
Computational Modeling
with

Methods and Analysis

R. E. White
Department of Mathematics

North Carolina State University
white@math.ncsu.edu

Updated on May 12, 2003
To Be Published by CRC Press in 2003

ii

Contents

Preface ix

Introduction xi

1 Discrete Time-Space Models 1
1.1 Newton Cooling Models . 1
1.2 Heat Diffusion in a Wire . 9
1.3 Diffusion in a Wire with Little Insulation 17
1.4 Flow and Decay of a Pollutant in a Stream 25
1.5 Heat and Mass Transfer in Two Directions 32
1.6 Convergence Analysis . 42

2 Steady State Discrete Models 51
2.1 Steady State and Triangular Solves 51
2.2 Heat Diffusion and Gauss Elimination 59
2.3 Cooling Fin and Tridiagonal Matrices 68
2.4 Schur Complement and Domain Decomposition 77
2.5 Convergence to Steady State . 86
2.6 Convergence to Continuous Model 91

3 Poisson Equation Models 99
3.1 Steady State and Iterative Methods 99
3.2 Heat Transfer in 2D Fin and SOR 107
3.3 Fluid Flow in a 2D Porous Medium 116
3.4 Ideal Fluid Flow . 122
3.5 Deformed Membrane and Steepest Descent 130
3.6 Conjugate Gradient Method . 138

4 Nonlinear and 3D Models 145
4.1 Nonlinear Problems in One Variable 145
4.2 Nonlinear Heat Transfer in a Wire 152
4.3 Nonlinear Heat Transfer in 2D 160
4.4 Steady State 3D Heat Diffusion 166
4.5 Time Dependent 3D Diffusion . 171

iii

iv CONTENTS

4.6 High Performance Computations in 3D 180

5 Epidemics, Images and Money 189
5.1 Epidemics and Dispersion . 189
5.2 Epidemic Dispersion in 2D . 197
5.3 Image Restoration . 204
5.4 Restoration in 2D . 213
5.5 Option Contract Models . 219
5.6 Black-Scholes Model for Two Assets 228

6 High Performance Computing 237
6.1 Vector Computers and Matrix Products 237
6.2 Vector Computations for Heat Diffusion 244
6.3 Multiprocessors and Mass Transfer 249
6.4 MPI and IBM/SP . 258
6.5 MPI and Matrix Products . 263
6.6 MPI and 2D Models . 268

7 Message Passing Interface 275
7.1 Basic MPI Subroutines . 275
7.2 Reduce and Broadcast . 282
7.3 Gather and Scatter . 288
7.4 Grouped Data Types . 294
7.5 Communicators . 301
7.6 Fox’s Algorithm for AB . 307

8 Classical Methods for Ax = d 313
8.1 Gauss Elimination . 313
8.2 Symmetric Positive Definite Matrices 318
8.3 Domain Decomposition and MPI 323
8.4 SOR and P-regular Splittings . 328
8.5 SOR and MPI . 333
8.6 Parallel ADI Schemes . 339

9 Krylov Methods for Ax = d 345
9.1 Conjugate Gradient Method . 345
9.2 Preconditioners . 350
9.3 PCG and MPI . 356
9.4 Least Squares . 360
9.5 GMRES . 365
9.6 GMRES(m) and MPI . 372

References 379

Index 381

List of Figures

1.1.1 Temperature versus Time . 6
1.1.2 Steady State Temperature . 7
1.1.3 Unstable Computation . 7
1.2.1 Diffusion in a Wire . 11
1.2.2 Time-Space Grid . 13
1.2.3 Temperature versus Time-Space 15
1.2.4 Unstable Computation . 15
1.2.5 Steady State Temperature . 16
1.3.1 Diffusion in a Wire with csur = .0000 and .0005 22
1.3.2 Diffusion in a Wire with n = 5 and 20 23
1.4.1 Polluted Stream . 26
1.4.2 Concentration of Pollutant . 30
1.4.3 Unstable Concentration Computation 31
1.5.1 Heat or Mass Entering or Leaving 34
1.5.2 Temperature at Final Time . 37
1.5.3 Heat Diffusing Out a Fin . 38
1.5.4 Concentration at the Final Time 40
1.5.5 Concentrations at Different Times 41
1.6.1 Euler Approximations . 45

2.1.1 Infinite or None or One Solution(s) 52
2.2.1 Gaussian Elimination . 64
2.3.1 Thin Cooling Fin . 69
2.3.2 Temperature for c = .1, .01, .001, .0001 75
2.6.1 Variable r = .1, .2 and .3 . 94
2.6.2 Variable n = 4, 8 and 16 . 95

3.1.1 Cooling Fin with T = .05, .10 and .15 105
3.2.1 Diffusion in Two Directions . 108
3.2.2 Temperature and Contours of Fin 113
3.2.3 Cooling Fin Grid . 114
3.3.1 Incompressible 2D Fluid . 117
3.3.2 Groundwater 2D Porous Flow . 118

v

vi LIST OF FIGURES

3.3.3 Pressure for Two Wells . 122
3.4.1 Ideal Flow About an Obstacle . 123
3.4.2 Irrotational 2D Flow vx − uy = 0 124
3.4.3 Flow Around an Obstacle . 128
3.4.4 Two Paths to (x,y) . 129
3.5.1 Steepest Descent norm(r) . 136
3.6.1 Convergence for CG and PCG . 143

4.2.1 Change in F1 . 155
4.2.2 Temperatures for Variable c . 158
4.4.1 Heat Diffusion in 3D . 167
4.4.2 Temperatures Inside a 3D Fin . 171
4.5.1 Passive Solar Storage . 172
4.5.2 Slab is Gaining Heat . 178
4.5.3 Slab is Cooling . 179
4.6.1 Domain Decompostion in 3D . 183
4.6.2 Domain Decomposition Matrix 187

5.1.1 Infected and Susceptible versus Space 196
5.2.1 Grid with Artificial Grid Points 199
5.2.2 Infected and Susceptible at Time = 0.3 203
5.3.1 Three Curves with Jumps . 206
5.3.2 Restored 1D Image . 213
5.4.1 Restored 2D Image . 219
5.5.1 Value of American Put Option 222
5.5.2 P(S,T-t) for Variable Times . 226
5.5.3 Option Values for Variable Volatilities 226
5.5.4 Optimal Exercise of an American Put 227
5.6.1 American Put with Two Assets 229
5.6.2max(E1 +E2 − S1 − S2, 0) . 234
5.6.3max(E1 − S1, 0) +max(E2 − S2, 0) 235

6.1.1 von Neumann Computer . 238
6.1.2 Shared Memory Multiprocessor 239
6.1.3 Floating Point Add . 239
6.1.4 Bit Adder . 240
6.1.5 Vector Pipeline for Floating Point Add 241
6.2.1 Temperature in Fin at t = 60. 248
6.3.1 Ring and Complete Multiprocessrs 250
6.3.2 Hypercube Multiprocessor . 250
6.3.3 Concentration at t = 17 . 256
6.4.1 Fan-out Communication . 262
6.6.1 Space Grid with Four Subblocks 269
6.6.2 Send and Recieve for Processors 270

7.2.1 A Fan-in Communication . 282

List of Tables

1.6.1 Euler Errors at t = 10 . 45
1.6.2 Errors for Flow . 48
1.6.3 Errors for Heat . 48

2.6.1 Second Order Convergence . 97

3.1.1 Variable SOR Parameter . 104
3.2.1 Convergence and SOR Parameter 113

4.1.1 Quadratic Convergence . 149
4.1.2 Local Convergence . 149
4.2.1 Newton’s Rapid Convergence . 158

6.1.1 Truth Table for Bit Adder . 239
6.1.2 Matrix-vector Computation Times 243
6.2.1 Heat Diffusion Vector Times . 246
6.3.1 Speedup and Efficiency . 252
6.3.2 HPF for 2D Diffusion . 254
6.4.1 MPI Times for trapempi.f . 262
6.5.1 Matrix-vector Product mflops . 265
6.5.2 Matrix-matrix Products mflops 268
6.6.1 Processor Times for Diffusion . 272
6.6.2 Processor Times for Pollutant . 273

7.6.1 Fox Times (.001*sec.) . 311

8.3.1 MPI Times for geddmpi.f . 327
8.5.1 MPI Times for sorddmpi.f . 338

9.3.1 MPI Times for cgssormpi.f . 360
9.6.1 MPI Times for gmresmmpi.f . 376

vii

viii LIST OF TABLES

Preface

This book evolved from the need to migrate computational science into under-
graduate education. It is intended for students who have had basic physics,
programming, matrices and multivariable calculus.
The choice of topics in the book has been influenced by Undergraduate

Computational Engineering and Science Project (a United States Department
of Energy funded effort), which was a series of meetings during the 1990s.
These meetings focused on the nature and content for computational science
undergraduate education. They were attended by a diverse group of science
and engineering teachers and professionals, and the continuation of some of
these activities can be found at the Krell Institute, http://www.krellinst.org.
Variations of chapters 1-4 and 6 have been taught at North Carolina State
University in fall semesters since 1992. The other four chapters were developed
in 2002 and taught in the 2002-3 academic year.
The department of mathematics at North Carolina State University has

given me the time to focus on the challenge of introducing computational science
materials into the undergraduate curriculum. The North Carolina Supercom-
puting Center, http://www.ncsc.org, has provided the students with valuable
tutorials and computer time on supercomputers. Many students have made
important suggestions, and Carol Cox Benzi contributed some course materials
with the initial use of MATLAB. I thank my close friends who have listened to
me talk about this effort, and especially Liz White who has endured the whole
process with me.

Bob White
May 12, 2003

ix

x PREFACE

Introduction

Computational science is a blend of applications, computations and mathemat-
ics. It is a mode of scientific investigation that supplements the traditional
laboratory and theoretical methods of acquiring knowledge. This is done by
formulating mathematical models whose solutions are approximated by com-
puter simulations. By making a sequence of adjustments to the model and
subsequent computations one can gain some insights into the application area
under consideration. This text attempts to illustrate this process as a method
for scientific investigation. Each section of the first six chapters is motivated
by a particular application, discrete or continuous model, numerical method,
computer implementation and an assessment of what has been done.
Applications include heat diffusion to cooling fins and solar energy storage,

pollutant transfer in streams and lakes, models of vector and multiprocessing
computers, ideal and porous fluid flows, deformed membranes, epidemic models
with dispersion, image restoration and value of American put option contracts.
The models are initially introduced as discrete in time and space, and this allows
for an early introduction to partial differential equations. The discrete models
have the form of matrix products or linear and nonlinear systems. Methods in-
clude sparse matrix iteration with stability constraints, sparse matrix solutions
via variation on Gauss elimination, successive over relaxation, conjugate gradi-
ent, and minimum residual methods. Picard and Newton methods are used to
approximate the solution to nonlinear systems.
Most sections in the first five chapters have MATLAB codes; see [10] for

the very affordable current student version of MATLAB. They are intended
to be studied and not used as a "black box." The MATLAB codes should be
used as a first step towards more sophisticated numerical modeling. These
codes do provide a learning by doing environment. The exercises at the end of
each section have three categories: routine computations, variation of models,
and mathematical analysis. The last four chapters focus on multiprocessing
algorithms, which are implemented using message passing interface, MPI; see
[13] for information about building your own multiprocessor via free "NPACI
Rocks" cluster software. These chapters have elementary Fortran 9x codes
to illustrate the basic MPI subroutines, and the applications of the previous
chapters are revisited from a parallel implementation perspective.
At North Carolina State University most of the first four chapters are cov-

xi

xii INTRODUCTION

ered in 26 75-minute lectures. Routine homework problems are assigned, and
two projects are required, which can be chosen from topics in the first four chap-
ters or chapter five or related courses or work experiences. The sixth chapter
on high performance computing can be used as a second chapter so as to enable
the student, early in the semester, to become familiar with a high performance
computing environment. Other course possibilities include: a year course using
chapters 1-9, a semester course more on modeling using chapters 1-5, a semester
course with an emphasis on mathematical analysis using chapters 1,2,3,8 and
9, or a semester course with a focus on parallel computation using chapters 1
and 6-9.
This text is not meant to replace traditional texts on numerical analysis,

matrix algebra and partial differential equations. It does develop topics in these
areas as is needed and also includes modeling and computation, and so there
is more breadth and less depth in these topics. One important component of
computational science is parameter identification and model validation, and this
requires a physical laboratory to take data from experiments. In this text model
assessments have been restricted to the variation of model parameters, model
evolution and mathematical analysis. More penetrating expertise in various
aspects of computational science should be acquired in subsequent courses and
work experiences.

Chapter 1

Discrete Time-Space
Models

The first three sections introduces diffusion of heat in one direction. This is an
example of model evolution with the simplest model being for the temperature
of a well stirred liquid where the temperature does not vary with space. The
model is then enhanced by allowing the mass to have different temperatures in
different locations. Because heat flows from hot to cold regions, the subsequent
model will be more complicated. In section four a similar model is considered,
and the application will be to the prediction of the pollutant concentration in
a stream resulting from a source of pollution up stream. Both these models are
discrete versions of the continuous model that are partial differential equations.
Section five indicates how these models can be extended to heat and mass
transfer in two directions, which is discussed in more detail in chapters three
and four. In the last section variations of the mean value theorem are used
to estimate the errors made by replacing the continuous model by a discrete
model. Additional introductory materials can be found in G. D. Smith [18],
and in R. L. Burden and J. D. Faires [3].

1.1 Newton Cooling Models

1.1.1 Introduction

Many quantities change as time progresses such as money in a savings account
or the temperature of a refreshing drink or any cooling mass. Here we will
be interested in making predictions about such changing quantities. A simple
mathematical model has the form u+ = au + b where a and b are given real
numbers, u is the present amount and u+ is the next amount. This calculation
is usually repeated a number of times and is a simple example of an of algo-
rithm. Because of the large number of repeated calculations, we usually use a

1

2 CHAPTER 1. DISCRETE TIME-SPACE MODELS

of computing tool.
Computers use a finite subset of the rational numbers (a ratio of two in-

tegers) to approximate any real number. This set of numbers may depend on
the computer being used. However, they do have the same general form and
are called floating point numbers. Any real number x can be represented by
an infinite decimal expansion x = ±(.x1.....xd....)10e, and by truncating this we
can define the chopped floating point numbers.
Let x be any real number and denote a floating point number by

fl(x) = ±.x1.....xd10e
= ±(x1/10 + · · ·+ xd/10

d)10e.

This is a floating point number with base equal to 10 where x1 is not equal
to zero, xi are integers between 0 and 9, the exponent e is also a bounded
integer and d is an integer called the precision of the floating point system. As-
sociated with each real number, x, and its floating point approximate number,
fl(x), is the floating point error, fl(x) − x. In general, this error decreases as
the precision, d, increases. Each computer calculation has some floating point
or roundoff error. Moreover, as additional calculations are done, there is an
accumulation of these roundoff errors.

Example. Let x = −1.5378 and fl(x) = −0.154 101 where d = 3. The
roundoff error is

fl(x)− x = −.0022.
The error will accumulate with any further operations containing fl(x), for
example, fl(x)2 = .237 10−1 and

fl(x)2 − x2 = 2.37− 2.36482884 = .00517116.

Repeated calculations using floating point numbers can accumulate significant
roundoff errors.

1.1.2 Applied Area

Consider the cooling of a well stirred liquid so that the temperature does not
depend on space. Here we want to predict the temperature of the liquid based
on some initial observations. Newton’s law of cooling is based on the observation
that for small changes of time, h, the change in the temperature is nearly equal
to the product of the some constant c, the h and the difference in the room
temperature and the present temperature of the coffee. Consider the following
quantities: uk equals the temperature of a well stirred cup of coffee at time tk,
usur equals the surrounding room temperature, and c measures the insulation
ability of the cup and is a positive constant. The discrete form of Newton’s law
of cooling is

uk+1 − uk = ch(usur − uk)

uk+1 = (1− ch)uk + ch usur

= auk + b where a = 1− ch and b = ch usur.

1.1. NEWTON COOLING MODELS 3

The long run solution should be the room temperature, that is, uk should
converge to usur as k increases. Moreover, when the room temperature is
constant, then uk should converge monotonically to the room temperature.
This does happen if we impose the

0 < a = 1− ch

constraint, called a stability condition, on the time step h. Since both c and h
are positive, a < 1.

1.1.3 Model

The model in this case appears to be very simple. It consists of three constants
u0, a, b and the formula

uk+1 = auk + b (1.1.1)

The formula must be used repeatedly, but with different uk being put into the
right side. Often a and b are derived from formulating how uk changes as k
increases (k reflects the time step). The change in the amount uk is often
modeled by duk + b

uk+1 − uk = duk + b

where d = a−1. This model given in (1.1.1) is called a first order finite difference
model for the sequence of numbers uk+1. Later we will generalize this to a
sequence of column vectors where a will be replaced by a square matrix.

1.1.4 Method

The "iterative or recursive" calculation of (1.1.1) is the most common approach
to solving (1.1.1). For example, if a = 1

2 , b = 2 and u0 = 10, then

u1 =
1

2
10 + 2 = 7.0

u2 =
1

2
7 + 2 = 5.5

u3 =
1

2
5.5 + 2 = 4.75

u4 =
1

2
4.75 + 2 = 4.375

If one needs to compute uk+1 for large k, this can get a little tiresome. On
the other hand, if the calculations are being done with a computer, then the
floating point errors may generate significant accumulation errors.
An alternative method is to use the following "telescoping" calculation and

the geometric summation. Recall the geometric summation

1 + r + r2 + · · ·+ rk and (1 + r + r2 + · · ·+ rk)(1− r) = 1− rk+1

4 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Or, for r not equal to 1

(1 + r + r2 + · · ·+ rk) = (1− rk+1)/(1− r).

Consequently, if |r| < 1, then
1 + r + r2 + · · ·+ rk + · · · = 1/(1− r)

is a convergent geometric series.
In (1.1.1) we can compute uk by decreasing k by 1 so that uk = auk−1 + b.

Put this into (1.1.1) and repeat the substitution to get

uk+1 = a(auk−1 + b) + b

= a2uk−1 + ab+ b

= a2(auk−2 + b) + ab+ b

= a3uk−2 + a2b+ ab+ b

...

= ak+1u0 + b(ak + · · ·+ a2 + a+ 1)

= ak+1u0 + b(1− ak+1)/(1− a)

= ak+1(u0 − b/(1− a)) + b/(1− a). (1.1.2)

The error for the steady state solution will be small if |a| is small, or k is large,
or the initial guess u0 is close to the steady state solution b/(1− a).

Theorem 1.1.1 (Steady State Theorem) If a is not equal to 1, then the so-
lution of (1.1.1) has the form given in (1.1.2). Moreover, if |a| < 1, then the
solution of (1.1.1) will converge to the steady state solution u = au+ b, that is,
u = b/(1− a). More precisely, the error is

uk+1 − u = ak+1(u0 − b/(1− a)).

Example. Let a = 1/2, b = 2, u0 = 10 and k = 3. Then (1.1.2) gives

u3+1 = (1/2)
4(10− 2/(1− 1/2)) + 2/(1− 1/2) = 6/16 + 4 = 4.375.

The steady state solution is u = 2/(1− 1
2) = 4 and the error for k = 3 is

u4 − u = 4.375− 4 = (1
2
)4(10− 4).

1.1.5 Implementation

The reader should be familiar with the information in MATLAB’s tutorial. The
input segment of the MATLAB code fofdh.m is done in lines 1-12, the execution
is done in lines 16-19, and the output is done in line 20. In the following m-file
t is the time array whose first entry is the initial time. The array y stores the

1.1. NEWTON COOLING MODELS 5

approximate temperature values whose first entry is the initial temperature.
The value of c is based on a second observed temperature, y_obser, at time
equal to h_obser. The value of c is calculated in line 10. Once a and b have
been computed, the algorithm is executed by the for loop in lines 16-19. Since
the time step h = 1, n = 300 will give an approximation of the temperature
over the time interval from 0 to 300. If the time step were to be changed from 1
to 5, then we could change n from 300 to 60 and still have an approximation of
the temperature over the same time interval. Within the for loop we could look
at the time and temperature arrays by omitting the semicolon at the end of the
lines 17 and 18. It is easier to examine the graph of approximate temperature
versus time, which is generated by the MATLAB command plot(t,y).

MATLAB Code fofdh.m

1. % This code is for the first order finite difference algorithm.
2. % It is applied to Newton’s law of cooling model.
3. clear;
4. t(1) = 0; % initial time
5. y(1) = 200.; % initial temperature
6. h = 1; % time step
7. n = 300; % number of Time steps of length h
8. y_obser = 190; % observed temperature at time h_obser
9. h_obser = 5;
10. c = ((y_obser - y(1))/h_obser)/(70 - y(1))
11. a = 1 - c*h
12. b = c*h*70
13. %
14. % Execute the FOFD Algorithm
15. %
16. for k = 1:n
17. y(k+1) = a*y(k) + b;
18. t(k+1) = t(k) + h;
19. end
20. plot(t,y)

An application to heat transfer is as follows. Consider a cup of coffee,
which is initially at 200 degrees and is in a room with temperature equal to
70, and after 5 minutes it cools to 190 degrees. By using h = h_obser = 5,
u0 = 200 and u1 = u_obser = 190, we compute from (1.1.1) that c = 1/65.
The first calculation is for this c and h = 5 so that a = 1 − ch = 60/65 and
b = ch70 = 350/65. Figure 1.1.1 indicates the expected monotonic decrease to
the steady state room temperature, usur = 70.
The next calculation is for a larger c = 2/13, which is computed from a new

second observed temperature of u_obser = 100 after h_obser = 5 minutes.
In this case for larger time step h = 10 so that a = 1 − (2/13)10 = −7/13
and b = ch70 = (2/13)10 70 = 1400/13. In Figure 1.1.2 notice that the

6 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Figure 1.1.1: Temperature versus Time

computed solution no longer is monotonic, but it does converge to the steady
state solution.
The model continues to degrade as the magnitude of a increases. In the

Figure 1.1.3 the computed solution oscillates and blows up! This is consistent
with formula (1.1.2). Here we kept the same c, but let the step size increase
to h = 15 and in this case a = 1 − (2/13)15 = −17/13 and b = ch70 =
(2/13)1050 = 2100/13. The vertical axis has units multiplied by 104.

1.1.6 Assessment

Models of savings plans or loans are discrete in the sense that changes only occur
at the end of each month. In the case of the heat transfer problem, the formula
for the temperature at the next time step is only an approximation, which gets
better as the time step h decreases. The cooling process is continuous because
the temperature changes at every instant in time. We have used a discrete
model of this, and it seems to give good predictions provided the time step is
suitably small. Moreover there are other modes of transferring heat such as
diffusion and radiation.
There may be significant accumulation of roundoff error. On a computer

(1.1.1) is done with floating point numbers, and at each step there is some new
roundoff error Rk+1. Let U0 = fl(u0), A = fl(a) and B = fl(b) so that

Uk+1 = AUk +B + R̄k+1. (1.1.3)

1.1. NEWTON COOLING MODELS 7

Figure 1.1.2: Steady State Temperature

Figure 1.1.3: Unstable Computation

8 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Next, we want to estimate the

accumulation errors =Uk+1 − uk+1

under the assumption that the roundoff errors are uniformly bounded

|Rk+1| ≤ R <∞.

