we can write u1 = ∑l
i=1�ipi with at least

one non-zero coefficient �i . Let i0 be the least subscript i such that �i �= 0. By the definition
of left conjugate directions and the choice of i0, we can get that

pT
i0
Au1 =

l∑
i=1

�ip
T
i0
Api = �i0p

T
i0
Api0 �= 0

This means that u1 /∈ Sl! The contradiction shows that u1 /∈ Tl , and hence there must exist
some vector u2 in Sl satisfying uT1Au2 �= 0. �

Lemma 3.2
Suppose that p1, . . . , pl ∈ Rn (l < n) are l left conjugate directions of a non-singular matrix
A. Suppose that u1 and u2 are vectors in Sl with uT1Au2 �= 0. Then there exist non-zero real
numbers � and � such that the vectors p1, . . . , pl−1, p̄l = pl + �u1, p̄l+1 = pl + �u2 are l + 1
left conjugate directions of A.

Proof
To be such that p1, . . . , pl−1, p̄l, p̄l+1 are left conjugate directions of A, it suffices to choose
the parameters � and � such that

p̄T
l Ap̄l �= 0, p̄T

l+1Ap̄l+1 �= 0, p̄T
l Ap̄l+1 = 0 (2)

Since u1, u2 ∈ Sl , we have by direct calculations that

p̄T
l Ap̄l = pT

l Apl + �uT1Apl + �2uT1Au1

p̄T
l+1Ap̄l+1 = pT

l Apl + �uT2Apl + �2uT2Au2

p̄T
l Ap̄l+1 = pT

l Apl + �uT1Apl + ��uT1Au2

(3)

Denote A to be the set of all � such that p̄T
l Ap̄l = 0, and B the set of all � such that

p̄T
l+1Ap̄l+1 = 0. Note that A and B have at most two elements. Then, there must exist some

� /∈ A ∪ {0} such that

� = −pT
l Apl + �uT1Apl

�uT1Au2
/∈ B ∪ {0} (4)

In this case, since � /∈ A and � /∈ B, the two inequalities in (2) hold. It follows from (3)
and the equality in (4) that p̄T

l Ap̄l+1 = 0. Thus such � and � satisfy (2). This completes
our proof. �

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



1388 Y.-H. DAI AND J. YUAN

Theorem 3.3
For every non-singular matrix A ∈ Rn×n, which is not skew-symmetric, namely, AT �= −A,
there exist n left conjugate directions.

Proof
Since A is not skew-symmetric, there must exist a vector p1 such that pT

1Ap1 �= 0. This p1 can
be regarded as one left conjugate direction of A. Generally, assume that l(< n) left conjugate
directions p1, . . . , pl have been found. Then by Lemma 3.1, there exist u1, u2 ∈ Sl satisfying
uT1Au2 �= 0, and by Lemma 3.2, there exist l + 1 left conjugate directions of A. Therefore, by
induction, A has n left conjugate directions. �

Thus, we have proved that every n-dimensional non-singular matrix A has n left conjugate
directions unless A is skew-symmetric. A direct corollary of Theorem 3.3 is as follows.

Corollary 3.4
For every non-singular matrix A ∈ Rn×n, if AT �= −A, then there exists a non-singular matrix
P ∈ Rn×n such that P TAP is lower triangular (or upper triangular).

Suppose that A ∈ Rn×n is non-singular but not skew-symmetric, and that q1, . . . , qn are n

linearly independent vectors in Rn with qT
1 Aq1 �= 0. In the rest of this section, we will describe

a strategy to obtain n left conjugate directions of A from {q1, . . . , qn}. The strategy is based
on the proofs to Lemma 3.2 and Theorem 3.3.

For convenience, we introduce a notation. Assume that p1, . . . , pk are k left conjugate
directions of A. For any v ∈ Rn, we denote v̄ = LC(A, p1, . . . , pk, v) to be the vector
v̄ = v +∑k

i=1 �ipi such that pT
i Av = 0 for i = 1, . . . , k. The vector v̄ can be obtained in a

recursive way (one can refer to step 3.2 of Algorithm 2.3).