For ease of notation, we will assume the roundoff errors associated with a and
b have been put into the Rk+1 so that Uk+1 = aUk+ b+Rk+1. Subtract (1.1.1)
and this variation of (1.1.3) to get

Uk+1 − uk+1 = a(Uk − uk) +Rk+1 (1.1.4)

= a[a(Uk−1 − uk−1) +Rk] +Rk+1

= a2(Uk−1 − uk−1) + aRk +Rk+1

...

= ak+1(U0 − u0) + akR1 + · · ·+Rk+1

Now let r = |a| and R be the uniform bound on the roundoff errors. Use the
geometric summation and the triangle inequality to get

|Uk+1 − uk+1| ≤ rk+1|U0 − u0|+R(rk+1 − 1)/(r − 1). (1.1.5)

Either r is less than one, or greater, or equal to one. An analysis of (1.1.4) and
(1.1.5) immediately yields the next theorem.

Theorem 1.1.2 (Accumulation Error Theorem) Consider the first order finite
difference algorithm. If |a| < 1 and the roundoff errors are uniformly bounded by
R, then the accumulation error is uniformly bounded. Moreover, if the roundoff
errors decreases uniformly, then the accumulation error decreases.

1.1.7 Exercises

1. Using fofdh.m duplicate the calculations in Figures 1.1.1-1.1.3.
2. Execute fofdh.m four times for c = 1/65, variable h = 64, 32, 16, 8 with n
= 5, 10, 20 and 40, respectively. Compare the four curves by placing them on
the same graph; this can be done by executing the MATLAB command "hold
on" after the first execution of fofdh.m
3. Execute fofdh.m five times with h = 1, variable c = 8/65, 4/65, 2/65, 1/65,
and .5/65, and n = 300. Compare the five curves by placing them on the same
graph; this can be done by executing the MATLAB command "hold on" after
the first execution of fofdh.m
4. Consider the application to Newton’s discrete law of cooling. Use (1.1.2) to
show that if hc < 1, then uk+1 converges to the room temperature.
5. Modify the model used in Figure 1.1.1 to account for a room temperature
that starts at 70 and increases at a constant rate equal to one degree every five

1.2. HEAT DIFFUSION IN A WIRE 9

minutes. Use the c = 1/65 and h = 1. Compare the new curve with Figure
1.1.1.
6. We wish to calculate the amount of a savings plan for any month, k, given a
fixed interest rate, r, compounded monthly. Denote these quantities as follows:
uk be the amount in an account at month k, r equals the interest rate com-
pounded monthly, and d equals the monthly deposit. The amount at the end
of the next month will be the old amount plus the interest on the old amount
plus the deposit. In terms of the above variables this is with a = 1 + r/12 and
b = d

uk+1 = uk + uk r/12 + d

= auk + b.

(a). Use (1.1.2) to determine the amount in the account by depositing $100
each month in an account, which gets 12% compounded monthly, and over a
time interval of 30 and 40 years (360 and 480 months).
(b). Use a modified version of fofdh.m to calculate and graph the amounts

in the account from 0 to 40 years.
7. Show (1.1.5) follows from (1.1.4).
8. Prove the second part of the accumulation error theorem.

1.2 Heat Diffusion in a Wire

1.2.1 Introduction

In this section we consider heat conduction in a thin electrical wire, which is
thermally insulated on its surface. The model of the temperature has the form
uk+1 = Auk+b where uk is a column vector whose components are temperatures
for the previous time step, t = k∆t, at various positions within the wire. The
square matrix will determine how heat flows from warm regions to cooler regions
within the wire. In general, the matrix A can be extremely large, but it will
also have a special structure with many more zeros than nonzero components.

1.2.2 Applied Area

In this section we present a second model of heat transfer. In our first model we
considered heat transfer via a discrete version of Newton’s law of cooling which
involves temperature as only a discrete function of time. That is, we assumed
the mass was uniformly heated with respect to space. In this section we allow
the temperature to be a function of both discrete time and discrete space.
The model for the diffusion of heat in space is based on empirical observa-

tions. The discrete Fourier heat law in one direction is
(a). heat flows from hot to cold,
(b). the change in heat is proportional to the

cross sectional area,

10 CHAPTER 1. DISCRETE TIME-SPACE MODELS

change in time and
(change in temperature)/(change in space).

The last term is a good approximation provided the change in space is small,
and in this case one can use the derivative of the temperature with respect the
single direction. The proportionality constant, K, is called the thermal conduc-
tivity. The K varies with the particular material and with the temperature.
Here we will assume the temperature varies over a smaller range so that K is
approximately a constant. If there is more than one direction, then we must
replace the approximation of the derivative in one direction by the directional
derivative of the temperature normal to the surface.

Fourier Heat Law. Heat flows from hot to cold, and the amount of heat
transfer through a small surface area A is proportional to A, the change in time
and the directional derivative of the temperature in the direction normal to the
surface.

Consider a thin wire so that the most significant diffusion is in one direction,
x. The wire will have a current going through it so that there is a source of
heat, f , which is from the electrical resistance of the wire. The f has units of
(heat)/(volume time). Assume the ends of the wire are kept a zero temperature,
and the initial temperature is also zero. The goal is to be able to predict the
temperature inside the wire for any future time and space location.

1.2.3 Model

In order to develop a model to do temperature prediction, we will discretize
both space and time and let u(ih, k∆t) be approximated by uki where ∆t =
T/maxk, h = L/n and L is the length of the wire. The model will have the
general form

change in heat content ≈ (heat from the source)

+(heat diffusion from the right)

+(heat diffusion from the left).

This is depicted in the Figure 1.2.1 where the time step has not been indicated.
For time on the right side we can choose either k∆t or (k+1)∆t. Presently, we
will choose k∆t, which will eventually result in the matrix version of the first
order finite difference method.
The heat diffusing in the right face (when (uki+1 − uki)/h > 0) is

A∆tK(uki+1 − uki)/h.

The heat diffusing out the left face (when (uki − uki−1)/h > 0) is

A∆tK(uki − uki−1)/h.

Therefore, the heat from diffusion is

1.2. HEAT DIFFUSION IN A WIRE 11

Figure 1.2.1: Diffusion in a Wire

A∆tK(uki+1 − uki)/h − A∆tK(uki − uki−1)/h.

The heat from the source is

Ah ∆t f .

The heat content of the volume Ah at time k∆t is

ρcukiAh

where ρ is the density and c is the specific heat. By combining these we have the
following approximation of the change in the heat content for the small volume
Ah:

ρcuk+1i Ah− ρcukiAh = Ah∆t f +A∆tK(uki+1−uki)/h−A∆tK(uki −uki−1)/h.

Now, divide by ρcAh, define α = (K/ρc)(∆t/h2) and explicitly solve for uk+1i .

Explicit Finite Difference Model for Heat Diffusion.

uk+1i = (∆t/ρc)f + α(uki+1 + uki−1) + (1− 2α)uki (1.2.1)

for i = 1, ..., n− 1 and k = 0, ...,maxk − 1,
u0i = 0 for i = 1, ..., n− 1 (1.2.2)

uk0 = ukn = 0 for k = 1, ...,maxk. (1.2.3)

Equation (1.2.2) is the initial temperature set equal to zero, and (1.2.3) is the
temperature at the left and right ends set equal to zero. Equation (1.2.1) may
be put into the matrix version of the first order finite difference method. For
example, if the wire is divided into four equal parts, then n = 4 and (1.2.1) may
be written as three scalar equations for the unknowns uk+11 , uk+12 and uk+13 :

uk+11 = (∆t/ρc)f + α(uk2 + 0) + (1− 2α)uk1
uk+12 = (∆t/ρc)f + α(uk3 + uk1) + (1− 2α)uk2
uk+13 = (∆t/ρc)f + α(0 + uk2) + (1− 2α)uk3 .

12 CHAPTER 1. DISCRETE TIME-SPACE MODELS

These three scalar equations can be written as one 3D vector equation

uk+1 = Auk + b where

uk =

 uk1
uk2
uk3

 , b = (∆t/ρc)f
 1
1
1

 and
A =

 1− 2α α 0
α 1− 2α α
0 α 1− 2α

 .
An extremely important restriction on the time step ∆t is required to make

sure the algorithm is stable. For example, consider the case n = 2 where
the above is is a single equation, and we have the simplest first order finite
difference model. Here a = 1− 2α and we must require a = 1− 2α < 1. If a =
1− 2α > 0 and α > 0, then this condition will hold. If n is larger than 2, this
simple condition will imply that the matrix products Ak will converge to the
zero matrix. This will imply there are no blowups provided the source term f
is bounded. The illustration of the stability condition, and an analysis will be
presented in Chapter 2.5.

Stability Condition for (1.2.1).

1− 2α > 0 and α = (K/ρc)(∆t/h2) > 0.

Example. Let L = c = ρ = 1.0, n = 4 so that h = 1/4, and K = .001.
Then α = (K/ρc)(∆t/h2) = (.001)∆t16 and so that 1 − 2(K/ρc)(∆t/h2) =
1− .032∆t > 0. Note if n increases to 20, then the constraint on the time step
will significantly change.

1.2.4 Method

The numbers uk+1i generated by equations (1.2.1)-(1.2.3) are hopefully good
approximations for the temperature at x = i∆x and t = (k + 1)∆t. The tem-
perature is often denoted by the function u(x, t). In computer code uk+1i will be
stored in a two dimensional array, which is also denoted by u but with integer
indices so that uk+1i = u(i, k+1) ≈ u(i∆x, (k+1)∆t) = temperature function.
In order to compute all uk+1i , which we will henceforth denote by u(i, k + 1)
with both i and k shifted up by one, we must use a nested loop where the
i-loop (space) is the inner loop and the k-loop (time) is the outer loop. This
is illustrated in the Figure 1.2.2 by the dependency of u(i, k + 1) on the three
previously computed u(i − 1, k), u(i, k) and u(i + 1, k). In Figure 1.2.2 the
initial values in (1.2.2) are given on the bottom of the grid, and the boundary
conditions in (1.2.3) are on the left and right of the grid.

1.2.5 Implementation

The implementation in the MATLAB code heat.m of the above model for tem-
perature that depends on both space and time has nested loops where the outer

1.2. HEAT DIFFUSION IN A WIRE 13

Figure 1.2.2: Time-Space Grid

loop is for discrete time and the inner loop is for discrete space. These loops are
given in lines 29-33. Lines 1-25 contain the input data. The initial temperature
data is given in the single i-loop in lines 17-20, and the left and right bound-
ary data are given in the single k-loop in lines 21-25. Lines 34-37 contains the
output data in the form of a surface plot for the temperature.

MATLAB Code heat.m

1. % This code models heat diffusion in a thin wire.
2. % It executes the explicit finite difference method.
3. clear;
4. L = 1.0; % length of the wire
5. T = 150.; % final time
6. maxk = 30; % number of time steps
7. dt = T/maxk;
8. n = 10.; % number of space steps
9. dx = L/n;
10. b = dt/(dx*dx);
11. cond = .001; % thermal conductivity
12. spheat = 1.0; % specific heat
13. rho = 1.; % density
14. a = cond/(spheat*rho);
15. alpha = a*b;
16. f = 1.; % internal heat source
17. for i = 1:n+1 % initial temperature
18. x(i) =(i-1)*dx;
19. u(i,1) =sin(pi*x(i));
20. end
21. for k=1:maxk+1 % boundary temperature

14 CHAPTER 1. DISCRETE TIME-SPACE MODELS

22. u(1,k) = 0.;
23. u(n+1,k) = 0.;
24. time(k) = (k-1)*dt;
25. end
26. %
27. % Execute the explicit method using nested loops.
28. %
29. for k=1:maxk % time loop
30. for i=2:n; % space loop
31. u(i,k+1) = f*dt/(spheat*rho)

+ (1 - 2*alpha)*u(i,k)
+ alpha*(u(i-1,k) + u(i+1,k));

32. end
33. end
34. mesh(x,time,u’)
35. xlabel(’x’)
36. ylabel(’time’)
37. zlabel(’temperature’)

The first calculation given by Figure 1.2.3 is a result of the execution of
heat.m with the parameters as listed in the code. The space steps are .1 and
go in the right direction, and the time steps are 5 and go in the left direction.
The temperature is plotted in the vertical direction, and it increases as time
increases. The left and right ends of the wire are kept at zero temperature and
serve as heat sinks. The wire has an internal heat source, perhaps from electrical
resistance or a chemical reaction, and so, this increases the temperature in the
interior of the wire.
The second calculation increases the final time from 150 to 180 so that the

time step from increases 5 to 6, and consequently, the stability condition does
not hold. Note in Figure 1.2.4 that significant oscillations develop.
The third computation uses a larger final time equal to 600 with 120 time

steps. Notice in Figure 1.2.5 as time increases the temperature remains about
the same, and for large values of time it is shaped like a parabola with a maxi-
mum value near 125.

1.2.6 Assessment

The heat conduction in a thin wire has a number of approximations. Different
mesh sizes in either the time or space variable will give different numerical
results. However, if the stability conditions holds and the mesh sizes decrease,
then the numerical computations will differ by smaller amounts.
The numerical model assumed that the surface of the wire was thermally

insulated. This may not be the case, and one may use the discrete version
of Newton’s law of cooling by inserting a negative source term of C(usur −
uki)h π2r∆t where r is the radius of the wire. The constant C is a measure
of insulation where C = 0 corresponds to perfect insulation. The hπ2r is

1.2. HEAT DIFFUSION IN A WIRE 15

Figure 1.2.3: Temperature versus Time-Space

Figure 1.2.4: Unstable Computation

16 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Figure 1.2.5: Steady State Temperature

the lateral surface area of the volume hA with A = πr2. Other variations
on the model include more complicated boundary conditions, variable thermal
properties and diffusion in more than one direction.
In the scalar version of the first order finite difference models the scheme was

stable when |a| < 1. In this case, uk+1 converged to the steady state solution
u = au + b. This is also true of the matrix version of (1.2.1) provided the
stability condition is satisfied. In this case the real number a will be replaced
by the matrix A, and Ak will converge to the zero matrix. The following is a
more general statement of this.

Theorem 1.2.1 (Steady State Theorem) Consider the matrix version of the
first order finite difference equation uk+1 = Auk+b where A is a square matrix.
If Ak converges to the zero matrix and u = Au+b, then, regardless of the initial
choice for u0, uk converges to u.

Proof. Subtract uk+1 = Auk + b and u = Au+ b and use the properties of
matrix products to get

uk+1 − u =
¡
Auk + b

¢− (Au+ b)

= A(uk − u)

= A(A(uk−1 − u))

= A2(uk−1 − u)

...

= Ak+1(u0 − u)

1.3. DIFFUSION IN A WIRE WITH LITTLE INSULATION 17

Since Ak converges to the zero matrix, the column vectors uk+1 − u must con-
verge to the zero column vector.

1.2.7 Exercises

1. Using the MATLAB code heat.m duplicate Figures 1.2.3-1.2.5.
2. In heat.m let maxk = 120 so that dt = 150/120 = 1.25. Experiment
with the space step sizes dx = .2, .1, .05 and n = 5, 10, 20, respectively.
3. In heat.m let n = 10 so that dx = .1. Experiment with time step sizes
dt = 5, 2.5, 1.25 and maxk = 30, 60 and 120, respectively.
4. In heat.m experiment with different values of the thermal conductivity
cond = .002, .001 and .0005. Be sure to adjust the time step so that the stability
condition holds.
5. Consider the variation on the thin wire where heat is lost through the sur-
face of the wire. Modify heat.m and experiment with the C and r parameters.
Explain your computed results.
6. Consider the variation on the thin wire where heat is generated by f =
1 + sin(π10t). Modify heat.m and experiment with the parameters.
7. Consider the 3×3 A matrix for (1.2.1). Compute Ak for k = 10, 100, 1000
for different values of alpha so that the stability condition either does or does
not hold.
8. Suppose n = 5 so that there are 4 unknowns. Find the 4 × 4 matrix
version of the finite difference model (1.2.1). Repeat the previous problem for
the corresponding 4× 4 matrix.
9. Justify the second and third lines in the displayed equations in the proof
of the Steady State Theorem.
10. Consider a variation of the Steady State Theorem where the column
vector b depends on time, that is, b is replaced by bk. Formulate and prove a
generalization of this theorem.

1.3 Diffusion in a Wire with Little Insulation

1.3.1 Introduction

In this section we consider heat diffusion in a thin electrical wire, which is not
thermally insulated on its lateral surface. The model of the temperature will
still have the form uk+1 = Auk + b, but the matrix A and column vector b will
be different than in the insulated lateral surface model in the previous section.

1.3.2 Applied Area

In this section we present a third model of heat transfer. In our first model
we considered heat transfer via a discrete version of Newton’s law of cooling.
That is, we assumed the mass had uniform temperature with respect to space.
In the previous section we allowed the temperature to be a function of both

18 CHAPTER 1. DISCRETE TIME-SPACE MODELS

discrete time and discrete space. Heat diffused via the Fourier heat law either
to the left or right direction in the wire. The wire was assumed to be perfectly
insulated in the lateral surface so that no heat was lost or gained through the
lateral sides of the wire. In this section we will allow heat to be lost through
the lateral surface via a Newton like law of cooling.

1.3.3 Model

Discretize both space and time and let the temperature u(ih, k∆t) be approx-
imated by uki where ∆t = T/maxk, h = L/n and L is the length of the wire.
The model will have the general form

change in heat in (hA) ≈ (heat from the source)

+(diffusion through the left end)

+(diffusion through the right end)

+(heat loss through the lateral surface).

This is depicted in the Figure 1.2.1 where the volume is a horizontal cylinder
whose length is h and cross section is A = πr2. So the lateral surface area is
h2πr.
The heat loss through the lateral surface will be assumed to be directly

proportional to the change in time, the lateral surface area and to the difference
in the surrounding temperature and the temperature in the wire. Let csur be the
proportionality constant that measures insulation. If usur is the surrounding
temperature of the wire, then the heat loss through the small lateral area is

csur ∆t 2πrh(usur − uki). (1.3.1)

Heat loss or gain from a source such as electrical current and from left and right
diffusion will remain the same as in the previous section. By combining these
we have the following approximation of the change in the heat content for the
small volume Ah:

ρcuk+1i Ah− ρcukiAh = Ah ∆t f

+A ∆t K(uki+1 − uki)/h−A ∆t K(uki − uki−1)/h

+csur ∆t 2πrh(usur − uki) (1.3.2)

Now, divide by ρcAh, define α = (K/ρc)(∆t/h2) and explicitly solve for uk+1i .

Explicit Finite Difference Model for Heat Diffusion in a Wire.

uk+1i = (∆t/ρc)(f + csur(2/r)usur) + α(uki+1 + uki−1)

+(1− 2α− (∆t/ρc)csur(2/r))uki (1.3.3)

for i = 1, ..., n− 1 and k = 0, ...,maxk − 1,
u0i = 0 for i = 1, ..., n− 1 (1.3.4)

uk0 = ukn = 0 for k = 1, ...,maxk. (1.3.5)

1.3. DIFFUSION IN A WIRE WITH LITTLE INSULATION 19

Equation (1.3.4) is the initial temperature set equal to zero, and (1.3.5) is the
temperature at the left and right ends set equal to zero. Equation (1.3.3) may
be put into the matrix version of the first order finite difference method. For
example, if the wire is divided into four equal parts, then n = 4 and (1.3.3) may
be written as three scalar equations for the unknowns uk+11 , uk+12 and uk+13 :

uk+11 = (∆t/ρc)(f + csur(2/r)usur) + α(uk2 + 0) +

(1− 2α− (∆t/ρc)csur(2/r))uk1
uk+12 = (∆t/ρc)(f + csur(2/r)usur) + α(uk3 + uk1) +

(1− 2α− (∆t/ρc)csur(2/r))uk2
uk+13 = (∆t/ρc)(f + csur(2/r)usur) + α(0 + uk2) +

(1− 2α− (∆t/ρc)csur(2/r))uk3 .
These three scalar equations can be written as one 3D vector equation

uk+1 = Auk + b where

uk =

 uk1
uk2
uk3

 , b = (∆t/ρc)F
 1
1
1

 ,
A =

 1− 2α− d α 0
α 1− 2α− d α
0 α 1− 2α− d

 and
F = f + csur(2/r)usur and d = (∆t/ρc)csur(2/r).

An important restriction on the time step ∆t is required to make sure the
algorithm is stable. For example, consider the case n = 2 where the above is
scalar equation and we have the simplest first order finite difference model. Here
a = 1− 2α− d and we must require a < 1. If a = 1− 2α− d > 0 and α, d > 0,
then this condition will hold. If n is larger than 2, this simple condition will
imply that the matrix products Ak will converge to the zero matrix, and this
analysis will be presented later in Chapter 2.5.

Stability Condition for (1.3.3).

1− 2(K/ρc)(∆t/h2)− (∆t/ρc)csur(2/r) > 0.
Example. Let L = c = ρ = 1.0, r = .05, n = 4 so that h = 1/4,K =
.001, csur = .0005, usur = −10. Then α = (K/ρc)(∆t/h2) = (.001)∆t16 and d =
(∆t/ρc)csur(2/r) = ∆t(.0005)(2/.05) so that 1− 2(K/ρc)(∆t/h2)− (∆t/ρc)csur
(2/r) = 1− .032∆t−∆t(.020) = 1− .052∆t > 0. Note if n increases to 20, then
the constraint on the time step will significantly change.

1.3.4 Method

The numbers uk+1i generated by equations (1.3.3)-(1.3.5) are hopefully good
approximations for the temperature at x = i∆x and t = (k + 1)∆t. The tem-
perature is often denoted by the function u(x, t). Again the uk+1i will be stored

20 CHAPTER 1. DISCRETE TIME-SPACE MODELS

in a two dimensional array, which is also denoted by u but with integer indices
so that uk+1i = u(i, k+1) ≈ u(i∆x, (k+1)∆t) = temperature function. In order
to compute all uk+1i , we must use a nested loop where the i-loop (space) is the
inner loop and the k-loop (time) is the outer loop. This is illustrated in the
Figure 1.2.1 by the dependency of u(i, k+1) on the three previously computed
u(i− 1, k), u(i, k) and u(i+ 1, k).

1.3.5 Implementation

A slightly modified version of heat.m is used to illustrated the effect of changing
the insulation coefficient, csur. The implementation of the above model for
temperature that depends on both space and time will have nested loops where
the outer loop is for discrete time and the inner loop is for discrete space. In
the MATLAB code heat1d.m these nested loops are given in lines 33-37. Lines
1-29 contain the input data with additional data in lines 17-20. Here the radius
of the wire is r = .05, which is small relative to the length of the wire L = 1.0.
The surrounding temperature is usur = −10. so that heat is lost through the
lateral surface when csur > 0. Lines 38-41 contain the output data in the form
of a surface plot for the temperature.

MATLAB Code heat1d.m

1. % This code models heat diffusion in a thin wire.
2. % It executes the explicit finite difference method.
3. clear;
4. L = 1.0; % length of the wire
5. T = 400.; % final time
6. maxk = 100; % number of time steps
7. dt = T/maxk;
8. n = 10.; % number of space steps
9. dx = L/n;
10. b = dt/(dx*dx);
11. cond = .001; % thermal conductivity
12. spheat = 1.0; % specific heat
13. rho = 1.; % density
14. a = cond/(spheat*rho);
15. alpha = a*b;
16. f = 1.; % internal heat source
17. dtc = dt/(spheat*rho);
18. csur = .0005; % insulation coefficient
19. usur = -10; % surrounding temperature
20. r = .05; % radius of the wire
21. for i = 1:n+1 % initial temperature
22. x(i) =(i-1)*dx;
23. u(i,1) =sin(pi*x(i));
24. end

1.3. DIFFUSION IN A WIRE WITH LITTLE INSULATION 21

25. for k=1:maxk+1 % boundary temperature
26. u(1,k) = 0.;
27. u(n+1,k) = 0.;
28. time(k) = (k-1)*dt;
29. end
30. %
31. % Execute the explicit method using nested loops.
32. %
33. for k=1:maxk % time loop
34. for i=2:n; % space loop
35. u(i,k+1) = (f +csur*(2./r))*dtc

+ (1-2*alpha - dtc*csur*(2./r))*u(i,k)
+ alpha*(u(i-1,k)+u(i+1,k));

36. end
37. end
38. mesh(x,time,u’)
39. xlabel(’x’)
40. ylabel(’time’)
41. zlabel(’temperature’)

Two computations with different insulation coefficients, csur, are given in
Figure 1.3.1. If one tries a calculation with csur = .0005 with a time step size
equal to 5, then this violates the stability condition so that the model fails. For
csur ≤ .0005 the model did not fail with a final time equal to 400 and 100 time
steps so that the time step size equaled to 4. Note the maximum temperature
decreases from about 125 to about 40 as csur increases from .0000 to .0005. In
order to consider larger csur, the time step may have to be decreased so that
the stability condition will be satisfied.
In the next numerical experiment we vary the number the space steps from

n = 10 to n = 5 and 20. This will change the h = dx, and we will have to
adjust the time step so that the stability condition holds. Roughly, if we double
n, then we should quadruple the number of time steps. So, for n = 5 we will let
maxk = 25, and for n = 20 we will let maxk = 400. The reader should check
the stability condition assuming the other parameters in the numerical model
are usur = −10, csur = .0005, K = .001, ρ = 1 and c = 1. Note the second
graph in Figure 1.3.1 where n = 10 and those in Figure 1.3.2 are similar.

1.3.6 Assessment

The heat conduction in a thin wire has a number of approximations. Different
mesh sizes in either the time or space variable will give different numerical re-
sults. However, if the stability conditions holds and the mesh sizes decreases,
then the numerical computations will differ by smaller amounts. Other vari-
ations on the model include more complicated boundary conditions, variable
thermal properties and diffusion in more than one direction.

22 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Figure 1.3.1: Diffusion in a Wire with csur = .0000 and .0005

1.3. DIFFUSION IN A WIRE WITH LITTLE INSULATION 23

Figure 1.3.2: Diffusion in a Wire with n = 5 and 20

24 CHAPTER 1. DISCRETE TIME-SPACE MODELS

The above discrete model will converge, under suitable conditions, to a
continuum model of heat diffusion. This is a partial differential equation with
initial and boundary conditions similar to those in (1.3.3), (1.3.4) and (1.3.5):

ρcut = f + (Kux)x + csur(2/r)(usur − u) (1.3.6)

u(x, 0) = 0 and (1.3.7)

u(0, t) = 0 = u(L, t) (1.3.8)

The partial differential equation in (1.3.6) can be derived from (1.3.2) by re-
placing uki by u(ih, k∆t), dividing by Ah∆t and letting h and ∆t go to 0.
Convergence of the discrete model to the continuous model means for all i and
k the errors

uki − u(ih, k∆t)

go to zero as h and ∆t go to zero. Because partial differential equations are
difficult to solve exactly, the discrete models are often used.
Not all numerical methods have stability constraints on the time step. Con-

sider (1.3.6) and use an implicit time discretization to generate a sequence of
ordinary differential equations

ρc(uk+1 − uk)/∆t = f + (Kuk+1x)x + csur(2/r)(usur − uk+1). (1.3.9)

This does not have a stability constraint on the time step, but at each time step
one must solve an ordinary differential equation with boundary conditions. The
numerical solution of these will be discussed in the following chapters.

1.3.7 Exercises

1. Duplicate the computations in Figure 1.3.1 with variable insulation co-
efficient. Furthermore, use csur = .0002 and .0010.
2. In heat1d.m experiment with different surrounding temperatures usur =
−5,−10,−20.
3. Suppose the surrounding temperature starts at -10 and increases by one
degree every ten units of time.
(a). Modify the finite difference model (1.3.3) is account for this.
(b). Modify the MATLAB code heat1d.m. How does this change the

long run solution?
4. Vary the r = .01, .02, .05 and .10. Explain your computed results. Is this
model realistic for "large" r?
5. Verify equation (1.3.3) by using equation (1.3.2).
6. Consider the 3 × 3 A matrix version of line (1.3.3) and the example of
the stability condition on the time step. Observe Ak for k = 10, 100 and 1000
with different values the time step so that the stability condition either does or
does not hold.
7. Consider the finite difference model with n = 5 so that there are four
unknowns.

1.4. FLOW AND DECAY OF A POLLUTANT IN A STREAM 25

(a). Find 4× 4 matrix version of (1.3.3).
(b). Repeat problem 6 with this 4× 4 matrix

8. Experiment with variable space steps h = dx = L/n by letting n =
5, 10, 20 and 40. See Figures 1.3.1 and 1.3.2 and be sure to adjust the time
steps so that the stability condition holds.
9. Experiment with variable time steps dt = T/maxk by letting maxk =
100, 200 and 400 with n = 10 and T = 400.
10. Examine the graphical output from the experiments in problems 8 and
9. What happens to the numerical solutions as the time and space step sizes
decrease?
11. Suppose the thermal conductivity is a linear function of the temperature,
say, K = cond = .001 + .02u where u is the temperature.
(a). Modify the finite difference model in (1.3.3).
(b). Modify the MATLAB code heat1d.m to accommodate this varia-

tion. Compare the numerical solution with those given in Figure 1.3.1.

1.4 Flow and Decay of a Pollutant in a Stream

1.4.1 Introduction

Consider a river that has been polluted upstream. The concentration (amount
per volume) will decay and disperse downstream. We would like to predict at
any point in time and in space the concentration of the pollutant. The model
of the concentration will also have the form uk+1 = Auk+b where the matrix A
will be defined by the finite difference model, which will also require a stability
constraint on the time step.

1.4.2 Applied Area

Pollution in streams, lakes and underground aquifers have become a very serious
common concerns. It is important to be able to understand the consequences
of possible pollution and to be able to make accurate predictions about "spills"
and future "environmental" policy.
Perhaps, the simplest model for chemical pollutant is based on chemical

decay, and one model is similar to radioactive decay. A continuous model is
ut = −du where d is a chemical decay rate and u = u(t) is the unknown
concentration. A discrete version is uk+1 = uk + ∆t(−d)uk where uk is an
approximation of u(t) at t = k∆t, and stability requires the following constraint
on the time step 1−∆td > 0.
Here we will introduce a second model where the pollutant changes location

because it is in a stream. Assume the concentration will depend on both space
and time. The space variable will only be in one direction, which corresponds
to the direction of flow in the stream. If the pollutant was in a deep lake, then
the concentration would depend on time and all three directions in space.

26 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Figure 1.4.1: Polluted Stream

1.4.3 Model

Discretize both space and time, and let the concentration equal u(i∆x, k∆t) be
approximated by uki where ∆t = T/maxk,∆x = L/n and L is the length of the
stream. The model will have the general form

change in amount ≈ (amount entering from upstream)

−(amount leaving to downstream)
−(amount decaying in a time interval).

This is depicted in Figure 1.4.1 where the steam is moving from left to right
and the velocity is positive. For time we can choose either k∆t or (k + 1)∆t.
Here we will choose k∆t and this will eventually result in the matrix version of
the first order finite difference method.
Assume the stream is moving from left to right so that the velocity is pos-

itive, vel > 0. Let A be the cross sectional area of the stream. The amount
entering the left side of the volume A∆x (vel > 0) is

A(∆t vel) uki−1.

The amount leaving the right side of the volume A∆x (vel > 0)is

−A(∆t vel) uki .

Therefore, the change in the amount from the stream’s velocity is

A(∆t vel) uki−1 −A(∆t vel) uki .

The amount of the pollutant in the volume A∆x at time k∆t is

A∆x uki .

1.4. FLOW AND DECAY OF A POLLUTANT IN A STREAM 27

The amount of the pollutant that has decayed, dec is decay rate, is

−A∆x ∆t dec uki .

By combining these we have the following approximation for the change during
the time interval in the amount of pollutant in the small volume A∆x:

A∆x uk+1i −A∆x uki = A(∆t vel)uki−1 −A(∆t vel)uki

−A∆x ∆t dec uki . (1.4.1)

Now, divide by A∆x and explicitly solve for uk+1i .

Explicit Finite Difference Model of Flow and Decay.

uk+1i = vel(∆t/∆x)uki−1 + (1− vel(∆t/∆x)−∆t dec)uki (1.4.2)

i = 1, ..., n− 1 and k = 0, ...,maxk − 1,
u0i = given for i = 1, ..., n− 1 and (1.4.3)

uk0 = given for k = 1, ...,maxk. (1.4.4)

Equation (1.4.3) is the initial concentration, and (1.4.4) is the concentration
far upstream. Equation (1.4.2) may be put into the matrix version of the first
order finite difference method. For example, if the stream is divided into three
equal parts, then n = 3 and (1.4.2) may be written three scalar equations for
uk+11 , uk+12 and uk+13 :

uk+11 = vel(∆t/∆x)uk0 + (1− vel(∆t/∆x)−∆t dec)uk1
uk+12 = vel(∆t/∆x)uk1 + (1− vel(∆t/∆x)−∆t dec)uk2
uk+13 = vel(∆t/∆x)uk2 + (1− vel(∆t/∆x)−∆t dec)uk3 .

These can be written as one 3D vector equation uk+1 = Auk + b uk+11

uk+12

uk+13

 =

 c 0 0
d c 0
0 d c

 uk1
uk2
uk3

+
 duk0

0
0

 (1.4.5)

where d = vel (∆t/∆x) and c = 1− d− dec ∆t.

An extremely important restriction on the time step ∆t is required to make
sure the algorithm is stable. For example, consider the case n = 1 where the
above is a scalar equation, and we have the simplest first order finite difference
model. Here a = 1 − vel(∆t/∆x) − dec ∆t and we must require a < 1. If
a = 1 − vel(∆t/∆x) − dec ∆t > 0 and vel, dec > 0, then this condition will
hold. If n is larger than 1, this simple condition will imply that the matrix
products Ak converge to the zero matrix, and an analysis of this will be given
in Chapter 2.5.

28 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Stability Condition for (1.4.2).

1− vel(∆t/∆x)− dec ∆t and vel, dec > 0.

Example. Let L = 1.0, vel = .1, dec = .1, and n = 4 so that ∆x = 1/4. Then
1− vel(∆t/∆x)− dec ∆t = 1− .1∆t4− .1∆t = 1− .5∆t > 0.If n increases to
20, then the stability constraint on the time step will change.

In the case where dec = 0, then a = 1−vel(∆t/∆x) > 0 means the entering
fluid must must not travel, during a single time step, more than one space step.
This is often called the Courant condition on the time step.

1.4.4 Method

In order to compute all uk+1i , which in the MATLAB code is stored in the
array u(i, k + 1), we must use a nested loop where the i-loop (space) is inside
and the k-loop (time) is the outer loop. In this flow model u(i, k + 1) depends
directly on the two previously computed u(i−1, k) (the upstream concentration)
and u(i, k). This is different from the heat diffusion model, which requires an
additional value u(i+1, k) and a boundary condition at the right side. In heat
diffusion heat energy may move in either direction; in our model of a pollutant
the amount moves in the direction of the stream’s flow.

1.4.5 Implementation

The MATLAB code flow1d.m is for the explicit flow and decay model of a
polluted stream. Lines 1-19 contain the input data where in lines 12-15 the
initial concentration was a trig function upstream and zero downstream. Lines
16-19 contain the farthest upstream location that has concentration equal to
.2. The finite difference scheme is executed in lines 23-27, and three possible
graphical outputs are indicated in lines 28-30.

MATLAB Code flow1d.m

1. % This a model for the concentration of a pollutant.
2. % Assume the stream has constant velocity.
3. clear;
4. L = 1.0; % length of the stream
5. T = 20.; % duration of time
6. K = 200; % number of time steps
7. dt = T/K;
8. n = 10.; % number of space steps
9. dx = L/n;
10. vel = .1; % velocity of the stream
11. decay = .1; % decay rate of the pollutant
12. for i = 1:n+1 % initial concentration
13. x(i) =(i-1)*dx;
14. u(i,1) =(i<=(n/2+1))*sin(pi*x(i)*2)+(i>(n/2+1))*0;

1.4. FLOW AND DECAY OF A POLLUTANT IN A STREAM 29

15. end
16. for k=1:K+1 % upstream concentration
17. time(k) = (k-1)*dt;
18. u(1,k) = -sin(pi*vel*0)+.2;
19. end
20. %
21. % Execute the finite difference algorithm.
22. %
23. for k=1:K % time loop
24. for i=2:n+1 % space loop
25. u(i,k+1) =(1 - vel*dt/dx -decay*dt)*u(i,k)

+ vel*dt/dx*u(i-1,k);
26. end
27. end
28. mesh(x,time,u’)
29. % contour(x,time,u’)
30. % plot(x,u(:,1),x,u(:,51),x,u(:,101),x,u(:,151))

One expects the location of the maximum concentration to move down-
stream and to decay. This is illustrated in Figure 1.4.2 where the top graph
was generated by the mesh command and is concentrations versus time-space.
The middle graph is a contour plot of the concentration. The bottom graph
contains four plots for the concentration at four times 0, 5, 10 and 15 versus
space, and here one can clearly see the pollutant plume move downstream and
decay.
The following MATLAB code mov1d.m will produces a frame by frame

"movie" which does not require a great deal of memory. This code will present
graphs of the concentration versus space for a sequence of times. Line 1 executes
the above MATLAB file flow1d where the arrays x and u are created. The
loop in lines 3-7 generate a plot of the concentrations every 5 time steps. The
next plot is activated by simply clicking on the graph in the MATLAB figure
window. In the pollution model it shows the pollutant moving down stream
and decaying.

MATLAB Code mov1d.m

1. flow1d;
2. lim =[0 1. 0 1];
3. for k=1:5:150
4. plot(x,u(:,k))
5. axis(lim);
6. k = waitforbuttonpress;
7. end

In Figure 1.4.3 we let the stream’s velocity be vel = 1.3, and this, with the
same other constants, violates the stability condition. For the time step equal
to .1 and the space step equal to .1, a flow rate equal to 1.3 means that the

30 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Figure 1.4.2: Concentration of Pollutant

1.4. FLOW AND DECAY OF A POLLUTANT IN A STREAM 31

Figure 1.4.3: Unstable Concentration Computation

pollutant will travel .13 units in space, which is more than one space step. In
order to accurately model the concentration in a stream with this velocity, we
must choose a smaller time step. Most explicit numerical methods for fluid flow
problems will not work if the time step is so large that the computed flow for a
time step jumps over more than one space step.

1.4.6 Assessment

The discrete model is accurate for suitably small step sizes. The dispersion
of the pollutant is a continuous process, which could be modeled by a partial
differential equation with initial and boundary conditions:

ut = −vel ux − dec u, (1.4.6)

u(x, 0) = given and (1.4.7)

u(0, t) = given. (1.4.8)

This is analogous to the discrete model in (1.4.2), (1.4.3) and (1.4.4). The
partial differential equation in (1.4.5) can be derived from (1.4.1) by replacing
uki by u(i∆x, k∆t), dividing by A∆x∆t and letting ∆x and ∆t go to 0. Like
the heat models the step sizes should be carefully chosen so that stability holds
and the errors

uki − u(i∆x, k∆t)

between the discrete and continuous models are small.

32 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Often it is difficult to determine the exact values of the constants vel and
dec. Exactly what is the effect of having measurement errors, say of 10%, on
constants vel, dec or the initial and boundary conditions? What is interaction of
the measurement errors with the numerical errors? The flow rate, vel, certainly
is not always constant. Moreover, there may be fluid flow in more than one
direction.

1.4.7 Exercises

1. Duplicate the computations in Figure 1.4.2.
2. Vary the decay rate, dec = .05, .1, 1. and 2.0. Explain your computed
results.
3. Vary the flow rate, vel = .05, .1, 1. and 2.0. Explain your computed
results.
4. Consider the 3× 3 A matrix. Use the parameters in the example of the
stability condition and observe Ak when k = 10, 100 and 1000 for different
values of vel so that the stability condition either does or does not hold.
5. Suppose n = 4 so that there are four unknowns. Find the 4 × 4 matrix
description of the finite difference model (1.4.2). Repeat problem 4 with the
corresponding 4× 4 matrix.
6. Verify that equation (1.4.2) follows from equation (1.4.1).
7. Experiment with different time steps by varying the number of time steps
K = 100, 200, 400 and keeping the space steps constant by using n = 10.
8. Experiment with different space steps by varying the number space steps
n = 5, 10, 20, 40 and keeping the time steps constant by using K = 200.
9. In problems 7 and 8 what happens to the solutions as the mesh sizes
decrease, provided the stability condition holds?
10. Modify the model to include the possibility that the upstream boundary
condition varies with time, that is, the polluting source has a concentration that
depends on time. Suppose the concentration at x = 0 is a periodic function
.1 + .1 sin(πt/20).
(a). Change the finite difference model (1.4.2)-(1.4.4) to account for this.
(b). Modify the MATLAB code flow1d.m and use it to study this case.

11. Modify the model to include the possibility that the steam velocity
depends on time. Suppose the velocity of the stream increases linearly over the
time interval from t = 0 to t = 20 so that vel = .1 + .01t.
(a). Change the finite difference model (1.4.2)-(1.4.4) to account for this.
(b). Modify the MATLAB code flow1d.m and use it to study this case.

1.5 Heat and Mass Transfer in Two Directions

1.5.1 Introduction

The restriction of the previous models to one space dimension is often not very
realistic. For example, if the radius of the cooling wire is large, then one should

1.5. HEAT AND MASS TRANSFER IN TWO DIRECTIONS 33

expect to have temperature variations in the radial direction as well as in the
direction of the wire. Or, in the pollutant model the source may be on a shallow
lake and not a stream so that the pollutant may move within the lake in plane,
that is, the concentrations of the pollutant will be a function of two space
variables and time.

1.5.2 Applied Area

Consider heat diffusion in a thin 2D cooling fin where there is diffusion in both
the x and y directions, but any diffusion in the z direction is minimal and can
be ignored. The objective is to determine the temperature in the interior of the
fin given the initial temperature and the temperature on the boundary. This
will allow us to assess the cooling fin’s effectiveness. Related problems come
from the manufacturing of large metal objects, which must be cooled so as not
to damage the interior of the object. A similar 2D pollutant problem is to
track the concentration of a pollutant moving across a lake. The source will be
upwind so that the pollutant is moving according to the velocity of the wind.
We would like to know the concentration of the pollutant given the upwind
concentrations along the boundary of the lake, and the initial concentrations in
the lake.

1.5.3 Model

The models for both these applications evolve from partitioning a thin plate or
shallow lake into a set of small rectangular volumes, ∆x∆yT, where T is the
small thickness of the volume. Figure 1.5.1 depicts this volume, and the transfer
of heat or pollutant through the right vertical face. In the case of heat diffusion,
the heat entering or leaving through each of the four vertical faces must be given
by the Fourier heat law applied to the direction perpendicular to the vertical
face. For the pollutant model the amount of pollutant, concentration times
volume, must be tracked through each of the four vertical faces. This type of
analysis leads to the following models in two space directions. Similar models
in three space directions are discussed in Chapters 4.4-4.6 and 6.2-6.3.
In order to generate a 2D time dependent model for heat transfer diffusion,

the Fourier heat law must be applied to both the x and y directions. The
continuous and discrete 2D models are very similar to the 1D versions. In
the continuous 2D model the temperature u will dependent on three variables,
u(x, y, t). In (1.5.1) −(Kuy)y models the diffusion in the y direction; it models
the heat entering and leaving the left and right of the rectangle h = ∆x by
h = ∆y, and more details of this derivation will be given in Chapter 3.2.

Continuous 2D Heat Model for u = u(x,y, t).

ρcut − (Kux)x − (Kuy)y = f (1.5.1)

u(x, y, 0) = given (1.5.2)

u(x, y, t) = given on the boundary (1.5.3)

34 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Figure 1.5.1: Heat or Mass Entering or Leaving

Explicit Finite Difference 2D Heat Model: uki,j ≈ u(ih, jh, k∆t).

uk+1i,j = (∆t/ρc)f + α(uki+1,j + uki−1,j + uki,j+1 + uki,j−1)

+(1− 4α)uki,j (1.5.4)

α = (K/ρc)(∆t/h2), i, j = 1, .., n− 1 and k = 0, ..,maxk − 1,
u0i,j = given, i, j = 1, .., n− 1 (1.5.5)

uki,j = given, k = 1, ...,maxk, and i, j on the boundary grid. (1.5.6)

Stability Condition.

1− 4α > 0 and α > 0.

The model for the dispersion of a pollutant in a shallow lake is similar.
Let u(x, y, t) be the concentration of a pollutant. Suppose it is decaying at
a rate equal to dec units per time, and it is being dispersed to other parts
of the lake by a known wind with constant velocity vector equal to (v1, v2).
Following the derivations in Chapter 1.4, but now consider both directions, we
obtain the continuous and discrete models. We have assumed both the velocity
components are nonnegative so that the concentration levels on the upwind side
(west and south) sides must be given. In the partial differential equation for
the continuous 2D model the term −v2uy models the amount of the pollutant
entering and leaving in the y direction for the thin rectangular volume whose
base is ∆x by ∆y.

Continuous 2D Pollutant Model for u(x,y, t).

ut = −v1ux − v2uy − dec u, (1.5.7)

u(x, y, 0) = given and (1.5.8)

u(x, y, t) = given on the upwind boundary. (1.5.9)

1.5. HEAT AND MASS TRANSFER IN TWO DIRECTIONS 35

Explicit Finite Difference 2D Pollutant Model: uki,j ≈ u(i∆x, j∆y, k∆t).

uk+1i,j = v1(∆t/∆x)u
k
i−1,j + v2(∆t/∆y)u

k
i,j−1 + (1.5.10)

(1− v1(∆t/∆x)− v2(∆t/∆y)−∆t dec)uki,j
u0i,j = given and (1.5.11)

uk0,j and uki,0 = given. (1.5.12)

Stability Condition.

1− v1(∆t/∆x)− v2(∆t/∆y)−∆t dec > 0.