Algorithm 3.5 (A strategy to generate left conjugate directions)

1. p1 = q1, l = 1, j = 2;
2. u2 = LC(A, p1, p2, . . . , pl, ql+1);

(2.1) If uT2Au2 �= 0, pl+1 = u2, go to step 3;
(2.2) j = j + 1, u1 = LC(A, p1, p2, . . . , pl, qj ). If uT1Au2 �= 0, pl+1 = pl + �u2,

pl = pl + �u1, qj = u1 (with non-zero � and � satisfying (2), go to step 3;
otherwise, repeat step 2.2.

3. l = l + 1, j = l + 1. If l = n, stop; otherwise, go to step 2.

In step 2.2 of the above algorithm, by Lemma 3.2, if uT1Au2 �= 0, � and � can be found
such that p1, . . . , pk+1 are left conjugate directions of A. However, it is necessary to prove
that there exists some index j such that uT1Au2 �= 0, where u1 = LC(A, p1, p2, . . . , pl, qj ).
For this purpose, we provide the following theorem.

Theorem 3.6
Suppose that A is non-singular but not skew-symmetric, and that q1, . . . , qn are linearly inde-
pendent vectors in Rn with qT

1 Aq1 �= 0. Then Algorithm 3.5 is well defined, and the generated
vectors, p1, . . . , pn, are left conjugate directions of A.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



STUDY ON SEMI-CONJUGATE DIRECTION METHODS 1389

Proof
We prove the following statements hold for l = 1, . . . , n by induction: (i) p1, . . . , pl are left
conjugate directions of A; (ii) p1, . . . , pl , ql+1, . . . , qn are linearly independent.

Since p1 = q1 and qT
1 Aq1 �= 0, (i) and (ii) clearly hold for l = 1. Assume that (i) and (ii)

hold for some l < n. Firstly, we consider the case that pl+1 is obtained by step 2.1, namely,
pl+1 = u2. In this case, by the definition of u2 and uT2Au2 �= 0, we have that p1, . . . , pl+1
are l + 1 left conjugate directions of A. Hence,

det(p1, . . . , pl, pl+1, ql+2, . . . , qn) = det(p1, . . . , pl, ql+1, ql+2, . . . , qn) �= 0

which shows that p1, . . . , pl+1, ql+2, . . . , qn are linearly independent. Thus the statements (i)
and (ii) hold for l + 1 in this case. Secondly, we consider the case that pl+1 is obtained by
step 2.2, namely, uT2Au2 = 0. Denote q̄j = LC(A, p1, . . . , pl, qj ) for j = l + 2, . . . , n. It is
easy to verify

det(p1, . . . , pl, u2, q̄l+2, . . . , q̄n) = det(p1, . . . , pl, ql+1, ql+2, . . . , qn) �= 0 (5)

which implies the linear independency of the vectors p1, . . . , pl, u2, q̄l+2, . . . , q̄n. It follows by
definition of u2 that

pT
j Au2 = 0 for j = 1, . . . , l (6)

If

q̄T
j Au2 = 0 for j = l + 2, . . . , n (7)

we can deduce by (6), (7), and the linear independence of p1, . . . , pl, u2, q̄l+1, . . . , q̄n that
u2 = 0, contradicting (5). Thus q̄T

j Au2 �= 0 must hold for some j ∈ {l + 2, . . . , n} and step
2.2 is well defined. Suppose that u1 = q̄j0 for some j0. Since � �= 0, we can get that

det(p1, . . . , pl−1, pl + �u1, pl + �u2, ql+2, . . . , qj0−1, u1, qj0+1, . . . , qn)

= det(p1, . . . , pl−1, pl, pl + �u2, ql+2, . . . , qj0−1, u1, qj0+1, . . . , qn)

= � det(p1, . . . , pl, ql+1, . . . , qn) �= 0

Therefore, the new p1, . . . , pl, pl+1, ql+2, . . . , qn obtained by step 2.2 are linearly independent.
By Lemma 3.2 and the choices of � and �, p1, . . . , pl+1 are left conjugate directions of A.
Thus the statements (i) and (ii) also hold in this case. By induction, (i) and (ii) are true for
l = 1, . . . , n. Therefore, Algorithm 3.5 is well defined, and generates n left conjugate directions
of A. �

A left conjugate direction method can then be designed based on Algorithms 2.2 and 3.5.
We may also use Algorithm 3.5 to generate a matrix P such that P TAP is lower triangu-
lar. In addition, the proof to Theorem 3.6 provides us with another approach to show that
there must exist vectors u1 and u2 in Sl (see Lemma 3.1 for the definition of Sl) such that
uT1Au2 �= 0.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



1390 Y.-H. DAI AND J. YUAN

For every i, let ei be the vector whose ith element is 1 and the others are zero. In practical
computations, if eT1Ae1 �= 0, we may take qi = ei . In the case that all leading principal minors
of A are non-zero, it is easy to see that all left conjugate directions will be generated by step
2.1, and the matrix P = (p1, . . . , pn) is unit upper triangular. This means that

P TAP = T , where T is lower triangular. (8)

Thus by letting L1 = P −TT and U1 = P −1, we can obtain one kind of LU decomposition of
the matrix A. This has been demonstrated by our numerical experiments. Assume that

A =




1 0.1632 0.0232

0.9288 0.2763 0.2313

0.4851 0.1310 0.8453




Direct tests show that the leading principle minors are non-zero. Using Algorithm 5.1 and
prescribing qi = ei for i = 1, 2, 3, we obtained

P =



1 −0.1632 0.2513

0 1 −1.6818

0 0 1


 , T = P TAP =




1 0 0

0.7656 0.1247 0

−0.8257 −0.1579 0.7469




With Matlab we also obtained the LU decomposition of A as follows:

L2 =




1 0 0

0.9288 1 0

0.4851 0.4156 1


 , U2 =



1 0.1632 0.0232

0 0.1247 0.2098

0 0 0.7469




Denoting D = diag(U11, U22, U33), we found that L1 = P −TT = L2D and U1 = P −1 =
D−1U2 in numerical computations.

The following matrix is also used to test Algorithm 3.5:

A =




1 0 0 0 0

0 0 1 0 0

0 −1 0 0 0

0 0 0 0 1

0 0 0 −1 0




Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



STUDY ON SEMI-CONJUGATE DIRECTION METHODS 1391

Taking qi = ei for i = 1, . . . , 5 and � = � = 1, we obtained P = (p1, . . . , pl) and T = P TAP

as follows:

P =




1 1 −1 −1 1

0 1 −1 −1 1

1 0 1 1 −1

0 0 0 1 −1

0 0 1 0 1




, T =




1 0 0 0 0

2 1 0 0 0

−2 −2 1 0 0

−2 −2 2 1 0

2 2 −2 −2 1




Thus the above two examples demonstrated the usefulness of Algorithm 3.5.

4. A TECHNIQUE OF OVERCOMING BREAKDOWN

If A is skew-symmetric when no left conjugate directions exist, the direct application of the left
conjugate direction method is not possible. A remedy [1] is to multiply A by some permutation
matrix so that the permuted matrix, Ā say, is not skew-symmetric. Then we know by Theorem
3.3 that there exist n left conjugate directions of Ā and the left conjugate direction method is
applicable. Based on Example 3.1 and Theorem 3.3, we propose a new remedy technique of
augmented matrix which is described in following theorem.

Theorem 4.1
Suppose that A and B are non-singular matrices in Rn×n and Rm×m, respectively. Suppose
that p1, . . . , pl are l left conjugate directions of the matrix A. Then

q1 =
(

p1

0m

)
, . . . , ql =

(
pl

0m

)

are left conjugate directions of the augmented matrix
(

A
0

0
B

)
. Further, assume also that pl+1

∈ Rn satisfies

pT
i Apl+1 = 0, i = 1, . . . , l, but pT

l+1Apl+1 = 0 (9)

and that v ∈ Rm satisfies vTBv �= 0. Then q1, . . . , ql, ql+1 = (
pl+1

v

)
are l + 1 left conjugate

directions of the augmented matrix.