1.5.4 Method

Consider heat diffusion or pollutant transfer in two directions and let uk+1ij be
the approximation of either the temperature or the concentration at (x, y, t)
= (i∆x, j∆y, (k + 1)∆t). In order to compute all uk+1ij , which will henceforth
be stored in the array u(i, j, k + 1), one must use nested loops where the j-
loop and i-loop (space) are inside and the k-loop (time) is the outer loop. The
computations in the inner loops depend only on at most five adjacent values:
u(i, j, k), u(i − 1, j, k), u(i + 1, j, k), u(i, j − 1, k), and u(i, j + 1, k) all at the
previous time step, and therefore, the u(i, j, k+1) and u(bi,bj, k+1) computations
are independent. The classical order of the nodes is to start with the bottom
grid row and move from left to right. This means the outer most loop will be
the k-loop (time), the middle will be the j-loop (grid row), and the inner most
will be the i-loop (grid column). A notational point of confusion is in the array
u(i, j, k) varying the i corresponds to moving up and down in column j; but
this is associated with moving from left to right in the grid row j of the physical
domain for the temperature or the concentration of the pollutant.

1.5.5 Implementation

The following MATLAB code heat2d.m is for heat diffusion on a thin plate,
which has initial temperature equal to 70 and has temperature at boundary
x = 0 equal to 370. for the first 120 time steps and then set equal to 70 after
120 time steps. The other temperatures on the boundary are always equal to 70.
The code in heat2d.m generates a 3D array whose entries are the temperatures
for 2D space and time. The input data is given in lines 1-31, the finite difference
method is executed in the three nested loops in lines 35-40, and some of the
output is graphed in the 3D plot for the temperature at the final time step in
line 42. The 3D plot in Figure 1.5.2 is the temperature for the final time step
equal to Tend = 80 time units, and here the interior of the fin has cooled down
to about 84.

36 CHAPTER 1. DISCRETE TIME-SPACE MODELS

MATLAB Code heat2d.m

1. % This is heat diffusion in 2D space.
2. % The explicit finite difference method is used.
3. clear;
4. L = 1.0; % length in the x-direction
5. W = L; % length in the y-direction
6. Tend = 80.; % final time
7. maxk = 300;
8. dt = Tend/maxk;
9. n = 20.;
10. % initial condition and part of boundary condition
11. u(1:n+1,1:n+1,1:maxk+1) = 70.;
12. dx = L/n;
13. dy = W/n; % use dx = dy = h
14. h = dx;
15. b = dt/(h*h);
16. cond = .002; % thermal conductivity
17. spheat = 1.0; % specific heat
18. rho = 1.; % density
19. a = cond/(spheat*rho);
20. alpha = a*b;
21. for i = 1:n+1
22. x(i) =(i-1)*h; % use dx = dy = h
23. y(i) =(i-1)*h;
24. end
25. % boundary condition
26. for k=1:maxk+1
27. time(k) = (k-1)*dt;
28. for j=1:n+1
29. u(1,j,k) =300.*(k<120)+ 70.;
30. end
31. end
32. %
33. % finite difference method computation
34. %
35. for k=1:maxk
36. for j = 2:n
37. for i = 2:n

u(i,j,k+1) =0.*dt/(spheat*rho)
+(1-4*alpha)*u(i,j,k)
+alpha*(u(i-1,j,k)+u(i+1,j,k)
+u(i,j-1,k)+u(i,j+1,k));

38. end
39. end

1.5. HEAT AND MASS TRANSFER IN TWO DIRECTIONS 37

Figure 1.5.2: Temperature at Final Time

40. end
41. % temperature versus space at the final time
42. mesh(x,y,u(:,:,maxk)’)

The MATLAB code mov2dheat.m generates a sequence of 3D plots of the
temperature versus space. One can see the heat moving from the hot side
into the interior and then out the cooler boundaries. This is depicted for four
times in Figure 1.5.3 where the scaling of the vertical axis has changed as time
increases. You may find it interesting to vary the parameters and also change
the 3D plot to a contour plot by replacing mesh by contour.

MATLAB Code mov2dheat.m

1. % This generates a sequence of 3D plots of temperature.
2. heat2d;
3. lim =[0 1 0 1 0 400];
4. for k=1:5:200
5. mesh(x,y,u(:,:,k)’)
6. title (’heat versus space at different times’)
7. axis(lim);
8. k = waitforbuttonpress;
9. end

The MATLAB code flow2d.m simulates a large spill of a pollutant along the
southwest boundary of a shallow lake. The source of the spill is controlled after
25 time steps so that the pollutant plume moves across the lake as depicted

38 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Figure 1.5.3: Heat Diffusing Out a Fin

by the mesh plots for different times. The MATLAB code flow2d.m generates
the 3D array of the concentrations as a function of the x, y and time grid. The
input data is given in lines 1-33, the finite difference method is executed in the
three nested loops in lines 37-43, and the output is given in lines 44 and 45.

MATLAB Code flow2d.m

1. % The is pollutant flow across a lake.
2. % The explicit finite difference method is used.
3. clear;
4. L = 1.0; % length in x direction
5. W = 4.0; % length in y direction
6. T = 10.; % final time
7. maxk = 200; % number of time steps
8. dt = T/maxk;
9. nx = 10.; % number of steps in x direction
10. dx = L/nx;
11. ny = 20.; % number of steps in y direction
12. dy = W/ny;
13. velx = .1; % wind speed in x direction
14. vely = .4; % wind speed in y direction
15. decay = .1; %decay rate
16. % Set initial conditions.
17. for i = 1:nx+1
18. x(i) =(i-1)*dx;

1.5. HEAT AND MASS TRANSFER IN TWO DIRECTIONS 39

19. for j = 1:ny+1
20. y(j) =(j-1)*dy;
21. u(i,j,1) = 0.;
22. end
23. end
24. % Set upwind boundary conditions.
25. for k=1:maxk+1
26. time(k) = (k-1)*dt;
27. for j=1:ny+1
28. u(1,j,k) = .0;
29. end
30. for i=1:nx+1
31. u(i,1,k) = (i<=(nx/2+1))*(k<26)

*5.0*sin(pi*x(i)*2)
+(i>(nx/2+1))*.1;

32. end
33. end
34. %
35. % Execute the explicit finite difference method.
36. %
37. for k=1:maxk
38. for i=2:nx+1;
39. for j=2:ny+1;
40. u(i,j,k+1) =(1 - velx*dt/dx

- vely*dt/dy - decay*dt)*u(i,j,k)
+ velx*dt/dx*u(i-1,j,k)
+ vely*dt/dy*u(i,j-1,k);

41. end
42. end
43. end
44. mesh(x,y,u(:,:,maxk)’)
45. % contour(x,y,u(:,:,maxk)’)

Figure 1.5.4 is the concentration at the final time step as computed in
flow2d.m. Figure 1.5.5 is sequence of mesh plots for the concentrations at var-
ious time steps. Note the vertical axis for the concentration is scaled so that
the concentration plume decreases and moves in the direction of wind velocity
(.1,.4). The MATLAB code mov2dflow.m will generate a sequence of mesh or
contour plots.

MATLAB Code mov2dflow.m

1. flow2d;
2. lim =[0 1 0 4 0 3];
3. for k=1:5:200
4. %contour(x,y,u(:,:,k)’)
5. mesh(x,y,u(:,:,k)’)

40 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Figure 1.5.4: Concentration at the Final Time

6. title (’concentration versus space at different times’)
7. axis(lim);
8. k = waitforbuttonpress;
9. end

1.5.6 Assessment

Diffusion of heat or the transfer of a pollutant may occur in non rectangular
domains. Certainly a rectangular lake is not realistic. Other discretization
methods such as the finite element scheme are very useful in modeling more
complicated geometric objects. Also, the assumption of the unknown depending
on just two space variable may not be acceptable. Some discussion of three
dimensional models is given in Chapters 4.4-4.6, and in Chapters 6.2-6.3 where
there are three dimensional analogous codes heat3d.m and flow3d.m

1.5.7 Exercises

1. Duplicate the calculations in heat2d.m. Use mesh and contour to view
the temperatures at different times.
2. In heat2d.m experiment with different time mesh sizes, maxk = 150, 300,
450. Be sure to consider the stability constraint.
3. In heat2d.m experiment with different space mesh sizes, n = 10, 20 and
40. Be sure to consider the stability constraint.

1.5. HEAT AND MASS TRANSFER IN TWO DIRECTIONS 41

Figure 1.5.5: Concentrations at Different Times

4. In heat2d.m experiment with different thermal conductivitiesK = cond =
.01, .02 and .04. Be sure to make any adjustments to the time step so that the
stability condition holds.
5. Suppose heat is being generated at a rate of 3 units of heat per unit
volume per unit time.
(a). How is the finite difference model for the 2D problem in equation

(1.5.4) modified to account for this?
(b). Modify heat2d.m to implement this source of heat.
(c). Experiment with different values for the heat source f = 0, 1, 2, 3.

6. In the 2D finite difference model in equation (1.5.4) and in the MATLAB
code heat2d.m the space steps in the x and y directions were assumed to be
equal to h.
(a). Modify these so that ∆x = dx and ∆y = dy are different.
(b). Experiment with different shaped fins that are not squares, that is,

in lines 4-5 W and L may be different.
(c). Or, experiment in line 9 where n is replaced by nx and ny for

different numbers of steps in the x and y directions so that the length of the
space loops must change.
7. Duplicate the calculations in flow2d.m. Use mesh and contour to view
the temperatures at different times.
8. In flow2d.m experiment with different time mesh sizes, maxk = 100,
200, 400. Be sure to consider the stability constraint.
9. In flow2d.m experiment with different space mesh sizes, nx = 5, 10 and
20. Be sure to consider the stability constraint.

42 CHAPTER 1. DISCRETE TIME-SPACE MODELS

10. In flow2d.m experiment with different decay rates dec = .01, .02 and
.04. Be sure to make any adjustments to the time step so that the stability
condition holds.
11. Experiment with the wind velocity in the MATLAB code flow2d.m.
(a). Adjust the magnitudes of the velocity components and observe sta-

bility as a function of wind velocity.
(b). If the wind velocity is not from the south and west, then the finite

difference model in (1.5.10) will change. Let the wind velocity be from the north
and west, say wind velocity = (.2, -.4). Modify the finite difference model.
(c). Modify the MATLAB code flow2d.m to account for this change in

wind direction.
12. Suppose pollutant is being generated at a rate of 3 units of heat per
unit volume per unit time.
(a). How is the model for the 2D problem in equation (1.5.10) modified

to account for this?
(b). Modify flow2d.m to implement this source of pollution.
(c). Experiment with different values for the heat source f = 0, 1, 2, 3.

1.6 Convergence Analysis

1.6.1 Introduction

Initial value problems have the form

ut = f(t, u) and u(0) = given. (1.6.1)

The simplest cases can be solved by separation of variable, but in general they
do not have to have closed form solutions. Therefore, one is forced to consider
various approximation methods. In this section we study the simplest numerical
method, the Euler finite difference method. We shall see that under appropriate
assumptions the error made by this type of approximation is bounded by a
constant times the step size.

1.6.2 Applied Area

Again consider a well stirred liquid such as a cup of coffee. Assume that the
temperature is uniform with respect to space, but the temperature may be
changing with respect to time. We wish to predict the temperature as a function
of time given some initial observations about the temperature.

1.6.3 Model

The continuous model of Newton’s empirical law of cooling states that the rate
of change of the temperature is proportional to the difference in the surrounding
temperature and the temperature of the liquid

ut = c(usur − u). (1.6.2)

1.6. CONVERGENCE ANALYSIS 43

If c = 0, then there is perfect insulation, and the liquid’s temperature must
remain at its initial value. For large c the liquid’s temperature will rapidly
approach the surrounding temperature. The closed form solution of this differ-
ential equation can be found by the separation of variables method and is, for
usur equal a constant,

u(t) = usur + (u(0)− usur)e
−ct. (1.6.3)

If the c is not given, then it can be found from a second observation u(t1) = u1.
If usur is a function of t, one can still find a closed form solution provided the
integrations steps are not too complicated.

1.6.4 Method

Euler’s method involves the approximation of ut by the finite difference

(uk+1 − uk)/h

where h = T/K, uk is an approximation of u(kh) and f is evaluated at (kh, uk).
If T is not finite, then h will be fixed and k may range over all of the positive
integers. The differential equation (1.6.1) can be replaced by either

(uk+1 − uk)/h = f((k + 1)h, uk+1)

or, (uk+1 − uk)/h = f(kh, uk). (1.6.4)

The choice in (1.6.4) is the simplest because it does not require the solution of
a possibly nonlinear problem at each time step. The scheme given by (1.6.4)
is called Euler’s method, and it is a discrete model of the differential equation
in (1.6.2). For the continuous Newton’s law of cooling differential equation
where f(t, u) = c(usur − u) Euler’s method is the same as the first order finite
difference method for the discrete Newton’s law of cooling.
The improved Euler method is given by the following two equations

(utemp− uk)/h = f(kh, uk) (1.6.5)

(uk+1 − uk)/h = 1/2(f(kh, uk) + f((k + 1)h, utemp)). (1.6.6)

Equation (1.6.5) gives a first estimate of the temperature at time kh, and then it
is used in equation (1.6.6) where an average of the time derivative is computed.
This is called improved because the errors for Euler’s method are often bounded
by a constant times the time step, while the errors for the improved Euler
method are often bounded by a constant times the time step squared.

1.6.5 Implementation

One can easily use MATLAB to illustrate that as the time step decreases the
solution from the discrete models approaches the solution to the continuous
model. This is depicted in both graphical and table form. In the MATLAB

44 CHAPTER 1. DISCRETE TIME-SPACE MODELS

code eulerr.m we experiment with the number of time steps and fixed final time.
Newton’s law of cooling for a constant surrounding temperature is considered
so that the exact solution is known. The exact solution is compared with both
the Euler and improved Euler approximation solutions.
In the MATLAB code eulerr.m lines 1-13 contain the input data. The

arrays for the exact solution, Euler approximate solution and the improved
Euler approximate solution are, respectively, uexact, ueul and uieul, and they
are computed in time loop in lines 14-25. The output is given in lines 26-29
where the errors are given for the final time.

MATLAB Code eulerr.m

1. % This code compares the discretization errors.
2. % The Euler and improved Euler methods are used.
3. clear;
4. maxk = 5; % number of time steps
5. T = 10.0; % final time
6. dt = T/maxk;
7. time(1) = 0;
8. u0 = 200.; % initial temperature
9. c = 2./13.; % insulation factor
10. usur = 70.; % surrounding temperature
11. uexact(1) = u0;
12. ueul(1) = u0;
13. uieul(1) = u0;
14. for k = 1:maxk %time loop
15. time(k+1) = k*dt;
16. % exact solution
17. uexact(k+1) = usur + (u0 - usur)*exp(-c*k*dt);
18. % Euler numerical approximation
19. ueul(k+1) = ueul(k) +dt*c*(usur - ueul(k));
20. % improved Euler numerical approximation
21. utemp = uieul(k) +dt*c*(usur - uieul(k));
22. uieul(k+1)= uieul(k)

+ dt/2*(c*(usur - uieul(k))+c*(usur - utemp));
23. err_eul(k+1) = abs(ueul(k+1) - uexact(k+1));
24. err_im_eul(k+1) = abs(uieul(k+1) - uexact(k+1));
25. end
26. plot(time, ueul)
27. maxk
28. err_eul_at_T = err_eul(maxk+1)
29. err_im_eul_at_T = err_im_eul(maxk+1)

Figure 1.6.1 contains the plots of for the Euler method given in the arrays
ueul for maxk = 5, 10, 20 and 40 times steps. The curve for maxk = 5 is
not realistic because of the oscillations, but it does approach the surrounding

1.6. CONVERGENCE ANALYSIS 45

Figure 1.6.1: Euler Approximations

Table 1.6.1: Euler Errors at t = 10
Time Steps Euler Error Improved Euler Error

5 7.2378 0.8655
10 3.4536 0.1908
20 1.6883 0.0449
40 0.8349 0.0109

temperature. The other three plots for all points in time increase towards the
exact solution.
Another way of examining the error is to fix a time and consider the differ-

ence in the exact temperature and the approximate temperatures given by the
Euler methods. Table 1.6.1 does this for time equal to 10. The Euler errors are
cut in half whenever the number of time steps are doubled, that is, the Euler
errors are bounded be a constant times the time step size. The improved Euler
errors are cut in one quarter when the number of time steps are doubled, that
is, the improved Euler errors are bounded by a constant times the time step
size squared.

1.6.6 Assessment

In order to give an explanation of the discretization error, we must review
the mean value theorem and an extension. The mean value theorem, like the

46 CHAPTER 1. DISCRETE TIME-SPACE MODELS

intermediate value theorem, appears to be clearly true once one draws the
picture associated with it. Drawing the a picture does make some assumptions.
For example, consider the function given by f(x) = 1 − |x|. Here there is a
"corner" in the graph at x = 0, that is, f(x) does not have a derivative at
x = 0.

Theorem 1.6.1 (Mean Value Theorem) Let f : [a, b] → R be continuous on
[a, b]. If f has a derivative at each point of (a, b), then there is a c between a
and x such that f 0(c) = (f(b)− f(a))/(b− a).

If b is replaced by x and we solve for f(x) in f 0(c) = (f(x)− f(a))/(x− a),
then provided f (x) has a derivative

f(x) = f(a) + f 0(c)(x− a)

for some c between a and x. Generally, one does not know the exact value of
c, but if the derivative is bounded by M , then the following inequality holds

|f(x)− f(a)| ≤M |x− a| .
An extension of this linear approximation to a quadratic approximation of f(x)
is stated in the next theorem.

Theorem 1.6.2 (Extended Mean Value Theorem) If f : [a, b] → R has two
continuous derivatives on [a, b], then there is a c between a and x such that

f(x) = f(a) + f 0(a)(x− a) + f 00(c)(x− a)2/2. (1.6.7)

Clearly Euler’s method is a very inexpensive algorithm to execute. However,
there are sizable errors. There are two types of errors:

Discretization error ≡ Ek
d = uk − u(kh)

where uk is from Euler’s algorithm (1.6.4) with no roundoff error and u(kh) is
from the exact continuum solution (1.6.1).

Accumulation error ≡ Ek
r = Uk − uk

where Uk is from Euler’s algorithm, but with round errors.
The overall error contains both errors and is Ek

r +Ek
d = Uk − u(kh). In Table

1.6.1 the discretization error for Euler’s method is bounded by a constant times
h, and the discretization error for the improved Euler method is bounded by
an constant times h squared.
Now we will give the discretization error analysis for the Euler method

applied to equation (1.6.2). The relevant terms for the error analysis are

ut(kh) = c(usur − u(kh)) (1.6.8)

uk+1 = uk + hc(usur − uk) (1.6.9)

1.6. CONVERGENCE ANALYSIS 47

Use the extended mean value theorem on u(kh+ h) where a is replaced by kh
and x is replaced by kh+ h

u((k + 1)h) = u(kh) + ut(kh)h+ utt(ck+1)h
2/2 (1.6.10)

Use the right side of (1.6.8) for ut(kh) in (1.6.10), and combine this with (1.6.9)
to get

Ek+1
d = uk+1 − u((k + 1)h)

= [uk + hc(usur − uk)]−
[u(kh) + c(usur − u(kh))h+ utt(ck+1)h

2/2]

= aEk
d + bk+1h

2/2 (1.6.11)

where a = 1− ch and bk+1 = −utt(ck+1).
Suppose a = 1 − ch > 0 and |bk+1| ≤ M . Use the triangle inequality, a
"telescoping" argument and the partial sums of the geometric series 1 + a +
a2 + · · ·+ ak = (ak+1 − 1)/(a− 1) to get

|Ek+1
d | ≤ a|Ek

d |+Mh2/2

≤ a(a|Ek−1
d |+Mh2/2) +Mh2/2

...

≤ ak+1||E0d |+ (ak+1 − 1)/(a− 1) Mh2/2. (1.6.12)

Assume E0d = 0 and use the fact that a = 1 − ch with h = T/K to ob-
tain

|Ek+1
d | ≤ [(1− cT/K)K − 1]/(−ch) Mh2/2

≤ 1/c Mh/2. (1.6.13)

We have proved the following theorem, which is a special case of a more general
theorem about Euler’s method applied to ordinary differential equations of the
form (1.6.1), see [3, chapter 5.2]

Theorem 1.6.3 (Euler Error Theorem) Consider the continuous (1.6.2) and
discrete (1.6.4) Newton cooling models. Let T be finite, h = T/K and let
solution of (1.6.2) have two derivatives on the time interval [0, T]. If the second
derivative of the solution is bounded by M , and the initial condition has no
roundoff error and 1 − ch > 0, then the discretization error is bounded by
(M/2c)h.

In the previous sections we consider discrete models for heat and pollutant
transfer

Pollutant Transfer : ut = f − aux − cu, (1.6.14)

u(0, t) and u(x, 0) given.

Heat Diffusion : ut = f + (κux)x − cu, (1.6.15)

u(0, t), u(L, t) and u(x, 0) given.

48 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Table 1.6.2: Errors for Flow
∆t ∆x Flow Errors in (1.6.14)
1/10 1/20 0.2148
1/20 1/40 0.1225
1/40 1/60 0.0658
1/80 1/80 0.0342

Table 1.6.3: Errors for Heat
∆t ∆x Heat Errors in (1.6.15)
1/50 1/5 9.2079 10−4

1/200 1/10 2.6082 10−4

1/800 1/20 0.6630 10−4

1/3200 1/40 0.1664 10−4

The discretization errors for (1.6.14) and (1.6.15), where the solutions depend
both on space and time, have the form

Ek+1
i ≡ uk+1i − u(i∆x, (k + 1)∆t)°°Ek+1
°° ≡ max

i

¯̄
Ek+1
i

¯̄
.

u(i∆x, (k+1)∆t) is the exact solution, and uk+1i is the numerical or approximate
solution. In the following examples the discrete models were from the explicit
finite difference methods used in Chapter 1.3 and 1.4.

Example for (1.6.14). Consider the MATLAB code flow1d.m (see flow1derr.m
and equations (1.4.2-1.4.4)) that generates the numerical solution of (1.6.14)
with c = dec = .1, a = vel = .1, f = 0, u(0, t) = sin(2π(0 − vel t)) and
u(x, 0) = sin(2πx). It is compared over the time interval t = 0 to t = T = 20
and at x = L = 1 with the exact solution u(x, t) = e−dec t sin(2π(x − vel t)).
Note the error in Table 1.6.2 is proportional to ∆t+∆x.

Example for (1.6.15). Consider the MATLAB code heat.m (see heaterr.m
and equations (1.2.1)-1.2.3)) that computes the numerical solution of (1.6.15)
with k = 1/π2, c = 0, f = 0, u(0, t) = 0, u(1, t) = 0 and u(x, 0) = sin(πx). It
is compared at (x, t) = (1/2, 1) with the exact solution u(x, t) = e−tsin(πx).
Here the error in Table 1.6.3 is proportional to ∆t+∆x2.

In order to give an explanation of the discretization errors, one must use
higher order Taylor polynomial approximation. The proof of this is similar

1.6. CONVERGENCE ANALYSIS 49

to the extended mean value theorem. It asserts if f : [a, b] → R has n + 1
continuous derivatives on [a, b], then there is a c between a and x such that

f(x) = f(a) + f (1)(a)(x− a) + · · ·+ f (n)(a)/n! (x− a)n

+f (n+1)(c)/(n+ 1)! (x− a)n+1.

Theorem 1.6.4 (Discretization Error for (1.6.14)) Consider the continuous
model (1.6.14) and its explicit finite difference model. If a, c and (1−a∆t/∆x−
∆t c) are nonnegative, and utt and uxx are bounded on [0, L]× [0, T], then there
are constants C1 and C2 such that°°Ek+1

°° ≤ (C1∆x+ C2∆t)T .

Theorem 1.6.5 (Discretization Error for (1.6.15)) Consider the continuous
model (1.6.15) and its explicit finite difference model. If c > 0, κ > 0, α =
(∆t/∆x2)κ and (1− 2α−∆t c) > 0, and utt and uxxxx are bounded on [0, L]×
[0, T], then there are constants C1 and C2 such that°°Ek+1

°° ≤ (C1∆x2 + C2∆t)T.

1.6.7 Exercises

1. Duplicate the calculations in Figure 1.6.1, and find the graphical solution
when maxk = 80.
2. Verify the calculations in Table 1.6.1, and find the error whenmaxk = 80.
3. Assume the surrounding temperature initially is 70 and increases at a
constant rate of one degree every ten minutes.
(a). Modify the continuous model in (1.6.2) and find its solution via the

MATLAB command desolve.
(b). Modify the discrete model in (1.6.4).

4. Consider the time dependent surrounding temperature in problem 3.
(a). Modify the MATLAB code eulerr.m to account for the changing

surrounding temperature.
(b). Experiment with different number of time steps with maxk = 5, 10,

20, 40 and 80.
5. In the proof of the Theorem 1.6.3 justify the (1.6.11) and |bk+1| ≤M .
6. In the proof of the Theorem 1.6.3 justify the (1.6.12) and (1.6.13).
7. Modify Theorem 1.6.3 to account for the case where the surrounding
temperature can depend on time, usur = usur(t). What assumptions should be
placed on usur(t) so that the discretization error will be bounded by a constant
times the step size?
8. Verify the computations in Table 1.6.14. Modify flow1d.m by inserting
an additional line inside the time-space loops for the error (see flow1derr.m).
9. Verify the computations in Table 1.6.15. Modify heat.m by inserting an
additional line inside the time-space loops for the error (see heaterr.m).
10. Consider a combined model for (1.6.14)-(1.6.15): ut = f + (κux)x −
aux − cu. Formulate suitable boundary conditions, an explicit finite difference
method, a MATLAB code and prove an error estimate.

50 CHAPTER 1. DISCRETE TIME-SPACE MODELS

Chapter 2

Steady State Discrete
Models

This chapter considers the steady state or "long run" solution to the heat diffu-
sion model. Here boundary conditions that have derivative terms in them are
applied to the cooling fin model, which will be extended two and three space
variables in the next two chapters. Variation of the Gauss elimination method
are studied in section three and four where the block structure of the coefficient
matrix is utilized. This will be very important for parallel solution of large
algebraic system. The last two sections are concerned the analysis of two types
of convergence: one with respect to discrete time and the one with respect to
the mesh size. Additional introductory references include Burden and Faires
[3] and Meyer [12].

2.1 Steady State and Triangular Solves

2.1.1 Introduction

The next four sections will be concerned with solving linear algebraic system

Ax = d (2.1.1)

where A is a given n× n matrix, d is a given column vector and x is a column
vector to be found. In this section we will focus on the special case where A
is triangular matrix. Algebraic systems have many applications such as inven-
tory management, electrical circuits, the steady state polluted stream and heat
diffusion in a wire.
Both the polluted stream and heat diffusion problems initially were formu-

lated as time and space dependent problems, but as time increased there was
little difference in the concentrations or temperatures as a function of time. A
time independent solution is called steady state or equilibrium solution, which

51

52 CHAPTER 2. STEADY STATE DISCRETE MODELS

Figure 2.1.1: Infinite or None or One Solution(s)

can be modeled by systems of algebraic equations (2.1.1) with x being the steady
state solution. Systems of the form Ax = d can be derived from u = Au+ b via
(I −A)u = b and replacing u by x, b by d and (I −A) by A.
There are several classes of (2.1.1), which are illustrated by the following

examples.

Example 1. The algebraic system may not have a solution. Consider·
1 1
2 2

¸
=

·
d1
d2

¸
.

If d = [1 2]T , then there are an infinite number of solutions given by points
on the line l1 in the Figure 2.1.1. If d = [1 4]T , then there are no solutions
because the lines l1 and l2 are parallel. If the problem is modified to·

1 1
−2 2

¸
=

·
1
0

¸
,

then there will be exactly one solution given by the intersection of lines l1 and
l3.

Example 2. This example illustrates a system with three equations with either
no solution or a set of solutions that is a straight line in 3D space. 1 1 1

0 0 3
0 0 3

 x1
x2
x3

 =
 1

d2
3


If d2 6= 3, then the second row or equation implies 3x3 6= 3 and x1 6= 1. This
contradicts the third row or equation, and hence, there is no solution to the

2.1. STEADY STATE AND TRIANGULAR SOLVES 53

system of equations. If d2 = 3, then x3 = 1 and x2 is a free parameter. The
first row or equation is x1 + x2 + 1 = 1 or x1 = −x2. The vector form of the
solution is  x1

x2
x3

 =
 0
0
1

+ x2

 −11
0

 .
This is a straight line in 3D space containing the point [0 0 1]T and going in
the direction [−1 1 0]T .
The easiest algebraic systems to solve have either diagonal or a triangular

matrices.

Example 3. Consider the case where A is a diagonal matrix. 1 0 0
0 2 0
0 0 3

 x1
x2
x3

 =
 1
4
7

 whose solution is
 x1

x2
x3

 =
 1/1
4/2
7/3

 .
Example 4. Consider the case where A is a lower triangular matrix. 1 0 0

1 2 0
1 4 3

 x1
x2
x3

 =
 1
4
7

 .
The first row or equation gives x1 = 1. Use this in the second row or equation
to get 1 + 2x2 = 4 and x2 = 3/2. Put these two into the third row or equation
to get 1(1) + 4(3/2) + 3x3 = 7 and x3 = 0. This is known as a forward sweep.

Example 5. Consider the case where A is an upper triangular matrix 1 −1 1
0 2 2
0 0 3

 x1
x2
x3

 =
 1
4
9

 .
First, the last row or equation gives x3 = 3. Second, use this in the second
row or equation to get 2x2 + 2(3) = 4 and x2 = −1. Third, put these two into
the first row or equation to get 1(x1) − 1(−1) + 3(3) = 1 and x1 = −9. This
illustrates a backward sweep where the components of the matrix are retrieved
by rows.

2.1.2 Applied Area

Consider a stream which initially has an industrial spill upstream. Suppose
that at the farthest point upstream the river is being polluted so that the
concentration is always fixed. Assume the flow rate of the stream is known and
the chemical decay rate of the pollutant is known. We would like to determine
the short and long term effect of this initial spill and upstream pollution.

54 CHAPTER 2. STEADY STATE DISCRETE MODELS

The discrete model was developed in Chapter 1.4 for the concentration uk+1i

approximation of u(i∆x, (k + 1)∆t)).

uk+1i = vel (∆t/∆x)uki−1 + (1− vel (∆t/∆x)−∆t dec)uki
i = 1, ..., n− 1 and k = 0, ...,maxk − 1,

u0i = given for i = 1, ..., n− 1 and
uk0 = given for k = 1, ...,maxk.

This discrete model should approximate the solution to the continuous space
and time model

ut = −vel ux − dec u,

u(x, 0) = given and

u(0, t) = given.

The steady state solution will be independent of time. For the discrete model
this is

0 = vel (∆t/∆x)ui−1 + (0− vel (∆t/∆x)−∆t dec)ui (2.1.2)

u0 = given. (2.1.3)

The discrete steady state model may be reformulated as in (2.1.1) where A is
a lower triangular matrix. For example, if there are 3 unknown concentrations,
then (2.1.2) must hold for i = 1, 2, and 3

0 = vel (∆t/∆x)u0 + (0− vel (∆t/∆x)−∆t dec)u1
0 = vel (∆t/∆x)u1 + (0− vel (∆t/∆x)−∆t dec)u2
0 = vel (∆t/∆x)u2 + (0− vel (∆t/∆x)−∆t dec)u3.

Or, when d = vel/∆x and c = 0− d− dec, the vector form of this is c 0 0
d c 0
0 d c

 u1
u2
u3

 =
 du0

0
0

 . (2.1.4)

If the velocity of the stream in negative so that the stream is moving from right
to left, then u(L, t) will be given and the resulting steady state discrete model
will be upper triangular.
The continuous steady state model is

0 = −vel ux − dec u, (2.1.5)

u(0) = given. (2.1.6)

The solution is u(x) = u(0)e−(dec/vel)x. If the velocity of the steam is
negative (moving from the right to the left), then the given concentration will
be un and the resulting matrix will be upper triangular.

2.1. STEADY STATE AND TRIANGULAR SOLVES 55

2.1.3 Model

The general model will be an algebraic system (2.1.1) of n equations and n
unknowns. We will assume the matrix has upper triangular form

A = [aij] where aij = 0 for i > j and 1 ≤ i, j ≤ n.

The row numbers of the matrix are associated with i, and the column numbers
are given by j. The component form of Ax = d when A is upper triangular is
for all i

aiixi +
X
j>i

aijxj = di. (2.1.7)

One can take advantage of this by setting i = n, where the summation is now
vacuous, and solve for xn.

2.1.4 Method

The last equation in the component form is annxn = dn, and hence, xn =
dn/ann. The (n− 1) equation is an−1,n−1xn−1 + an−1,nxn = dn−1, and hence,
we can solve for xn−1 = (dn−1 − an−1,nxn)/an−1,n−1. This can be repeated,
provided each aii is nonzero, until all xj have been computed. In order to
execute this on a computer, there must be two loops: one for the equation
(2.1.7) (the i-loop) and one for the summation (the j-loop). There are two
versions: the ij version with the i-loop on the outside, and the ji version with
the j-loop on the outside. The ij version is a reflection of the backward sweep
as in Example 5. Note the inner loop retrieves data from the array by jumping
from one column to the next. In Fortran this is in stride n and can result
in slower computation times. Example 6 illustrates the ji version where we
subtract multiples of the columns of A, the order of the loops is interchanged,
and the components of A are retrieved by moving down the columns of A.

Example 6. Consider the following 3× 3 algebraic system 4 6 1
0 1 1
0 0 4

 x1
x2
x3

 =
 100
10
20

 .
This product can also be viewed as linear combinations of the columns of the
matrix  4

0
0

x1 +
 6
1
0

x2 +
 1
1
4

x3 =
 100
10
20

 .
First, solve for x3 = 20/4 = 5. Second, subtract the last column times x3 from
both sides to reduce the dimension of the problem

56 CHAPTER 2. STEADY STATE DISCRETE MODELS 4
0
0

x1 +
 6
1
0

x2 =
 100
10
20

−
 1
1
4

 5 =
 95
5
0

 .
Third, solve for x2 = 5/1. Fourth, subtract the second column times x2 from
both sides  4

0
0

x1 =
 95
5
0

−
 6
1
0

 5 =
 65
0
0

 .
Fifth, solve for x1 = 65/4.
Since the following MATLAB codes for the ij and ji methods of an upper

triangular matrix solve are very clear, we will not give a formal statement of
these two methods.

2.1.5 Implementation

We illustrate two MATLAB codes for doing upper triangular solve with the ij
(row) and the ji (column) methods. Then the MATLAB solver x = A\d and
inv(A) ∗ d will be used to solve the steady state polluted stream problem.
In the code jisol.m lines 1-4 are the data for Example 6, and line 5 is the

first step of the column version. The j-loop in line 6 moves right most column
of the matrix to the right side of the vector equation, and then in line 10 the
next value of the solution is computed.

MATLAB Code jisol.m

1. clear;
2. A = [4 6 1;0 1 1;0 0 4]
3. d = [100 10 20]’
4. n = 3
5. x(n) = d(n)/A(n,n);
6. for j = n:-1:2
7. for i = 1:j-1
8. d(i) = d(i) - A(i,j)*x(j);
9. end
10. x(j-1) = d(j-1)/A(j-1,j-1);
11. end
12. x

In the code ijsol.m the i-loop in line 6 computes the partial row sum with
respect to the j index, and this is done for each row i by the j-loop in line 8.

MATLAB Code ijsol.m

1. clear;
2. A = [4 6 1;0 1 1;0 0 4]
3. d = [100 10 20]’

2.1. STEADY STATE AND TRIANGULAR SOLVES 57

4. n = 3
5. x(n) = d(n)/A(n,n);
6. for i = n:-1:1
7. sum = d(i);
8. for j = i+1:n
9. sum = sum - A(i,j)*x(j);
10. end
11. x(i) = sum/A(i,i);
12. end
13. x

MATLAB can easily solve problems with n equations and n unknowns, and
the coefficient matrix, A, does not have to be either upper or lower triangular.
The following are two commands to do this, and these will be more completely
described in the next section.

MATLAB Linear Solve A\d and inv(A)*d.
A
A =
4 6 1
0 1 1
0 0 4

d
d =
100
10
20

x = A\d
x =
16.2500
5.0000
5.0000

x = inv(A)*d
x =
16.2500
5.0000
5.0000

Finally, we return to the steady state polluted stream in (2.1.4). Assume
L = 1, ∆x = L/3 = 1/3, vel = 1/3, dec = 1/10 and u(0) = 2/10. The
continuous steady state solution is u(x) = (2/10)e−(3/10)x. We approximate
this solution by either the discrete solution for large k, or the solution to the
algebraic system. For just three unknowns the algebraic system in (2.1.4) with
d = (1/3)/(1/3) = 1 and c = 0 − 1 − (1/10) = −1.1 is easily solved for the
approximate concentration at three positions is the stream.

58 CHAPTER 2. STEADY STATE DISCRETE MODELS

A = [1.1 0 0;-1 1.1 0;0 -1 1.1]
A =
1.1000 0 0
-1.0000 1.1000 0
0 -1.0000 1.1000

d = [.2 0 0]’
d =
0.2000
0
0

A\d
ans =
0.1818
0.1653
0.1503

The above numerical solution is an approximation of continuous solution
u(x) = .2e−x where x1 = 1∆x = 1/3, x2 = 2∆x = 2/3 and x3 = 3∆x = 1, that
is, .2e−.1 = .18096, .2e−.2 = .16375 and .2e−.3 = .14816, respectively.

2.1.6 Assessment

One problem with the upper triangular solve algorithm may occur if the di-
agonal components of A, aii, are very small. In this case the floating point
approximation may induce significant errors. Another instance is two equations
which are nearly the same. For example, for two equations and two variables
suppose the lines associated with the two equations are almost parallel. Then
small changes in the slopes, given by either floating point or empirical data ap-
proximations, will induce big changes in the location of the intersection, that is,
the solution. The following elementary theorem gives conditions on the matrix
that will yield unique solutions.

Theorem 2.1.1 (Upper Triangular Existence) Consider Ax = d where A is
upper triangular (aij = 0 for i > j) and an n×n matrix. If all aii are not zero,
then Ax = d has a solution. Moreover, this solution is unique.

Proof. The derivation of the ij method for solving upper triangular algebraic
systems established the existence part. In order to prove the solution is unique,
let x and y be two solutions Ax = d and Ay = d. Subtract these two and use the
distributive property of matrix products Ax−Ay = d−d so that A(x−y) = 0.
Now apply the upper triangular solve algorithm with d replaced by 0 and x
replaced by x− y. This implies x− y = 0 and so x = y.

2.2. HEAT DIFFUSION AND GAUSS ELIMINATION 59

2.1.7 Exercises

1. State an ij version of an algorithm for solving lower triangular problems.
2. Prove an analogous existence and uniqueness theorem for lower triangular
problems.
3. Use the ij version to solve the following

1 0 0 0
2 5 0 0
−1 4 5 0
0 2 3 −2




x1
x2
x3
x4

 =

1
3
7
11

 .
4. Consider example 5 and use example 6 as a guide to formulate a ji (col-
umn) version of the solution for example 5.
5. Use the ji version to solve the problem in 3.
6. Write a MATLAB version of the ji method for a lower triangular solve.
Use it to solve the problem in 3.
7. Use the ij version and MATLAB to solve the problem in 3.
8. Verify the calculations for the polluted stream problem. Experiment with
different flow and decay rates. Observe stability and steady state solutions.
9. Consider the steady state polluted stream problem with fixed L = 1.0,
vel = 1/3 and dec = 1/10. Experiment with 4, 8 and 16 unknowns so that
∆x = 1/4, 1/8 and1/16, respectively. Formulate the analogue of the vector
equation (2.1.14) and solve it. Compare the solutions with the solution of the
continuous model.
10. Formulate a discrete model for the polluted stream problem when the
velocity of the stream in negative.

2.2 Heat Diffusion and Gauss Elimination

2.2.1 Introduction

In most applications the coefficient matrix is not upper or lower triangular. By
adding and subtracting multiples of the equations, often one can convert the
algebraic system into an equivalent triangular system. We want to make this
systematic so that these calculations can be done on a computer.
A first step is to reduce the notation burden. Note that the positions of

all the xi were always the same. Henceforth, we will simply delete them. The
entries in the n×n matrix A and the entries in the n× 1 column vector d may
be combined into the n× (n+ 1) augmented matrix

[A d].

For example, the augmented matrix for the algebraic system

60 CHAPTER 2. STEADY STATE DISCRETE MODELS

2x1 + 6x2 + 0x3 = 12

0x1 + 6x2 + 1x3 = 0

1x1 − 1x2 + 1x3 = 0

is

[Ad] =

 2 6 0 12
0 6 1 0
1 −1 1 0

 .
Each row of the augmented matrix represents the coefficients and the right side
of an equation in the algebraic system.
The next step is to add or subtract multiples of rows to get all zeros in the

lower triangular part of the matrix. There are three basic row operations:
(i). interchange the order of two rows or equations,
(ii). multiply a row or equation by a nonzero constant and
(iii). add or subtract rows or equations.

In the following example we use a combination of (ii) and (iii), and note each row
operation is equivalent to a multiplication by an elementary matrix, a matrix
with ones on the diagonal and one nonzero off-diagonal component.

Example. Consider the above problem. First, subtract 1/2 of row 1 from row
3 to get a zero in the (3,1) position:

E1[A d] =

 2 6 0 12
0 6 1 0
0 −4 1 −6

 where E1 =
 1 0 0

0 1 0
−1/2 0 1

 .
Second, add 2/3 of row 2 to row 3 to get a zero in the (3,2) position:

E2E1[A d] =

 2 6 0 12
0 6 1 0
0 0 5/3 −6

 where E2 =
 1 0 0
0 1 0
0 2/3 1

 .
Let E = E2E1, U = EA and bd = Ed so that E[A d] = [U bd]. Note U is upper
triangular. Each elementary row operation can be reversed, and this has the
form of a matrix inverse of each elementary matrix:

E−11 =

 1 0 0
0 1 0
1/2 0 1

 and E−11 E1 = I =

 1 0 0
0 1 0
0 0 1

 ,
E−12 =

 1 0 0
0 1 0
0 −2/3 1

 and E−12 E2 = I.

Note that A = LU where L = E−11 E−12 because by repeated use of the associa-

2.2. HEAT DIFFUSION AND GAUSS ELIMINATION 61

tive property

(E−11 E−12)(EA) = (E−11 E−12)((E2E1)A)

= ((E−11 E−12)(E2E1))A

= (E−11 (E−12 (E2E1)))A

= (E−11 ((E−12 E2)E1))A

= (E−11 E1)A

= A.

The product L = E1E2 is a lower triangular matrix and A = LU is called an
LU factorization of A.

Definition. An n×n matrix, A, has an inverse n×n matrix, A−1 if and only
if A−1A = AA−1 = I, the n× n identity matrix.

Theorem 2.2.1 (Basic Properties) Let A be an n× n matrix that has an in-
verse:

1. A−1 is unique,

2. x = A−1d is a solution to Ax = d,

3. (AB)−1 = B−1A−1 provided B also has an inverse and

4. A−1 =
£
c1 c2 · · · cn

¤
has column vectors that are solutions to

Acj = ej where ej are unit column vectors with all zero components except
the j th, which is equal to one.

We will later discuss these properties in more detail. Note, given an inverse
matrix one can solve the associated linear system. Conversely, if one can solve
the linear problems in property 4 via Gaussian elimination, then one can find the
inverse matrix. Elementary matrices can be used to find the LU factorizations
and the inverses of L and U . Once L and U are known apply property 3 to
find A−1 = U−1L−1. A word of caution is appropriate. Not all matrices have
inverses such as

A =

·
1 0
2 0

¸
.

Also, one may need to use permutations of the rows of A so that PA = LU
such as for

A =

·
0 1
2 3

¸
PA =

·
0 1
1 0

¸ ·
0 1
2 3

¸
=

·
2 3
0 1

¸
.

62 CHAPTER 2. STEADY STATE DISCRETE MODELS

2.2.2 Applied Area

We return to the heat conduction problem in a thin wire, which is thermally
insulated on its lateral surface and has length L. Earlier we used the explicit
method for this problem where the temperature depended on both time and
space. In our calculations we observed, provided the stability condition held,
the time dependent solution converges to time independent solution, which we
called a steady state solution.
Steady state solutions have models, which are also derived from Fourier’s

heat law. The difference now is that the change, with respect to time, in the
heat content is zero. Also, the temperature is a function of just space so that
ui ≈ u(ih) where h = L/n.

change in heat content = 0 ≈ (heat from the source)

+(heat diffusion from the left side)

+(heat diffusion from the right side).

Let A be the cross section area of the thin wire and K be the thermal conduc-
tivity so that the approximation of the change in the heat content for the small
volume Ah is

0 = Ah ∆tf +A∆t K(ui+1 − ui)/h−A∆t K(ui − ui−1)/h. (2.2.1)

Now, divide by Ah∆t , let β = K/h2, and we have the following n−1 equations
for the n− 1 unknown approximate temperatures ui.
Finite Difference Equations for Steady State Heat Diffusion.

0 = f + β(ui+1 + ui−1)− β2ui where (2.2.2)

i = 1, ..., n− 1 and β = K/h2 and

u0 = un = 0. (2.2.3)

Equation (2.2.3) is the temperature at the left and right ends set equal to
zero. The discrete model (2.2.2)-(2.2.3) is an approximation of the continuous
model (2.2.4)-(2.2.5). The partial differential equation (2.2.4) can be derived
from (2.2.1) by replacing ui by u(ih), dividing by Ah∆t and letting h and ∆t
go to zero.

Continuous Model for Steady State Heat Diffusion.

0 = f + (Kux)x and (2.2.4)

u(0) = 0 = u(L). (2.2.5)

2.2.3 Model

The finite difference model may be written in matrix form where the matrix is
a tridiagonal matrix. For example, if n = 4, then we are dividing the wire into

2.2. HEAT DIFFUSION AND GAUSS ELIMINATION 63

four equal parts and there will be 3 unknowns with the end temperatures set
equal to zero.