Proof
The statements follow directly by the definition of left conjugate direction. �

For the choice of v, we may choose

B = tI1, where t �= 0 (10)

In this case, every non-zero real number can be chosen as v. We then summarize the breakdown
free algorithm of the left conjugate direction method as follows.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



1392 Y.-H. DAI AND J. YUAN

Algorithm 4.2
Suppose that it happens that pT

k qk = 0 in step 3.1 of Algorithm 2.3. Then we do:

1. A =
(

A
0

0
t

)
, b =

(
b
0

)
, where t �= 0 is any real number;

2. pi = (
pi

1

)
, qi = (

qi

t

)
, i = 1, . . . , k;

3. xk = (
xk

0

)
, rk = (

rk
0

)
;

4. go to step (3.1).

In theory, the value t in the above algorithm is only required to be non-zero.

Example 4.1
Consider the non-singular system in Reference [1],


1 0 0

0 2 1

0 3 2


 x =




1

1

−1




where the exact solution is x∗ = (1, 3, −5)T. If we choose p1 = (1, 0, 0)T, the left conjugate
direction method will break down. To overcome the problem, a technique by perturbing A

to A + �I is used in Reference [1]. But they showed that it is not possible to get a good
approximation whose relative error is better than the order of 10−6. Another difficulty with
this perturbation technique is how to choose the parameter �. However, if we apply Algorithm
4.2 with t = 1 to overcome the breakdown, the left conjugate direction method will obtain a
solution in four iterations. The relative error of the solution is

‖x∗ − x‖2
‖x∗‖2 = 3.7532 × 10−17

Example 4.2
Consider the skew-symmetric system Ax = b in Reference [1], where

A =




0 474 316 158

−474 0 474 316

−316 −474 0 474

−158 −316 −474 0




b =




−790

−632

−1738

−948


 , xexact =




1

−2

3

−5




By the perturbation technique, an approximate solution is obtained in Reference [1] with its
relative error being in the order of 10−5. By the permutation technique, an approximation with

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



STUDY ON SEMI-CONJUGATE DIRECTION METHODS 1393

smaller relative error (at least of order O(10−11)) can be obtained [1]. If we use Algorithm 4.1
with t = 1, x0 = 0, p = b/‖b‖2, then we can obtain a solution in five iterations and its relative
error is 1.3486 × 10−11. Similar results were also obtained for p = eye(4, 1), p = rand(n, 1),
and p = A(4, 1)/‖A(4, 1)‖2.

The above examples demonstrated the efficiency of the technique of augmented matrix. In
theory, if there are only finite numbers, m say, of indices k such that pT

k qk = 0, then the left
conjugate direction method with Algorithm 4.2 will give the exact solution in at most n + m

iterations. This is because, assuming that the final augmented matrix is Ã, the left conjugate
direction method can be regarded to apply for a linear system with its coefficient matrix being
Ã. However, we still do not know yet whether the case that pT

k qk = 0 can occur for infinite
times or not.

5. LIMITED-MEMORY LEFT CONJUGATE DIRECTION METHOD

Unlike the conjugate gradient method for symmetric and positive definite linear systems, the
left conjugate direction method does not have short-recurrence formula generally [5]. The
latter needs to store all the generated left conjugate directions {p1, . . . , pk} and their coupled
vectors {q1, . . . , qk}. As a result, the storage required by the left conjugate direction method
is increasing with the iteration number k. At the same time, we can see from step 3.2 in
Algorithm 2.3 that the cost to calculate the next left conjugate directions becomes higher and
higher with k.