Tridiagonal Algebraic System with n = 4. 2β −β 0
−β 2β −β
0 −β 2β

 u1
u2
u3

 =
 f1

f2
f3

 .
Suppose the length of the wire is 1 so that h = 1/4, and the thermal conductivity
is .001. Then β = .016 and if fi = 1, then upon dividing all rows by β and
using the augmented matrix notation we have

[A d] =

 2 −1 0 62.5
−1 2 −1 62.5
0 −1 2 62.5

 .
Forward Sweep (put into upper triangular form):
Add 1/2(row 1) to (row 2),

E1[A d] =

 2 −1 0 62.5
0 3/2 −1 (3/2)62.5
0 −1 2 62.5

 where E1 =
 1 0 0
1/2 1 0
0 0 1

 .
Add 2/3(row 2) to (row 3),

E2E1[A d] =

 2 −1 0 62.5
0 3/2 −1 (3/2)62.5
0 0 4/3 (2)62.5

 where E2 =
 1 0 0
0 1 0
0 2/3 1

 .
Backward Sweep (solve the triangular system):

u3 = (2)62.5(3/4) = 93.75,

u2 = ((3/2)62.5 + 93.75)(2/3) = 125 and

u1 = (62.5 + 125)/2 = 93.75.

The above solutions of the discrete model should be an approximations
of the continuous model u(x) where x = 1∆x, 2∆x and 3∆x. Note the LU
factorization of the 3× 3 coefficient A has the form

A = (E2E1)
−1U

= E−11 E−12 U

=

 1 0 0
−1/2 1 0
0 0 1

 1 0 0
0 1 0
0 −2/3 1

 2 −1 0
0 3/2 −1
0 0 4/3


=

 1 0 0
−1/2 1 0
0 −2/3 1

 2 −1 0
0 3/2 −1
0 0 4/3


= LU.

64 CHAPTER 2. STEADY STATE DISCRETE MODELS

Figure 2.2.1: Gaussian Elimination

2.2.4 Method

The general Gaussian elimination method requires forming the augmented ma-
trix, a forward sweep to convert the problem to upper triangular form, and
a backward sweep to solve this upper triangular system. The row operations
needed to form the upper triangular system must be done in a systematic way:
(i). Start with column 1 and row 1 of the augmented matrix. Use an

appropriate multiple of row 1 and subtract it from row i to get a zero in the
(i,1) position in column 1 with i > 1.
(ii). Move to column 2 and row 2 of the new version of the augmented

matrix. In the same way use row operations to get zero in each (i, 2) position
of column 2 with i > 2.
(iii). Repeat this until all the components in the lower left part of the

subsequent augmented matrices are zero.
This is depicted in the Figure 2.2.1 where the (i, j) component is about to be
set to zero.

Gaussian Elimination Algorithm.

define the augmented matrix [A d]
for j = 1,n-1 (forward sweep)

for i = j+1,n
add multiple of (row j) to (row i) to get

a zero in the (i,j) position
endloop

endloop
for i = n,1 (backward sweep)

solve for xi using row i
endloop.

The above description is not very complete. In the forward sweep more de-
tails and special considerations with regard to roundoff errors are essential. The

2.2. HEAT DIFFUSION AND GAUSS ELIMINATION 65

row operations in the inner loop may not be possible without some permutation
of the rows, for example,

A =

·
0 1
2 3

¸
.

More details about this can be found in Chapter 8.1. The backward sweep is
just the upper triangular solve step, and two versions of this were studied in the
previous section. The number of floating point operations needed to execute
the forward sweep is about equal to n3/3 where n is the number of unknowns.
So, if the number of unknowns doubles, then the number of operations will
increase by a factor of eight!

2.2.5 Implementation

MATLAB has a number of intrinsic procedures which are useful for illustration
of Gaussian elimination. These include lu, inv, A\d and others. The LU
factorization of A can be used to solve Ax = d because Ax = (LU)x = L(Ux) =
d. Therefore, first solve Ly = d and second solve Ux = y. If both L and U are
known, then the solve steps are easy lower and upper triangular solves.

MATLAB and lu, inv and A\d
A = [2 -1 0;-1 2 -1;0 -1 2]
d = [62.5 62.5 62.5]’
sol = A\d
sol =
93.7500
125.0000
93.750

[L U] = lu(A)
L =
1.0000 0 0
-0.5000 1.0000 0
0 -0.6667 1.0000
U =
2.0000 -1.0000 0
0 1.5000 -1.0000
0 0 1.3333

L*U
ans =
2 -1 0
-1 2 -1
0 -1 2

y = L\d
y =

66 CHAPTER 2. STEADY STATE DISCRETE MODELS

62.5000
93.7500
125.0000

x =U\y
x =
93.7500
125.0000
93.7500

inv(A)
ans =
0.7500 0.5000 0.2500
0.5000 1.0000 0.5000
0.2500 0.5000 0.7500

inv(U)*inv(L)
ans =
0.7500 0.5000 0.2500
0.5000 1.0000 0.5000
0.2500 0.5000 0.7500

Computer codes for these calculations have been worked on for many decades.
Many of these codes are stored, updated and optimized for particular comput-
ers in netlib (see http://www.netlib.org). For example LU factorizations and
the upper triangular solves can be done by the LAPACK subroutines sgetrf()
and sgetrs() and also sgesv(), see the user guide [1].
The next MATLAB code, heatgelm.m, solves the 1D steady state heat diffu-

sion problem for a number of different values of n. Note that numerical solutions
converge to u(ih) where u(x) is the continuous model and h is the step size.
Lines 1-5 input the basic data of the model, and lines 6-16 define the right side,
d, and the coefficient matrix, A. Line 17 converts the d to a column vector and
prints it, and line 18 prints the matrix. The solution is computed line 19 and
printed.

MATLAB Code heatgelm.m

1. clear
2. n = 3
3. h = 1./(n+1);
4. K = .001;
5. beta = K/(h*h);
6. A= zeros(n,n);
7. for i=1:n
8. d(i) = sin(pi*i*h)/beta;
9. A(i,i) = 2;
10. if i<n
11. A(i,i+1) = -1;

2.2. HEAT DIFFUSION AND GAUSS ELIMINATION 67

12. end;
13. if i>1
14. A(i,i-1) = -1;
15. end;
16. end
17. d = d’
18. A
19. temp = A\d

Output for n = 3:
temp =
75.4442
106.6942
75.4442

Output for n = 7:
temp =
39.2761
72.5728
94.8209
102.6334
94.8209
72.5728
39.2761

2.2.6 Assessment

The above model for heat conduction depends upon the mesh size, h, but as the
mesh size h goes to zero there will be little difference in the computed solutions.
For example, in the MATLAB output, the component i of temp is the approxi-
mate temperature at ih where h = 1/(n+1). The approximate temperatures at
the center of the wire are 106.6942 for n = 3, 102.6334 for n = 7 and 101.6473 for
n = 15. The continuous model is −(.001ux)x = sin(πx) with u(0) = 0 = u(1),
and the solution is u(x) = (1000/π2)sin(πx). So, u(1/2) = 1000/π2 = 101.3212,
which is approached by the numerical solutions as n increases. An analysis of
this will be given in Chapter 2.6.
The four basic properties of inverse matrices needs some justification.

Proof that inverse are unique:
Let B and C be inverses of A so that AB = BA = I and AC = CA = I.

Subtract these matrix equations and use the distributive property

AB −AC = I − I = 0

A(B − C) = 0.

68 CHAPTER 2. STEADY STATE DISCRETE MODELS

Use B is an inverse of A and use the associative property

B(A(B − C)) = B0 = 0

(BA)(B − C) = 0

I (B − C) = 0.

Proof that A−1d is a solution of Ax = d:
Let x = A−1d and again use the associative property

A(A−1d) = (AA−1)d = Id = d.

Proofs of properties 3 and 4 are also a consequence of the associative prop-
erty.

2.2.7 Exercises

1. Consider the following algebraic system

1x1 + 2x2 + 3x3 = 1

−1x1 + 1x2 − 1x3 = 2

2x1 + 4x2 + 3x3 = 3.

(a). Find the augmented matrix.
(b). By hand calculations with row operations and elementary matrices

find E so that EA = U is upper triangular.
(c). Use this to find the solution, and verify your calculations using

MATLAB.
2. Use the MATLAB code heatgelm.m and experiment with the mesh sizes,
by using n = 11, 21 and 41, in the heat conduction problem and verify that the
computed solution converges as the mesh goes to zero, that is, ui − u(ih) goes
to zero as h goes to zero
3. Prove property 3 of Theorem 2.2.1.
4. Prove property 4 of Theorem 2.2.1.
5. Prove that the solution of Ax = d is unique if A−1 exists.

2.3 Cooling Fin and Tridiagonal Matrices

2.3.1 Introduction

In the thin wire problem we derived a tridiagonal matrix, which was from the
finite difference approximation of the differential equation. It is very common
to obtain either similar tridiagonal matrices or more complicated matrices that
have blocks of tridiagonal matrices. We will illustrate this by a sequence of
models for a cooling fin. This section is concerned with a very efficient version

2.3. COOLING FIN AND TRIDIAGONAL MATRICES 69

Figure 2.3.1: Thin Cooling Fin

of the Gaussian elimination algorithm for the solution of tridiagonal algebraic
systems. The full version of a Gaussian elimination algorithm for n unknowns
requires order n3/3 operations and order n2 storage locations. By taking ad-
vantage of the number of zeros and their location, the Gaussian elimination
algorithm for tridiagonal systems can be reduced to order 5n operations and
order 8n storage locations!

2.3.2 Applied Area

Consider a hot mass, which must be cooled by transferring heat from the mass
to a cooler surrounding region. Examples include computer chips, electrical
amplifiers, a transformer on a power line, or a gasoline engine. One way to do
this is to attach cooling fins to this mass so that the surface area that transmits
the heat will be larger. We wish to be able to model heat flow so that one can
determine whether or not a particular configuration will sufficiently cool the
mass.
In order to start the modeling process, we will make some assumptions that

will simplify the model. Later we will return to this model and reconsider some
of these assumptions. First, assume no time dependence and the temperature
is approximated by a function of only the distance from the mass to be cooled.
Thus, there is diffusion in only one direction. This is depicted in Figure 2.3.1
where x is the direction perpendicular to the hot mass.
Second, assume the heat lost through the surface of the fin is similar to

Newton’s law of cooling so that for a slice of the lateral surface

heat loss through a slice = (area)(time interval)c(usur − u)

= h(2W + 2T) ∆t c(usur − u).

Here usur is the surrounding temperature, and the c reflects the ability of the
fin’s surface to transmit heat to the surrounding region. If c is near zero, then

70 CHAPTER 2. STEADY STATE DISCRETE MODELS

little heat is lost. If c is large, then a larger amount of heat is lost through the
lateral surface.
Third, assume heat diffuses in the x direction according to Fourier’s heat

law where K is the thermal conductivity. For interior volume elements with
x < L = 1,

0 ≈ (heat through lateral surface)

+(heat diffusing through front)

−(heat diffusing through back)
= h (2W + 2T) ∆t c(usur − u(x))

+TW ∆t Kux(x+ h/2)

−TW ∆t Kux(x− h/2). (2.3.1)

For the tip of the fin with x = L, we use Kux(L) = c(usur − u(L)) and

0 ≈ (heat through lateral surface of tip)

+(heat diffusing through front)

−(heat diffusing through back)
= (h/2)(2W + 2T) ∆t c(usur − u(L))

+TW ∆t c(usur − u(L))

−TW ∆t Kux(L− h/2). (2.3.2)

Note, the volume element near the tip of the fin is one half of the volume of the
interior elements.
These are only approximations because the temperature changes continu-

ously with space. In order to make these approximations in (2.3.1) and (2.3.2)
more accurate, we divide by h ∆t TW and let h go to zero

0 = (2W + 2T)/(TW) c(usur − u) + (Kux)x. (2.3.3)

Let C ≡ ((2W + 2T)/(TW)) c and f ≡ Cusur. The continuous model is given
by the following differential equation and two boundary conditions.

−(Kux)x + Cu = f, (2.3.4)

u(0) = given and (2.3.5)

Kux(L) = c(usur − u(L)). (2.3.6)

The boundary condition in (2.3.6) is often called a derivative or flux or Robin
boundary condition.. If c = 0, then no heat is allowed to pass through the
right boundary, and this type of boundary condition is often called a Neu-
mann boundary condition.. If c approaches infinity and the derivative remains
bounded, then (2.3.6) implies usur = u(L). When the value of the function is
given at the boundary, this is often called the Dirichlet boundary condition.

2.3. COOLING FIN AND TRIDIAGONAL MATRICES 71

2.3.3 Model

The above derivation is useful because (2.3.1) and (2.3.2) suggest a way to
discretize the continuous model. Let ui be an approximation of u(ih) where
h = L/n. Approximate the derivative ux(ih + h/2) by (ui+1 − ui)/h. Then
equations (2.3.2) and (2.3.3) yield the finite difference approximation, a discrete
model, of the continuum model (2.3.4)-(2.3.6).
Let u0 be given and let 1 ≤ i < n:

−[K(ui+1 − ui)/h−K(ui − ui−1)/h] + hCui = hf(ih). (2.3.7)

Let i = n:

−[c(usur − un)−K(un − un−1)/h] + (h/2)Cun = (h/2)f(nh). (2.3.8)

The discrete system (2.3.7) and (2.3.8) may be written in matrix form.
For ease of notation we let n = 4, multiply (2.3.7) by h and (2.3.8) by 2h,
B ≡ 2K + h2C so that there are 4 equations and 4 unknowns:

Bu1 −Ku2 = h2f1 +Ku0, (2.3.9)

−Ku1 +Bu2 −Ku3 = h2f2,

−Ku2 +Bu3 −Ku4 = h2f3 and

−2Ku3 + (B + 2hc)u4 = h2f4 + 2chusur.

The matrix form of this is AU = F where A is, in general, n× n matrix and U
and F are n× 1 column vectors. For n = 4 we have

A =


B −K 0 0
−K B −K 0
0 −K B −K
0 0 −2K B + 2ch



where U =


u1
u2
u3
u4

 and F =


h2f1 +Ku0
h2f2
h2f3

h2f4 + 2chusur

 .
2.3.4 Method

The solution can be obtained by either using the tridiagonal (Thomas) algo-
rithm, or using a solver that is provided with your computer software. Let us
consider the tridiagonal system Ax = d where A is an n×n matrix and x and d
are n×1 column vectors. We assume the matrix A has components as indicated
in

A =


a1 c1 0 0
b2 a2 c2 0
0 b3 a3 c3
0 0 b4 a4

 .

72 CHAPTER 2. STEADY STATE DISCRETE MODELS

In previous sections we used the Gaussian elimination algorithm, and we
noted the matrix could be factored into two matrices A = LU . Assuming A is
tridiagonal so that L has nonzero components only in its diagonal and subdi-
agonal, and U has nonzero components only in its diagonal and superdiagonal.
For the above 4× 4 matrix this is

a1 c1 0 0
b2 a2 c2 0
0 b3 a3 c3
0 0 b4 a4

 =


α1 0 0 0
b2 α2 0 0
0 b3 α3 0
0 0 b4 α4



1 γ1 0 0
0 1 γ2 0
0 0 1 γ3
0 0 0 1

 .
The plan of action is (i) solve for αi and γi in terms of ai, bi and ci by

matching components in the above matrix equation, (ii) solve Ly = d and (iii)
solve Ux = y.
Step (i): For i = 1, a1 = α1 and c1 = α1γ1. So, α1 = a1 and γ1 = c1/a1.

For 2 ≤ i ≤ n − 1, ai = biγi−1 + αi and ci = αiγi. So, αi = ai − biγi−1 and
γi = ci/αi. For i = n, an = bnγn−1 + αn. So, αn = an − bnγn−1. These steps
can be executed provided the αi are not zero or too close to zero!
Step (ii): Solve Ly = d.

y1 = d1/α1 and for i = 2, ..., n yi = (di − biyi−1)/αi.
Step (iii): Solve Ux = y.

xn = yn and for i = n− 1, ..., 1 xi = yi − γixi+1.
The loops for steps (i) and (ii) can be combined to form the following very

important algorithm.

Tridiagonal Algorithm.

α(1) = a(1), γ(1) = c(1)/a(1) and y(1) = d(1)/a(1)
for i = 2, n

α(i) = a(i)- b(i)*γ(i-1)
γ(i) = c(i)/α(i)
y(i) = (d(i) - b(i)*y(i-1))/α(i)

endloop
x(n) = y(n)
for i = n - 1,1

x(i) = y(i) -γ(i)*x(i+1)
endloop.

2.3.5 Implementation

In this section we use a MATLAB user defined function trid.m and the tridi-
agonal algorithm to solve the finite difference equations in (2.3.7) and (2.3.8).
The function trid(n, a, b, c, d) has input n and the column vectors a, b, c. The
output is the solution of the tridiagonal algebraic system. In the MATLAB
code fin1d.m lines 7-20 enter the basic data for the cooling fin. Lines 24-34
define the column vectors in the variable list for trid.m. Line 38 is the call to

2.3. COOLING FIN AND TRIDIAGONAL MATRICES 73

trid.m. The output can be given as a table, see line 44, or as a graph, see line
55. Also, the heat balance is computed in lines 46-54. Essentially, this checks
to see if the heat entering from the hot mass is equal to the heat lost off the
lateral and tip areas of the fin. More detail about this will be given later. In
the trid.m function code lines 8-12 do the forward sweep where the LU factors
are computed and the Ly = d solve is done. Lines 13-16 do the backward sweep
to solve Ux = y.

MATLAB Codes fin1d.m and trid.m

1. % This is a model for the steady state cooling fin.
2. % Assume heat diffuses in only one direction.
3. % The resulting algebraic system is solved by trid.m.
4. %
5. % Fin Data.
6. %
7. clear
8. n = 40
9. cond = .001;
10. csur = .001;
11. usur = 70.;
12. uleft = 160.;
13. T = .1;
14. W = 10.;
15. L = 1.;
16. h = L/n;
17. CC = csur*2.*(W+T)/(T*W);
18. for i = 1:n
19. x(i) = h*i;
20. end
21. %
22. % Define Tridiagonal Matrix
23. %
24. for i = 1:n-1
25. a(i) = 2*cond+h*h*CC;
26. b(i) = -cond;
27. c(i) = -cond;
28. d(i) = h*h*CC*usur;
29. end
30. d(1) = d(1) + cond*uleft;
31. a(n) = 2.*cond + h*h*CC + 2.*h*csur;
32. b(n) = -2.*cond;
33. d(n) = h*h*CC*usur + 2.*csur*usur*h;
34. c(n) = 0.0;
35. %
36. % Execute Tridiagonal Algorithm

74 CHAPTER 2. STEADY STATE DISCRETE MODELS

37. %
38. u = trid(n,a,b,c,d)
39. %
40. % Output as a Table or Graph
41. %
42. u = [uleft u];
43. x = [0 x];
44. % [x u];
45. % Heat entering left side of fin from hot mass
46. heatenter = T*W*cond*(u(2)-u(1))/h
47. heatouttip = T*W*csur*(usur-u(n+1));
48. heatoutlat =h*(2*T+2*W)*csur*(usur-u(1))/2;
49. for i=2:n
50. heatoutlat=heatoutlat+h*(2*T+2*W)*csur*(usur-u(i));
51. end
52. heatoutlat=heatoutlat+h*(2*T+2*W)*csur*(usur-u(n+1))/2;
53. heatout = heatouttip + heatoutlat
54. errorinheat = heatenter-heatout
55. plot(x,u)

1. function x = trid(n,a,b,c,d)
2. alpha = zeros(n,1);
3. gamma = zeros(n,1);
4. y = zeros(n,1);
5. alpha(1) = a(1);
6. gamma(1) = c(1)/alpha(1);
7. y(1) = d(1)/alpha(1);
8. for i = 2:n
9. alpha(i) = a(i) - b(i)*gamma(i-1);
10. gamma(i) = c(i)/alpha(i);
11. y(i) = (d(i) - b(i)*y(i-1))/alpha(i);
12. end
13. x(n) = y(n);
14. for i = n-1:-1:1
15. x(i) = y(i) - gamma(i)*x(i+1);
16. end

In Figure 2.3.2 the graphs of temperature versus space are given for variable
c = csur in (2.3.4) and (2.3.6). For larger c the solution or temperature should
be closer to the surrounding temperature, 70. Also, for larger c the derivative
at the left boundary is very large, and this indicates, via the Fourier heat law,
that a large amount of heat is flowing from the hot mass into the right side of
the fin. The heat entering the fin from the left should equal the heat leaving
the fin through the lateral sides and the right tip; this is called heat balance.

2.3. COOLING FIN AND TRIDIAGONAL MATRICES 75

Figure 2.3.2: Temperature for c = .1, .01, .001, .0001

2.3.6 Assessment

In the derivation of the model for the fin we made several assumptions. If the
thickness T of the fin is too large, there will be a varying temperature with the
vertical coordinate. By assuming the W parameter is large, one can neglect
any end effects on the temperature of the fin. Another problem arises if the
temperature varies over a large range in which case the thermal conductivity
K will be temperature dependent. We will return to these problems.
Once the continuum model is agreed upon and the finite difference approxi-

mation is formed, one must be concerned about an appropriate mesh size. Here
an analysis much the same as in the previous chapter can be given. In more
complicated problems several computations with decreasing mesh sizes are done
until little variation in the numerical solutions is observed.
Another test for correctness of the mess size and the model is to compute

the heat balance based on the computations. The heat balance simply states
the heat entering from hot mass must equal to the heat leaving through the fin.
One can derive a formula for this based on the steady state continuum model
(2.3.4)-(2.3.6). Integrate both sides of (2.3.4)Z L

0

0dx =

Z L

0

((2W + 2T)/(TW)c(usur − u) + (Kux)x)dx

0 =

Z L

0

((2W + 2T)/(TW)c(usur − u))dx+Kux(L)−Kux(0).

Next use the boundary condition (2.3.6) and solve for Kux(0)

76 CHAPTER 2. STEADY STATE DISCRETE MODELS

Kux(0) =

Z L

0

((2W + 2T)/(TW)c(usur − u))dx

+c(usur − u(L)) (2.3.10)

In the MATLAB code fin1d.m lines 46-54 approximate both sides of (2.3.9)
where the integration is done by the trapezoid rule and both sides are multi-
plied by the cross section area, TW . A large difference in these two calculations
indicates significant numerical errors. For n = 40 and smaller c = .0001, the
difference was small 0.0023. For n = 40 and large c = .1, the difference was
about 50% of the approximate heat loss from the fin. However, larger n signifi-
cantly reduces this difference, for example when n = 320 and large c = .1, then
heat_enter = 3.7709, heat_out = 4.0550
The tridiagonal algorithm is not always applicable. Difficulties will arise if

the αi are zero or near zero. The following theorem gives conditions on the
components of the tridiagonal matrix so that the tridiagonal algorithm works
very well.

Theorem 2.3.1 (Existence and Stability) Consider the tridiagonal algebraic
system. If |a1| > |c1| > 0, |ai| > |bi| + |ci|, ci 6= 0, bi 6= 0 and 1 < i < n,
|an| > |cn| > 0, then

1. 0 < |ai| − |bi| < |αi| < |ai|+ |bi| for 1 ≤ i ≤ n (avoids division by small
numbers) and

2. |γi| < 1 for 1 ≤ i ≤ n (the stability in the backward solve loop).