A natural idea to avoid the two disadvantages of the left conjugate direction method is
to discard those old left conjugate directions and only preserve some recent left conjugate
directions. Given any positive integer m, a variant of the left conjugate direction method is
described as Algorithm 5.1, in which only recent max(k, m) left conjugate directions are pre-
served. This stage is similar to the limited-memory BFGS method (for example, see Reference
[6]), in which only pairs {(sk−1, yk−1), . . . , (sk−max(k, m), yk−max(k, m))} are used for generat-
ing the new approximation matrix Bk+1. Thus we call Algorithm 5.1 as limited-memory left
conjugate direction method.

Algorithm 5.1 (Limited-memory left conjugate direction method)

1. Input x1, A, b, m, �;
2. Calculate r1 = b − Ax1, p1 = r1, q1 = Ap1, k = 1, l = 1;
3. While ‖rk‖ > �, do

(3.1) Calculate tk = pT
k qk . If tk = 0, apply Algorithm 4.2;

(3.2) �k = pT
k rk/tk , xl+1 = xl + �kpk , rl+1 = rl − �kqk;

(3.3) If l �m, then k = mod(k, m), j1 = k + 1, j2 = k + m;
else j1 = 1, j2 = k;

(3.4) p = rl+1, q = Ap;
For j = j1, . . . , j2, do
i = mod(j, m), �i = pT

i q/ti , p = p − �ipi , q = q − �iqi ;
pk+1 = p, qk+1 = q;

(3.5) k = k + 1, l = l + 1.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



1394 Y.-H. DAI AND J. YUAN

We have tested the limited-memory left conjugate direction method by two examples. All
tests in this section were done with MATLAB in the machine SGI2100 in the Academy of
Mathematics and System Sciences, Chinese Academy of Sciences. The first example is Example
7.1 in Reference [1] (see also Reference [7]).
Example 5.1
Consider the test problem derived by discretizing the elliptic partial differential equation

−�u + 2�1ux + 2�2uy − �3u = f (11)

with constant coefficients �1, �2 and �3 on the unit square � = {(x, y) : 0� x, y � 1}, and
with boundary condition u(x, y) = 0 on ��. The function f is chosen so that u(x, y) =
xexy sin(�x) cos(�y) solves (11). We use symmetric finite differences on a uniform (n + 2) ×
(n + 2) grid, including boundary points, and the standard five-point stencil to approximate �u

to yield a linear system N = n2 equations for n2 unknowns uij = u(ih, jh)(1� i, j � n):

(4 − �3h
2)uij − (1 + �1h)ui−1,j − (1 − �1h)ui+1,j − (1 + �2h)ui,j−1

−(1 − �2h)ui,j+1 = h2fij (12)

where fij = f (ih, jh) and h = 1/(n+1). Same as References [1, 7], the following three cases
are used for our numerical tests:

Case I: (�1, �2, �3) = (30, 40, 40);
Case II: (�1, �2, �3) = (60, 80, 40);
Case III: (�1, �2, �3) = (80, 80, 40).

The following stopping rule is used in this example:

‖rk‖2/‖r1‖2 � 10−6 (13)

We tested the limited-memory left conjugate direction method with each value of m ∈ [1, 20].
The left conjugate direction method has also been tested, which is corresponding to the case
that m = ∞. We checked that the relation (13) is achieved by each test. We listed the iteration
numbers and CPU times in Tables I and II. The tables are corresponding to the cases that
n = 30 and that n = 40, respectively.

The second example is drawn from Reference [8].
Example 5.2
Consider the three-dimensional convection–diffusion equation

−(uxx + uyy + uzz) + q(ux + uy + uz) = 0 (14)

on the unit cube � = [0, 1]×[0, 1]×[0, 1], with constant coefficient q and subject to Dirichlet-
type boundary conditions. Suppose that the seven-point finite centered difference is used in
discretizing both the diffusive terms and the convective terms. We then get the systems of
linear equations Ax = b with the coefficient matrix

A = Tx ⊗ I ⊗ I + I ⊗ Ty ⊗ I + I ⊗ I ⊗ Tz (15)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



STUDY ON SEMI-CONJUGATE DIRECTION METHODS 1395

Table I. Results for Example 5.1 with N = 302.

Case I Case II Case III

m Iter Time Iter Time Iter Time

1 82 2.80 106 3.60 108 3.65
2 80 2.73 204 7.05 315 10.89
3 85 2.95 93 3.22 102 3.53
4 91 3.19 97 3.36 103 3.57
5 92 3.28 101 3.57 106 3.72
6 97 3.46 97 3.46 100 3.56
7 101 3.64 100 3.64 107 3.85
8 94 3.43 98 3.58 107 3.87
9 96 3.54 109 3.98 107 3.91
10 96 3.56 107 3.99 115 4.28
11 99 3.73 106 3.97 109 4.07
12 101 3.81 109 4.19 109 4.18
13 109 4.16 110 4.20 113 4.31
14 113 4.33 113 4.35 125 4.84
15 117 4.54 116 4.59 123 4.85
16 114 4.51 123 4.91 130 5.19
17 125 4.99 131 5.24 121 4.83
18 135 5.41 125 5.02 134 5.39
19 136 5.47 138 5.62 128 5.22
20 149 6.11 139 5.69 131 5.29
∞ 62 2.97 68 3.39 68 3.35

where the equidistant step-size h = 1/(n + 1) is used in the discretization on all the three
directions and the natural lexicographical ordering is employed to the unknowns. The symbol
⊗ denotes the Kronecker product. Letting

r = qh

2
(16)

and

t1 = 6, t2 = −1 − r, t3 = −1 + r (17)

the tridiagonal matrices Tx , Ty and Tz in (15) are given by

Tx = tridiag(t2, t1, t3), Ty = Tz = tridiag(t2, 0, t3) (18)

The order of the coefficient matrix A in (14) is N = n3. Two values of n were used in our
tests: n = 10 and n = 15. The value r in (16) is the mesh Reynolds number. After n is fixed,
the value of q decides the method Reynolds number. Same as Reference [8], the following four
values of q were tested: q = 1, q = 10, q = 100 and q = 10 000. In addition, the right-hand
term b is b = Au∗ with u∗ = (1, 1, . . . , 1)T and the initial points u0 is zero vector.

As before, we tested the limited-memory left conjugate direction method with m ∈ [1, 20]
and the left conjugate direction method (namely m = ∞). The stopping rule is still (13). We
checked that (13) was achieved by each test with Example 5.2. Table III listed the numerical

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



1396 Y.-H. DAI AND J. YUAN

Table II. Results for Example 5.1 with N = 402.

Case I Case II Case III

m Iter Time Iter Time Iter Time

1 99 11.68 115 13.43 116 13.80
2 105 12.50 111 12.98 146 17.18
3 112 13.48 106 12.44 112 13.44
4 116 14.03 111 13.11 122 14.72
5 114 13.89 116 13.63 121 14.44
6 113 13.58 116 13.92 129 15.69
7 122 14.86 115 13.64 130 15.87
8 127 15.62 122 14.66 128 15.45
9 129 15.86 125 14.96 131 16.11
10 119 14.80 122 14.64 142 17.40
11 116 14.36 129 15.53 137 17.04
12 118 14.73 124 15.13 138 17.11
13 126 15.60 129 15.66 133 16.47
14 126 15.63 129 15.88 133 16.33
15 124 15.61 127 15.68 136 17.01
16 132 16.70 135 16.71 135 17.22
17 140 17.83 142 17.63 141 17.80
18 143 18.07 145 18.20 158 20.25
19 140 17.76 149 18.52 152 19.54
20 143 18.31 151 19.10 156 19.99
∞ 80 11.61 83 11.97 83 12.06

results with n = 10 and different values of q, whereas Table IV listed the numerical results
with n = 15.

From the tables, we can draw the following statements:

(1) The left conjugate direction method (namely, the case m = ∞) always gives the least
iteration number for each problem. This is understandable since all the generated left
conjugate directions are preserved and used. However, the method may not provide
the least computing time since it requires more CPU time in the generation of left
conjugate direction when k > 2m. For instance, Example 5.1 with n = 30 and Case
II, the limited-memory left conjugate direction method with m = 3 provides the least
computing time. Another instance is Example 5.2 with n = 10 and q = 1000.