Proof. The proof uses mathematical induction on n. Set i = 1: b1 = 0 and
|α1| = |a1| > 0 and |γ1| = |c1|/|a1| < 1.
Set i > 1 and assume it is true for i − 1: αi = ai − biγi−1 and γi = ci/αi.

So, ai = biγi−1 + αi and |ai| ≤ |bi||γi−1| + |αi| < |bi|1 + |αi|. Then |αi| >
|ai| − |bi| ≥ |ci| > 0. Also, |αi| = |ai − biγi−1| ≤ |ai| + |bi||γi−1| < |ai| + |bi|1.
|γi| = |ci|/|αi| < |ci|/(|ai|− |bi|) ≤ 1.

2.3.7 Exercises

1. By hand do the tridiagonal algorithm for 3x1−x2 = 1,−x1+4x2−x3 = 2
and −x2 + 2x3 = 3.
2. Show that the tridiagonal algorithm fails for the following problem
x1 − x2 = 1,−x1 + 2x2 − x3 = 1 and −x2 + x3 = 1.
3. In the derivation of the tridiagonal algorithm we combined some of the
loops. Justify this.
4. Use the code fin1d.m and verify the calculations in Figure 2.3.2. Experi-
ment with different values of T = .05, .10, .15 and .20. Explain your results and
evaluate the accuracy of the model.

2.4. SCHUR COMPLEMENT AND DOMAIN DECOMPOSITION 77

5. Find the exact solution of the fin problem and experiment with different
mesh sizes by using n = 10, 20, 40 and 80. Observe convergence of the discrete
solution to the continuum solution. Examine the heat balance calculations.
6. Modify the above model and code for a tapered fin where T = .2(1−x)+
.1x.
7. Consider the steady state axially symmetric heat conduction problem
0 = rf + (Krur)r, u(r0) = given and u(R0) = given. Assume 0 < r0 < R0.
Find a discrete model and the solution to the resulting algebraic problems.

2.4 Schur Complement and Domain Decompo-
sition

2.4.1 Introduction

In this section we will continue to discuss Gaussian elimination for the solution
of Ax = d. Here we will examine a block version of Gaussian elimination. This
is particularly useful for two reasons. First, this allows for efficient use of the
computer’s memory hierarchy. Second, when the algebraic equation evolves
from models of physical objects, then the decomposition of the object may
match with the blocks in the matrix A. We will illustrate this for steady state
heat diffusion models with one and two space variables, and later for models
with three space variables.

2.4.2 Applied Area

In the previous section we discussed the steady state model of diffusion of heat
in a cooling fin. The continuous model has the form of an ordinary differential
equation with given temperature at the boundary that joins the hot mass. If
there is heat diffusion in two directions, then the model will be more compli-
cated, which will be more carefully described in the next chapter. The objective
is to solve the resulting algebraic system of equations for the approximate tem-
perature as a function of more than one space variable.

2.4.3 Model

The continuous models for steady state heat diffusion are a consequence of the
Fourier heat law applied to the directions of heat flow. For simplicity assume the
temperature is given on all parts of the boundary. More details are presented
in Chapter 4.2 where the steady state cooling fin model for diffusion in two
directions is derived.

Continuous Models:
Diffusion in 1D. Let u = u(x) = temperature on an interval.

0 = f + (Kux)x and (2.4.1)

u(0), u(L) = given. (2.4.2)

78 CHAPTER 2. STEADY STATE DISCRETE MODELS

Diffusion in 2D. Let u = u(x, y) = temperature on a square.

0 = f + (Kux)x + (Kuy)y and (2.4.3)

u = given on the boundary. (2.4.4)

The discrete models can be either viewed as discrete versions of the Fourier
heat law, or as finite difference approximations of the continuous models.

Discrete Models:
Diffusion in 1D. Let ui approximate u(ih) with h = L/n.

0 = f + β(ui+1 + ui−1)− β2ui (2.4.5)

where i = 1, ..., n− 1 and β = K/h2 and

u0, un = given. (2.4.6)

Diffusion in 2D. Let uij approximate u(ih, jh) with h = L/n = ∆x = ∆y.

0 = f + β(ui+1,j + ui−1,j)− β2ui,j +

β(ui,j+1 + ui,j−1)− β2ui,j (2.4.7)

where i, j = 1, ..., n− 1 and β = K/h2 and

u0,j , un,j , ui,0, ui,n = given. (2.4.8)

The matrix version of the discrete 1D model with n = 6 is as follows. This
1D model will have 5 unknowns, which we list in classical order from left to
right. The matrix A will be 5 × 5 and is derived from(2.4.5) by dividing both
sides by β = K/h2.

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




u1
u2
u3
u4
u5

 = (1/β)


f1
f2
f3
f4
f5


The matrix version of the discrete 2D model with n = 6 will have 52 = 25

unknowns. Consequently, the matrix A will be 25 × 25. The location of its
components will evolve from line (2.4.7) and will depend on the ordering of the
unknowns uij . The classical method of ordering is to start with the bottom
grid row (j = 1) and move from left (i = 1) to right (i = n− 1) so that

u =
£
UT
1 UT

2 UT
3 UT

4 UT
5

¤T
with Uj =

£
u1j u2j u3j u4j u5j

¤T
is a grid row j of unknowns. The final grid row corresponds to j = n− 1. So,
it is reasonable to think of A as a 5× 5 block matrix where each block is 5× 5
and corresponds to a grid row. With careful writing of the equations in (2.4.7)
one can derive A as

2.4. SCHUR COMPLEMENT AND DOMAIN DECOMPOSITION 79
B −I
−I B −I

−I B −I
−I B −I

−I B




U1
U2
U3
U4
U5

 = (1/β)


F1
F2
F3
F4
F5

 where

B =


4 −1
−1 4 −1

−1 4 −1
−1 4 −1

−1 4

 and I =


1
1
1
1
1

 .

2.4.4 Method

In the above 5×5 block matrix it is tempting to try a block version of Gaussian
elimination. The first block row could be used to eliminate the −I in the block
(2,1) position (block row 2 and block column 1). Just multiply block row 1 by
B−1 and add the new block row 1 to block row 2 to get£

0 (B −B−1) −I 0 0
¤

where the 0 represents a 5 × 5 zero matrix. If all the inverse matrices of any
subsequent block matrices on the diagonal exist, then one can continue this
until all blocks in the lower block part of A have been modified to 5 × 5 zero
matrices.
In order to make this more precise, we will consider just a 2×2 block matrix

where the diagonal blocks are square but may not have the same dimension

A =

·
B E
F C

¸
. (2.4.9)

In general A will be n× n with n = k+m, B is k× k, C is m×m, E is k×m
and F is m×k. For example, in the above 5×5 block matrix we may let n = 25,
k = 5 and m = 20 and

C =


B −I
−I B −I

−I B −I
−I B

 and E = FT =
£ −I 0 0 0

¤
.

If B has an inverse, then we can multiply block row 1 by FB−1 and sub-
tract it from block row 2. This is equivalent to multiplication of A by a block
elementary matrix of the form·

Ik 0
−FB−1 Im

¸
.

80 CHAPTER 2. STEADY STATE DISCRETE MODELS

If Ax = d is viewed in block form, then·
B E
F C

¸ ·
X1

X2

¸
=

·
D1

D2

¸
. (2.4.10)

The above block elementary matrix multiplication gives·
B E
0 C − FB−1E

¸ ·
X1

X2

¸
=

·
D1

D2 − FB−1D1

¸
. (2.4.11)

So, if the block upper triangular matrix in nonsingular, then this last block
equation can be solved.
The following basic properties of square matrices play an important role in

the solution of (2.4.10). These properties follow directly from the definition of
an inverse matrix.

Theorem 2.4.1 (Basic Matrix Properties) Let B and C be square matrices
that have inverses. Then the following equalities hold:

1.
·
B 0
0 C

¸−1
=

·
B−1 0
0 C−1

¸
,

2.
·
Ik 0
F Im

¸−1
=

·
Ik 0
−F Im

¸
,

3.
·
B 0
F C

¸
=

·
B 0
0 C

¸ ·
Ik 0

C−1F Im

¸
and

4.
·
B 0
F C

¸−1
=

·
Ik 0

C−1F Im

¸−1 ·
B 0
0 C

¸−1
=

·
B−1 0

−C−1FB−1 C−1

¸
.

Definition. Let A have the form in (2.4.9) and B be nonsingular. The Schur
complement of B in A is C − FB−1E.

Theorem 2.4.2 (Schur Complement Existence) Consider A as in (2.4.10).
If both B and the Schur complement of B in A are nonsingular, then A is
nonsingular. Moreover, the solution of Ax = d is given by using a block upper
triangular solve of (2.4.11).

The choice of the blocks B and C can play a very important role. Often
the choice of the physical object, which is being modeled, suggests the choice
of B and C. For example, if the heat diffusion in a thin wire is being modeled,
the unknowns associated with B might be the unknowns on the left side of the
thin wire and the unknowns associated with C would then be the right side.
Another alternative is to partition the wire into three parts: a small center and
a left and right side; this might be useful if the wire was made of two types of
materials. A somewhat more elaborate example is the model of airflow over an
aircraft. Here we might partition the aircraft into wing, rudder, fuselage and
"connecting" components. Such partitions of the physical object or the matrix
are called domain decompositions.

2.4. SCHUR COMPLEMENT AND DOMAIN DECOMPOSITION 81

2.4.5 Implementation

MATLAB will be used to illustrate the Schur complement, domain decompo-
sition and different ordering of the unknowns. The classical ordering of the
unknowns can be changed so that the "solve" or "inverting" of B or its Schur
complement is a minimal amount of work.

1D Heat Diffusion with n = 6 (5 unknowns).

Classical order of unknowns u1, u2, u3, u4, u5 gives the coefficient matrix

A =


2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2

 .
Domain decomposition order of unknowns is u3;u1, u2;u4, u5. In order to

form the new coefficient matrix, list the equations in the new order. For ex-
ample, the equation for the third unknown is −u2 + 2u3 − u4 = (1/β)f3, and
so, the first row of the new coefficient matrix should be

£
2 0 −1 −1 0

¤
.

The other rows in the new coefficient matrix are found in a similar fashion so
that

A0 =


2 −1 −1

2 −1
−1 −1 2
−1 2 −1

−1 2

 .
Here B = [2] and C is block diagonal. In the following MATLAB calculations
note thatB is easy to invert and that the Schur complement is more complicated
than the C matrix.

b = [2];
e = [0 -1 -1 0];
f = e’;
c = [2 -1 0 0;-1 2 0 0;0 0 2 -1;0 0 -1 2];
a = [b e;f c]
a =
2 0 -1 -1 0
0 2 -1 0 0
-1 -1 2 0 0
-1 0 0 2 -1
0 0 0 -1 2

schurcomp = c - f*inv(b)*e % 4x4 tridiagonal matrix
schurcomp =
2.0 -1.0 0 0
-1.0 1.5 -0.5 0

82 CHAPTER 2. STEADY STATE DISCRETE MODELS

0 -0.5 1.5 -1.0
0 0 -1.0 2.

d1 = [1];
d2 = [1 1 1 1]’;
dd2 = d2 - f*inv(b)*d1
dd2 =
1.0000
1.5000
1.5000
1.0000

x2 = schurcomp\dd2 % block upper triangular solve
x2 =
2.5000
4.0000
4.0000
2.5000

x1 = inv(b)*(d1 - e*x2)
x1 =
4.5000

x = a\[d1 d2’]’
x =
4.5000
2.5000
4.0000
4.0000
2.5000

Domain decomposition order of unknowns is u1, u2;u4, u5;u3 so that

A00 =


2 −1
−1 2 −1

2 −1 −1
−1 2

−1 −1 2

 .
Here C = [2] and B is block diagonal. The Schur complement of B will be 1×1
and is easy to invert. Also, B is easy to invert because it is block diagonal. The
following MATLAB calculations illustrate this.

f = [0 -1 -1 0];
e = f’;
b = [2 -1 0 0;-1 2 0 0;0 0 2 -1;0 0 -1 2];
c = [2];
a = [b e;f c]
a =

2.4. SCHUR COMPLEMENT AND DOMAIN DECOMPOSITION 83

2 -1 0 0 0
-1 2 0 0 -1

0 0 2 -1 -1
0 0 -1 2 0

0 -1 -1 0 2

schurcomp = c -f*inv(b)*e % 1x1 matrix
schurcomp =

0.6667

d1 = [1 1 1 1]’;
d2 = [1];

dd2 = d2 -f*inv(b)*d1

dd2 =
3

x2 = schurcomp\dd2 % block upper triangular solve

x2 =
4.5000

x1 = inv(b)*(d1 - e*x2)

x1 =
2.5000

4.0000
4.0000

2.5000

x = inv(a)*[d1’ d2]’
x =

2.5000

4.0000
4.0000

2.5000
4.5000

2D Heat Diffusion with n = 6 (25 unknowns).

Here we will use domain decomposition where the third grid row is listed
last, and the first, second, fourth and fifth grid rows are listed first in this order.
Each block is 5×5 for the 5 unknowns in each grid row, and i is a 5×5 identity

84 CHAPTER 2. STEADY STATE DISCRETE MODELS

matrix

A00 =


b −i
−i b −i

b −i −i
−i b

−i −i b

 where

b =


4 −1
−1 4 −1

−1 4 −1
−1 4 −1

−1 4

 .
The B will be the block 4×4 matrix and C = b. The B matrix is block diagonal
and is relatively easy to invert. The C matrix and the Schur complement of
B are 5 × 5 matrices and will be easy to invert or "solve". With this type of
domain decomposition the Schur complement matrix will be small, but it will
have mostly nonzero components. This is illustrated by the following MATLAB
calculations.

clear
b = [4 -1 0 0 0;-1 4 -1 0 0; 0 -1 4 -1 0; 0 0 -1 4 -1;0 0 0 -1 4];
ii = -eye(5);
z = zeros(5);
B = [b ii z z;ii b z z; z z b ii; z z ii b];
f = [z ii ii z];
e = f’;
C = b;
schurcomp = C - f*inv(B)*e % full 5x5 matrix
schurcomp =
3.4093 -1.1894 -0.0646 -0.0227 -0.0073
-1.1894 3.3447 -1.2121 -0.0720 -0.0227
-0.0646 -1.2121 3.3374 -1.2121 -0.0646
-0.0227 -0.0720 -1.2121 3.3447 -1.1894
-0.0073 -0.0227 -0.0646 -1.1894 3.4093

whos
Name Size Bytes Class
B 20x20 3200 double array
C 5x5 200 double array
b 5x5 200 double array
e 20x5 800 double array
f 5x20 800 double array
ii 5x5 200 double array
schurcomp 5x5 200 double array
z 5x5 200 double array

2.4. SCHUR COMPLEMENT AND DOMAIN DECOMPOSITION 85

2.4.6 Assessment

Heat and mass transfer models usually involve transfer in more than one direc-
tion. The resulting discrete models will have structure similar to the 2D heat
diffusion model. There are a number of zero components that are arranged in
very nice patterns, which are often block tridiagonal. Here domain decomposi-
tion and the Schur complement will continue to help reduce the computational
burden.
The proof of the Schur complement theorem is a direct consequence of using

a block elementary row operation to get a zero matrix in the block row 2 and
column 1 position·

Ik
−FB−1 I

m

¸ ·
B E
F C

¸
=

·
B E
0 C − FB−1E

¸
.

Thus ·
B E
F C

¸
=

·
Ik

FB−1 I
m

¸ ·
B E
0 C − FB−1E

¸
.

Since both matrices on the right side have inverses, the left side, A, has an
inverse.

2.4.7 Exercises

1. Use the various orderings of the unknowns and the Schur complement to
solve Ax = d where

A =


2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2

 and d =


1
2
3
4
5

 .
2. Consider the above 2D heat diffusion model for 25 unknowns. Suppose
d is a 25×1 column vector whose components are all equal to 10. Use the Schur
complement with the third grid row of unknowns listed last to solve Ax = d.
3. Repeat problem 2 but now list the third grid row of unknowns first.
4. Give the proofs of the four basic properties in Theorem 2.4.1.
5. Find the inverse of block upper triangular matrix·

B E
0 C

¸
.

6. Use the result in problem 5 to find the inverse of·
B E
0 C − FB−1E

¸
.

86 CHAPTER 2. STEADY STATE DISCRETE MODELS

7. Use the result in problem 6 and the proof of the Schur complement the-
orem to find the inverse of ·

B E
F C

¸
.

2.5 Convergence to Steady State

2.5.1 Introduction

In the applications to heat and mass transfer the discrete time-space dependent
models have the form

uk+1 = Auk + b.

Here uk+1 is a sequence of column vectors, which could represent approximate
temperature or concentration at time step k + 1. Under stability conditions on
the time step the time dependent solution may "converge" to the solution of
the discrete steady state problem

u = Au+ b.

In Chapter 1.2 one condition that ensured this was when the matrix products
Ak "converged" to the zero matrix, then uk+1 "converges" to u. We would like
to be more precise about the term “converge” and to show how the stability
conditions are related to this "convergence."

2.5.2 Vector and Matrix Norms

There are many different norms, which are a "measure" of the length of a vector.
A common norm is the Euclidean norm

kxk2 ≡ (xTx)
1
2 .

Here we will only use the infinity norm. Any real valued function of x ∈ Rn
that satisfies the properties 1-3 of Theorem 2.5.1 is called a norm.

Definition. The infinity norm of the n × 1 column vector x = [xi] is a real
number

kxk ≡ max
i
|xi| .

An infinity norm of an n× n matrix Ax = [aij] is

kAk ≡ max
i

X
j

|aij | .

2.5. CONVERGENCE TO STEADY STATE 87

Example.

Let x =

 −16
−9

 and A =
 1 3 −4
1 3 1
3 0 5

 .
kxk = max{1, 6, 9} = 9 and kAk = max{8, 5, 8} = 8.

Theorem 2.5.1 (Basic Properties of Infinity Norm) Let A and B be n × n
matrices and x, y ∈ Rn. Then

1. kxk ≥ 0, and kxk = 0 if and only if x = 0,

2. kx+ yk ≤ kxk+ kyk ,

3. kαxk ≤ |α| kxkwhere α is a real number,

4. kAxk ≤ kAk kxk and

5. kABk ≤ kAk kBk .

Proof. The proofs of 1-3 are left as exercises. The proof of 4 uses the
definitions of the infinity norm and the matrix-vector product.

kAxk = max
i

¯̄̄̄
¯Pj aijxj

¯̄̄̄
¯

≤ max
i

P
j
|aij | · |xj |

≤ (max
i

P
j
|aij |) · (max

j
|xj |) = kAk kxk .

The proof of 5 uses the definition of a matrix-matrix product.

kABk ≡ max
i

P
j

¯̄̄̄P
k

aikbkj

¯̄̄̄
≤ max

i

P
j

P
k

|aik| |bkj |
= max

i

P
k

|aik|
P
j
|bkj |

≤ (max
i

P
k

|aik|)(max
k

P
j
|bkj |)

= kAk kBk
Property 5 can be generalized to any number of matrix products.

Definition. Let xk and x be vectors. xk converges to x if and only if each
component of xki converge to xi This is equivalent to

°°xk − x
°° = maxi ¯̄xki − xi

¯̄
converges to zero.

Like the geometric series of single numbers the iterative scheme xk+1 =

88 CHAPTER 2. STEADY STATE DISCRETE MODELS

Axk + b can be expressed as a summation via recursion.

xk+1 = Axk + b

= A(Axk−1 + b) + b

= A2xk−1 +Ab+ b

= A2(Axk−2 + b) +Ab+ b

= A3xk−2 + (A2 +A1 + I)b

...

= Ak+1x0 + (Ak + · · ·+ I)b (2.5.1)

Definition. The summation I + · · ·+Ak and the series I + · · ·+Ak + · · · are
generalizations of the geometric partial sums and series, and the latter is often
referred to as the von Neumann series.

In Chapter 1.2 we showed if Ak converges to the zero matrix, then xk+1 =
Axk + b must converge to the solution of x = Ax+ b, which is also a solution
of (I −A)x = b. If I −A has an inverse, equation (2.5.1) suggests that the von
Neumann series must converge to the inverse of I −A. If the norm of A is less
than one, then all this is true.

Theorem 2.5.2 (Geometric Series for Matrices) Consider the scheme xk+1 =
Axk + b. If the norm of A is less than one, then

1. xk+1 = Axk + b converges to x = Ax+ b,

2. I −A has an inverse and

3. I + · · ·+Ak converges to the inverse of I −A.

Proof. For the proof of 1 subtract xk+1 = Axk + b and x = Ax+ b to get by
recursion or "telescoping"

xk+1 − x = A(xk − x)

...

= Ak+1(x0 − x). (2.5.2)

Apply properties 4 and 5 of the vector and matrix norms with B = Ak so that
after recursion °°xk+1 − x

°° ≤ °°Ak+1
°°°°x0 − x

°°
≤ kAk°°Ak

°°°°x0 − x
°°

...

≤ kAkk+1 °°x0 − x
°° . (2.5.3)

2.5. CONVERGENCE TO STEADY STATE 89

Because the norm of A is less than one, the right side must go to zero. This
forces the norm of the error to go to zero.
For the proof of 2 use the following result from matrix algebra: I − A has

an inverse if and only if (I −A)x = 0 implies x = 0. Suppose x is not zero and
(I −A)x = 0. Then Ax = x. Apply the norm to both sides of Ax = x and use
property 4 to get

kxk = kAxk ≤ kAk kxk (2.5.4)

Because x is not zero, its norm must not be zero. So, divide both sides by the
norm of x to get 1 ≤ kAk, which is a contradiction to the assumption of the
theorem.
For the proof of 3 use the associative and distributive properties of matrices

so that
(I −A)(I +A+ · · ·+Ak)

= I(I +A+ · · ·+Ak)−A(I +A+ · · ·+Ak)
= I −Ak+1.

Multiply both sides by the inverse of I −A to get
(I +A+ · · ·+Ak) = (I −A)−1(I −Ak+1)

= (I −A)−1I − (I −A)−1Ak+1

(I +A+ · · ·+Ak)− (I −A)−1 = −(I −A)−1Ak+1.
Apply property 5 of the norm°°(I +A+ · · ·+Ak)− (I −A)−1

°° = °°−(I −A)−1Ak+1
°°

≤ °°−(I −A)−1
°°°°Ak+1

°°
≤ °°−(I −A)−1

°° kAkk+1 .
Since the norm is less than one the right side must go to zero. Thus, the partial
sums must converge to the inverse of I −A.