(2) As m increases, the iteration number required by the limited-memory left conjugate
direction method needs not be monotonically decreasing. The iteration number is indeed
decreasing for Example 5.3 with n = 10 and q = 1. However, this is not true in all the
other cases.

(3) The limited-memory left conjugate direction method is very robust for both the examples.
Although its convergence is not proved yet even for positive definite but non-symmetric
linear systems, the tables illustrate that the method with different values of m can
provide the relation (13).

(4) It is difficult to decide the best value of m. For instance, for Example 5.1 with n = 30,
m = 2 gives the least computing time in Case I, but also provides the worst numerical

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



STUDY ON SEMI-CONJUGATE DIRECTION METHODS 1397

Table III. Results for Example 5.2 with N = 103.

q = 1 q = 10 q = 100 q = 1000

m Iter Time Iter Time Iter Time Iter Time

1 53 2.38 44 1.98 85 3.94 518 24.00
2 52 2.33 48 2.17 104 4.85 515 23.78
3 50 2.28 43 1.97 98 4.60 592 27.67
4 46 2.11 47 2.16 101 4.81 515 24.33
5 45 2.07 50 2.34 100 4.78 465 21.97
6 44 2.04 48 2.26 87 4.20 1255 59.94
7 40 1.86 51 2.39 98 4.78 460 22.50
8 39 1.85 50 2.35 93 4.60 454 22.14
9 38 1.82 50 2.40 93 4.60 474 23.48
10 38 1.83 52 2.50 93 4.60 712 35.11
11 38 1.85 51 2.47 98 4.89 463 23.02
12 38 1.84 51 2.49 103 5.22 469 23.81
13 38 1.86 52 2.57 103 5.22 451 23.24
14 38 1.88 47 2.31 108 5.52 497 25.82
15 38 1.89 47 2.35 100 5.17 455 23.53
16 34 1.68 48 2.39 100 5.23 438 22.81
17 34 1.68 49 2.48 89 4.67 433 22.74
18 34 1.69 50 2.51 93 4.88 434 22.78
19 34 1.71 50 2.53 84 4.42 443 23.18
20 34 1.72 50 2.54 85 4.45 426 22.89
∞ 34 1.79 34 1.78 60 3.64 244 26.67

results in Case II. There are also quite a few cases in which the limited-memory left
conjugate direction method with other values of m performs very poorly. For instance,
m = 3 and 6 for Example 5.2 with n = 10 and q = 1000. From the tables, however, it
is preferable to choose m � 4.

6. CONCLUSIONS AND DISCUSSION

In this paper, we have carefully studied the left conjugate direction method proposed in
Reference [1]. Firstly, we have proved that for any n-dimensional non-singular matrix A,
there exist n left conjugate directions provided that A is not skew symmetric. A strategy to
generate left conjugate directions of A has also been provided. Secondly, we have provided a
simple technique, named the technique of augmented matrix, to overcome the possible break-
down occurred in the left conjugate direction method. Thirdly, to avoid the storage of all left
conjugate directions and to economize the cost of the generation of left conjugate directions,
the technique of limited-memory has been combined with the left conjugate direction method.
Preliminary numerical results have been done, which demonstrated the robustness and efficiency
of the limited-memory left conjugate direction method.

We also feel that there are some problems still required to be solved. For example, the
problems how to choose the parameter t in (10) and whether the left conjugate direction method
with the remedy algorithm—Algorithm 4.2 has the finite termination property. For the limited-
memory conjugate direction Algorithm 5.1, we do not know yet whether this method converges

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



1398 Y.-H. DAI AND J. YUAN

Table IV. Results for Example 5.2 with N = 153.

q = 1 q = 10 q = 100 q = 1000

m Iter Time Iter Time Iter Time Iter Time

1 78 40.26 68 34.00 94 46.99 378 188.93
2 76 39.75 63 31.59 109 54.70 453 229.14
3 74 37.96 70 35.10 94 47.72 390 194.00
4 73 38.26 60 30.17 87 43.72 417 207.40
5 67 35.12 62 30.91 93 46.90 394 200.63
6 66 34.28 64 32.22 91 46.38 526 262.77
7 66 33.94 71 35.83 97 49.43 384 194.81
8 65 34.34 69 35.14 97 49.20 384 194.87
9 62 32.52 67 33.83 94 47.99 378 192.37
10 59 31.17 67 33.70 99 50.28 390 196.27
11 57 30.26 71 36.00 100 51.15 368 188.56
12 57 29.81 70 35.67 101 51.36 383 195.71
13 56 29.36 72 36.66 99 50.86 376 191.85
14 56 29.89 73 37.39 98 50.16 368 189.77
15 55 29.24 67 34.43 105 53.68 382 193.36
16 55 29.28 71 36.15 103 52.85 389 199.19
17 55 28.85 74 38.06 101 51.92 374 192.65
18 55 29.16 75 38.43 102 52.42 482 246.15
19 55 29.03 66 34.15 100 51.47 364 185.89
20 55 28.97 67 34.54 107 55.03 428 221.55
∞ 49 26.80 50 26.46 62 33.39 302 215.80

globally even for symmetric positive definite linear systems. At the same time, we think that
this technique of limited-memory can be improved in many ways. For example, one possible
way is to preserve at kth iteration a collection of left conjugate directions {p(k)

1 , . . . , p
(k)
m }

such that the values of (p
(k)
i )TAp

(k)
i /‖p(k)

i ‖22 (i = 1, . . . , m) are relatively large. We feel that
the left conjugate direction method for non-symmetric systems is far from maturity and more
numerical experiments are still required.

ACKNOWLEDGEMENTS

This research was partially supported by the Chinese NSF grants 19801033 and 10171104, the CNPq,
Fundação Araucária, in Brazil, and the Sino-Brazil joint research project ‘Numerical Linear Algebra
and Optimization’.

This work was initiated and mainly done while the first author was visiting Department of Mathe-
matics of Federal University of Paraná, Brazil 2001. He would like to thank the CNPq in Brazil very
much for supporting his visit partly. He also thanks Dr Jiahong Yin and Dr Liangzhong Hu for their
many helps during his visit. Many thanks are also due to the referees, whose suggestions improve
this paper greatly.

REFERENCES

1. Yuan JY, Golub GH, Plemmons RJ, Cecilio WAG. Semi-conjugate direction methods for real positive definite
systems. BIT 2004; 44:189–207.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399



STUDY ON SEMI-CONJUGATE DIRECTION METHODS 1399

2. Hestenes MR, Stiefel E. The method of conjugate gradients for solving linear systems. Journal of Research
of the National Bureau of Standards 1952; 49:409–436.

3. Stewart GW. Conjugate direction methods for solving systems of linear equations. Numerische Mathematik
1973; 21:285–297.

4. Renato S. Silva, Fernanda MP, Raupp Regina C. Almeida. A numerical methodolgy to solve thermal
pollution problems. IX Congresso Brasileiro de Engenharia e Cincias Trmicas, Caxambu, Brazil, 2002
(http://www.lncc.br/proj-pesq/relpesq-02.html/32/2002).

5. Faber V, Manteuffel T. Necessary and sufficient conditions for the existence of a conjugate gradient method.
SIAM Journal on Numerical Analysis 1984; 21:352–362.

6. Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization. Mathematical
Programming 1989; 45:503–528.

7. Calvetti D, Golub GH, Reichel L. Adaptive Chebyshev iterative methods for non-symmetric linear systems
based on modified moments. Numerische Mathematik 1994; 67:21–40.

8. Bai ZZ, Golub GH, NG MK. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive
linear systems. SIAM Journal on Matrix Analysis and Applications 2003; 24:603–626.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1383–1399