2.5.3 Application to the Cooling Wire

Consider a cooling wire as discussed in Chapter 1.3 with some heat loss through
the lateral surface. Assume this heat loss is directly proportional to the change
in time, the lateral surface area and to the difference in the surrounding temper-
ature and the temperature in the wire. Let csur be the proportionality constant,
which measures insulation. Let r be the radius of the wire so that the lateral
surface area of a small wire segment is 2πrh. If usur is the surrounding temper-
ature of the wire, then the heat loss through the small lateral area is csur ∆t
2πrh (usur−ui) where ui is the approximate temperature. Additional heat loss
or gain from a source such as electrical current and from left and right diffusion
gives a discrete model where α ≡ (∆t/h2)(K/ρc)

uk+1i = (∆t/ρc)(f + csur(2/r)usur) + α(uki+1 + uki−1)

+(1− 2α− (∆t/ρc)csur(2/r))uki (2.5.5)

for i = 1, ..., n− 1 and k = 0, ...,maxk − 1,

90 CHAPTER 2. STEADY STATE DISCRETE MODELS

For n = 4 there are three unknowns and the equations in (2.5.5) for i = 1, 2
and 3 may be written in matrix form. These three scalar equations can be
written as one 3D vector equation uk+1 = Auk + b where

uk =

 uk1
uk2
uk3

 , b = (∆t/ρc)F
 1
1
1

 and
A =

 1− 2α− d α 0
α 1− 2α− d α
0 α 1− 2α− d

 with
F ≡ f + csur(2/r)usur and d ≡ (∆t/ρc)csur(2/r).

Stability Condition for (2.5.5).

1− 2α− d > 0 and α > 0.

When the stability condition holds, then the norm of the above 3×3 matrix
is

max{|1− 2α− d|+ |α|+ |0| , |α|+ |1− 2α− d|+ |α| ,
|0|+ |1− 2α− d|+ |α|}

= max{1− 2α− d+ α, α+ 1− 2α− d+ α,
1− 2α− d+ α}

= max{1− α− d, 1− d, 1− α− d}
= 1− d < 1.

2.5.4 Application to Pollutant in a Stream

Let the concentration equal u(i∆x, k∆t) be approximated by uki where ∆t =
T/maxk,∆x = L/n and L is the length of the stream. The model will have
the general form

change in amount ≈ (amount entering from upstream)

−(amount leaving to downstream)
−(amount decaying in a time interval).

As in Chapter 1.4 this eventually leads to the discrete model

uk+1i = vel(∆t/∆x)uki−1 + (1− vel(∆t/∆x)−∆t dec)uki (2.5.6)

i = 1, ..., n− 1 and k = 0, ...,maxk − 1.
For n = 3 there are three unknowns and equations, and (2.5.6) with i = 1, 2,
and 3 in can be written as one 3D vector equation uk+1 = Auk + b where uk+11

uk+12

uk+13

 =

 c 0 0
d c 0
0 d c

 uk1
uk2
uk3

+
 duk0

0
0


where d ≡ vel (∆t/∆x) and c ≡ 1− d− dec ∆t.

2.6. CONVERGENCE TO CONTINUOUS MODEL 91

Stability Condition for (2.5.6).

1− d− dec ∆t and vel, dec > 0.

When the stability condition holds, then the norm of the 3 × 3 matrix is
given by

max{|c|+ |0|+ |0| , |d|+ |c|+ |0| , |0|+ |d|+ |c|}
= max{1− d− dec ∆t, d+ 1− d− dec ∆t

, d+ 1− d− dec ∆t}
= 1− dec ∆t < 1.

2.5.5 Exercises

1. Find the norms of the following

x =


1
−7
0
3

 and A =

 4 −5 3
0 10 −1
11 2 4

 .
2. Prove properties 1-3 of the infinity norm.
3. Consider the array

A =

 0 .3 −.4
.4 0 .2
.3 .1 0

 .
(a). Find the infinity norm of A.
(b). Find the inverse of I −A.
(c). Use MATLAB to compute Ak for k = 2, 3, · · · , 10.
(d). Use MATLAB to compute the partial sums I +A+ · · ·+Ak .
(e). Compare the partial sums in (d) with the inverse of I −A in (b).

4. Consider the application to a cooling wire. Let n = 5. Find the matrix
and determine when its infinity norm will be less than one.
5. Consider the application to pollution of a stream. Let n = 4. Find the
matrix and determine when its infinity norm will be less than one.

2.6 Convergence to Continuous Model

2.6.1 Introduction

In the past sections we considered differential equations whose solutions were
dependent on space but not time. The main physical illustration of this was
the heat transfer. The simplest continuous model is a boundary value problem

−(Kux)x + Cu = f and (2.6.1)

u(0), u(1) = given. (2.6.2)

92 CHAPTER 2. STEADY STATE DISCRETE MODELS

Here u = u(x) could represent temperature and K is the thermal conductivity,
which for small changes in temperature K can be approximated by a constant.
The function f can have many forms: (i). f = f(x) could be a heat source
such as electrical resistance in a wire, (ii). f = c(usur − u) from Newton’s
law of cooling, (iii). f = c(u4sur − u4) from Stefan’s radiative cooling or (iv).
f ≈ f(a) + f 0(a)(u − a) is a linear Taylor polynomial approximation. Also,
there are other types of boundary conditions, which reflect how fast heat passes
through the boundary.
In this section we will illustrate and give an analysis for the convergence

of the discrete steady state model to the continuous steady state model. This
differs from the previous section where the convergence of the discrete time-
space model to the discrete steady state model was considered.

2.6.2 Applied Area

The derivation of (2.6.1) for steady state one space dimension heat diffusion
is based on the empirical Fourier heat law. In Chapter 1.3 we considered a
time dependent model for heat diffusion in a wire. The steady state continuous
model is

−(Kux)x + (2c/r)u = f + (2c/r)usur. (2.6.3)

A similar model for a cooling fin was developed in Chapter 2.3

−(Kux)x + ((2W + 2T)/(TW))cu = f. (2.6.4)

2.6.3 Model

If K,C and f are constants, then the closed form solution of (2.6.1) is relatively
easy to find. However, if they are more complicated or if we have diffusion in
two and three dimensional space, then closed form solutions are harder to find.
An alternative is the finite difference method, which is a way of converting
continuum problems such as (2.6.1) into a finite set of algebraic equations. It
uses numerical derivative approximation for the second derivative. First, we
break the space into n equal parts with xi = ih and h = 1/n. Second, we let
ui ≈ u(ih) where u(x) is from the continuum solution, and ui will come from
the finite difference (or discrete) solution. Third, we approximate the second
derivative by

uxx(ih) ≈ [(ui+1 − ui)/h− (ui − ui−1)/h]/h. (2.6.5)

The finite difference method or discrete model approximation to (2.6.1) is for
0 < i < n

−K[(ui+1 − ui)/h− (ui − ui−1)/h]/h+ Cui = fi = f(ih). (2.6.6)

This gives n− 1 equations for n− 1 unknowns. The end point u0 = u(0) and
un = u(1) are given as is f(x).

2.6. CONVERGENCE TO CONTINUOUS MODEL 93

The discrete system (2.6.6) may be written in matrix form. For ease of
notation we multiply (2.6.6) by h2, let B ≡ 2K + h2C, and n = 5 so that there
are 4 equations and 4 unknowns

Bu1 −Ku2 = h2f1 +Ku0,

−Ku1 +Bu2 −Ku3 = h2f2,

−Ku2 +Bu3 −Ku4 = h2f3 and

−Ku3 +Bu4 = h2f4 +Ku5.

The matrix form of this is
AU = F where (2.6.7)

A is, in general, an (n−1)×(n−1) matrix, and U and F are (n−1)×1 column
vectors. For example for n = 5 we have a tridiagonal algebraic system

A =


B −K 0 0
−K B −K 0
0 −K B −K
0 0 −K B

 ,

U =


u1
u2
u3
u4

 and F =


h2f1 +Ku0
h2f2
h2f3

h2f4 +Ku5

 .
2.6.4 Method

The solution can be obtained by either using the tridiagonal algorithm, or using
a solver that is provided with your computer software. When one considers two
and three space models, the coefficient matrix will become larger and more
complicated. In these cases one may want to use a block tridiagonal solver,
or an iterative method such as the classical successive over relaxation (SOR)
approximation, see Chapter 3.1 and 3.2.

2.6.5 Implementation

The user defined MATLAB function bvp(n, cond, r, c, usur, f) defines the tridi-
agonal matrix, the right side and calls the MATLAB function trid(), which
executes the tridiagonal algorithm. We have experimented with different radii,
r, of the wire and different mesh sizes, ∆x = 1/n. The user defined MATLAB
function trid() is the same as in Chapter 2.3.
The parameter list of six numbers in the function file bvp.m and line 2-10,

define the diagonal in the tridiagonal matrix. The right side, which is stored
in the vector d in line 9, use f replace by a function of x, xx(i) in line 5. The
function file trid.m is called in line 11, and it outputs a n− 1 vector called sol.
Then in lines 12-13 the xx and sol vectors are augmented to include the left
and right boundaries. One could think of bvp as a mapping from R6 to R2(n+1).

94 CHAPTER 2. STEADY STATE DISCRETE MODELS

Figure 2.6.1: Variable r = .1, .2 and .3

MATLAB Code bvp.m

1. function [xx, sol] = bvp(n,cond,r,c,usur,f)
2. h = 1/n;
3. C = (2/r)*c;
4. for i = 1:n-1
5. xx(i) = i*h;
6. a(i) = cond*2 + C*h*h;
7. b(i) = -cond;
8. c(i) = -cond;
9. d(i) = h*h*(f + C*usur);
10. end
11. sol = trid(n-1,a,b,c,d);
12. xx = [0 xx 1.];
13. sol = [0 sol 0.];

The following calculations vary the radii r = .1, .2 and .3 while fixing n =
10, cond = .001, c = .01 and usur = 0 and f = 1. In Figure 2.6.1 the lowest
curve corresponds to the approximate temperature for the smallest radius wire:

[xx1 uu1]=bvp(10,.001,.1,.01,0,1)
[xx2 uu2]=bvp(10,.001,.2,.01,0,1)
[xx3,uu3]=bvp(10,.001,.3,.01,0,1)
plot(xx1,uu1,xx2,uu2,xx3,uu3).

2.6. CONVERGENCE TO CONTINUOUS MODEL 95

Figure 2.6.2: Variable n = 4, 8 and 16

The following calculations vary the n = 4, 8, and 16 while fixing cond = .001,
r = .3, c = .01, usur = 0 and f = 1. In Figure 2.6.2 the approximations as a
function of n appear to be converging:

[xx4 uu4]=bvp(4,.001,.3,.01,0,1)
[xx8 uu8]=bvp(8,.001,.3,.01,0,1)
[xx16,uu16]=bvp(16,.001,.3,.01,0,1)
plot(xx4,uu4,xx8,uu8,xx16,uu16).

2.6.6 Assessment

In the above models of heat diffusion, the thermal conductivity was held con-
stant relative to the space and temperature. If the temperature varies over a
large range, the thermal conductivity will show significant changes. Also, the
electrical resistance will vary with temperature, and hence, the heat source, f ,
may be a function of temperature.
Another important consideration for the heat in a wire model is the possi-

bility of the temperature being a function of the radial space variable, that is,
as the radius increases, the temperature is likely to vary. Hence, a significant
amount of heat will also diffuse in the radial direction.
A third consideration is the choice of mesh size, h. Once the algebraic

system has been solved, one wonders how close the numerical solution of the
finite difference method (2.6.6), the discrete model, is to the solution of the

96 CHAPTER 2. STEADY STATE DISCRETE MODELS

differential equation (2.6.1), the continuum model. We want to analyze the

discretization error ≡ Ei = ui − u(ih). (2.6.8)

Neglect any roundoff errors. As in Chapter 1.6 use the Taylor polynomial
approximation with n = 3, and the fact that u(x) satisfies (2.6.1) at a = ih
and x = a± h to get

K(u((i− 1)h)− 2u(ih) + u((i+ 1)h))/h2

= Cu(ih)− f(ih) +Ku(4)(ci)/12 h
2. (2.6.9)

The finite difference method (2.6.6) gives

−K(ui−1 − 2ui + ui+1)/h
2 + Cui = f(ih). (2.6.10)

Add equations (2.6.9) and (2.6.10) and use the definition of Ei to obtain

K(−Ei−1 + 2Ei −Ei+1)/h
2 + CEi = Ku(4)(ci)/12 h

2.

Or,

(2K/h2 + C)Ei = KEi+1/h
2 +KEi−1/h2 +Ku(4)(ci)/12 h

2. (2.6.11)

Let kEk = maxi|Ei| and M4 = max|u(4)(x)| where x is in [0, 1].
Then for all i equation (2.6.11) implies

(2K/h2 + C)|Ei| ≤ 2K/h2 kEk+KM4/12 h
2.

This must be true for the i that gives the maximum kEk, and therefore,
(2K/h2 + C) kEk ≤ 2K/h2 kEk+KM4/12 h

2.

C kEk ≤ KM4/12 h
2. (2.6.12)

We have just proved the next theorem.

Theorem 2.6.1 (Finite Difference Error) Consider the solution of (2.6.1)
and the associated finite difference system (2.6.6). If the solution of (2.6.1) has
four continuous derivatives on [0,1], then for M4 = max|u(4)(x)| where x is in
[0,1]

kEk = maxi|ui − u(ih)| ≤ (KM4/(12C)) h
2.

Example. This example illustrates the second order convergence of the finite
difference method, which was established in the above theorem. Consider (2.6.1)
with K = C = 1 and f(x) = 10x(1 − x). The exact solution is u(x) =
c1e

x+c2e
−x+10(x(1.−x)−2.) where the constants are chosen so that u(0) = 0

and u(1) = 0. See the MATLAB code bvperr.m and the second column in Table
2.6.1 for the error, which is proportional to the square of the space step,∆x = h.
For small h the error will decrease by one-quarter when h is decreased by one-
half, and this is often called second order convergence of the finite difference
solution to the continuous solution.

2.6. CONVERGENCE TO CONTINUOUS MODEL 97

Table 2.6.1: Second Order Convergence
n(h = 1/n) kEk ∗10−4 kEk /h2

10 17.0542 0.1705
20 04.2676 0.1707
40 01.0671 0.1707
80 00.2668 0.1707
160 00.0667 0.1707

2.6.7 Exercises

1. Experiment with the thin wire model. Examine the effects of varying
cond = .005, .001 and .0005.
2. Experiment with the thin wire model. Examine the effects of varying
c = .1, .01 and .001.
3. Find the exact solution for the calculations in Table 2.6.1, and verify the
quadratic convergence of the finite difference method.
4. Justify equation (2.6.9).
5. Consider (2.6.1) but with a new boundary condition at x = 1 in the form
Kux(1) = (1− u(1)). Find the new algebraic system associated with the finite
difference method.
6. In problem 5 find the exact solution and generate a table of errors, which
is similar to Table 2.6.1.
7. In problems 5 and 6 prove a theorem, which is similar to the finite dif-
ference error theorem, Theorem 2.6.1.

98 CHAPTER 2. STEADY STATE DISCRETE MODELS

Chapter 3

Poisson Equation Models

This chapter is the extension from one to two dimensional steady state space
models. The solution of the discrete versions of these can be approximated by
various iterative methods, and here the successive over relaxation and conjugate
gradient methods will be implemented. Three application areas are diffusion
in two directions, ideal and porous fluid flows in two directions, and the defor-
mation of the steady state membrane problem. The model for the membrane
problem requires the shape of the membrane to minimize the potential energy,
and this serves to motivate the formulation of the conjugate gradient method.
The classical iterative methods are described in G. D. Smith [18] and Burden
and Faires [3]

3.1 Steady State and Iterative Methods

3.1.1 Introduction

Models of heat flow in more than one direction will generate large and non-
tridiagonal matrices. Alternatives to the full version of Gaussian elimination,
which requires large storage and number of operations, are the iterative meth-
ods. These usually require less storage, but the number of iterations needed to
approximate the solution can vary with the tolerance parameter of the particu-
lar method. In this section we present the most elementary iterative methods:
Jacobi, Gauss-Seidel and successive over relaxation (SOR). These methods are
useful for sparse (many zero components) matrices where the nonzero patterns
are very systematic. Other iterative methods such as the preconditioned con-
jugate gradient (PCG) or generalized minimum residual (GMRES) are partic-
ularly useful, and we will discuss these later in this chapter and chapter nine.

99

100 CHAPTER 3. POISSON EQUATION MODELS

3.1.2 Applied Area

Consider the cooling fin problem from the previous chapter, but here we will
use the iterative methods to solve the algebraic system. Also we will study the
effects of varying the parameters of the fin such as thickness, T , and width,
W . In place of solving the algebraic problem by the tridiagonal algorithm as in
Chapter 2.3, the solution will be found iteratively. Since we are considering a
model with diffusion in one direction, the coefficient matrix will be tridiagonal.
So, the preferred method is the tridiagonal algorithm. Here the purpose of
using an iterative method is to simply introduce them so that their application
to models with more than one direction can be solved.

3.1.3 Model

Let u(x) be the temperature in a cooling fin with only significant diffusion in
one direction. Use the notation in Chapter 2.3 with C = ((2W + 2T)/(TW))c
and f = Cusur. The continuous model is given by the following differential
equation and two boundary conditions.

−(Kux)x + Cu = f, (3.1.1)

u(0) = given and (3.1.2)

Kux(L) = c(usur − u(L)). (3.1.3)

The boundary condition in (3.1.3) is often called a derivative or flux or Robin
boundary condition.
Let ui be an approximation of u(ih) where h = L/n. Approximate the

derivative ux(ih + h/2) by (ui+1 − ui)/h. Then equations (3.1.1) and (3.3.3)
yield the finite difference approximation, a discrete model, of the continuous
model.
Let u0 be given and let 1 ≤ i < n:

−[K(ui+1 − ui)/h−K(ui − ui−1)/h] + hCui = hf(ih). (3.1.4)

Let i = n:

−[c(usur − un)−K(un − un−1)/h] + (h/2)Cun = (h/2)f(nh). (3.1.5)

For ease of notation we let n = 4, multiply (3.1.4) by h and (3.1.5) by 2h,
B ≡ 2K + h2C so that there are 4 equations and 4 unknowns:

Bu1 −Ku2 = h2f1 +Ku0,

−Ku1 +Bu2 −Ku3 = h2f2,

−Ku2 +Bu3 −Ku4 = h2f3 and

−2Ku3 + (B + 2hc)u4 = h2f4 + 2chusur

The matrix form of this is AU = F where A is, in general, n × n tridiagonal
matrix and U and F are n× 1 column vectors.

3.1. STEADY STATE AND ITERATIVE METHODS 101

3.1.4 Method

In order to motivate the definition of these iterative algorithms, consider the
following 3× 3 example with u0 = 0, u4 = 0 and

−ui−1 + 3ui − ui+1 = 1 for i = 1, 2 and 3.

Since the diagonal component is the largest, an approximation can be made
by letting ui−1 and ui+1 be either previous guesses or calculations, and then
computing the new ui from the above equation.

Jacobi Method: Let u0 = [0, 0, 0] be the initial guess. The formula for
the next iteration for node i is

um+1i = (1 + umi−1 + umi+1)/3.

u1 = [(1 + 0)/3, (1 + 0)/3, (1 + 0)/3] = [1/3, 1/3, 1/3]

u2 = [(1 + 1/3)/3, (1 + 1/3 + 1/3)/3, (1 + 1/3)/3] = [4/9, 5/9, 4/9]

u3 = [14/27, 17/27, 14/27].

One repeats this until there is little change for all the nodes i.

Gauss-Seidel Method: Let u0 = [0, 0, 0] be the initial guess. The formula
for the next iteration for node i is

um+1i = (1 + um+1i−1 + umi+1)/3.

u1 = [(1 + 0)/3, (1 + 1/3 + 0)/3, (1 + 4/9)/3] = [9/27, 12/27, 13/27]

u2 = [(1 + 12/27)/3, (1 + 39/81 + 13/27)/3, (1 + 53/81)/3]

u3 = [117/243, 159/243, 134/243].

Note, the m+ 1 on the right side. This method varies from the Jacobi method
because the most recently computed values are used. Repeat this until there is
little change for all the nodes i.

The Gauss-Seidel algorithm usually converges much faster than the Jacobi
method. Even though we can define both methods for any matrix, the methods
may or may not converge. Even if it does converge, it may do so very slowly
and have little practical use. Fortunately, for many problems similar to heat
conduction, these methods and their variations do effectively converge. One
variation of the Gauss-Seidel method is the successive over relaxation (SOR)
method, which has an acceleration parameter ω. Here the choice of the para-
meter ω should be between 1 and 2 so that convergence is as rapid as possible.
For very special matrices there are formulae for such optimal ω, but generally
the optimal ω are approximated by virtue of experience. Also the initial guess
should be as close as possible to the solution, and in this case one may rely
on the nature of the solution as dictated by the physical problem that is being
modeled.

102 CHAPTER 3. POISSON EQUATION MODELS

Jacobi Algorithm.

for m = 0, maxit
for i = 1,n

xm+1i = (di −
P
j 6=i

aijx
m
j)/aii

endloop
test for convergence

endloop.

SOR Algorithm (Gauss-Seidel for ω = 1.0).

for m = 0, maxit
for i = 1,n

x
m+1/2
i = (di −

P
j<i

aijx
m+1
j − P

j>i
aijx

m
j)/aii

xm+1i = (1− ω)xmi + ω x
m+1/2
i

endloop
test for convergence

endloop.

There are a number of tests for convergence. One common test is to de-
termine if at each node the absolute value of two successive iterates is less the
some given small number. This does not characterize convergence! Consider
the following sequence of partial sums of the harmonic series

xm = 1 + 1/2 + 1/3 + · · ·+ 1/m.

Note xm+1 − xm = 1/(m + 1) goes to zero and xm goes to infinity. So, the
above convergence test could be deceptive.
Four common tests for possible convergence are absolute error, relative error,

residual error and relative residual error. Let r(xm+1) = d − Axm+1 be the
residual, and let xm be approximations of the solution for Ax = d. Let k∗kbe a
suitable norm and let �i > 0 be suitably small error tolerances. The absolute,
relative, residual and relative residual errors are, respectively,°°xm+1 − xm

°° < �1,°°xm+1 − xm
°° / kxmk < �2.°°r(xm+1)°° < �3 and°°r(xm+1)°° / kdk < �4.

Often a combination of these is used to determine when to terminate an iterative
method.
In most applications of these iterative methods the matrix is sparse. Con-

sequently, one tries to use the zero pattern to reduce the computations in the
summations. It is very important not to do the parts of the summation where
the components of the matrix are zero. Also, it is not usually necessary to store
all the computations. In Jacobi’s algorithm one needs two n×1 column vectors,
and in the SOR algorithm only one n× 1 column vector is required.

3.1. STEADY STATE AND ITERATIVE METHODS 103

3.1.5 Implementation

The cooling fin problem of the Chapter 2.3 is reconsidered with the tridiagonal
algorithm replaced by SOR iterative method. Although SOR converges much
more rapidly than Jacobi, one should use the tridiagonal algorithm for tridiag-
onal problems. Some calculations are done to illustrate convergence of the SOR
method as a function of the SOR parameter, ω. Also, numerical experiments
with variable thickness, T , of the fin are done.
The MATLAB code fin1d.m, which was described in Chapter 2.3, will

be used to call the following user defined MATLAB function sorfin.m. In
fin1d.m on line 38 u = trid(n, a, b, c, d) should be replaced by [u,m,w] =
sorfin(n, a, b, c, d), where the solution will be given by the vector u, m is the
number of SOR steps required for convergence and w is the SOR parameter.
In sorfin.m the accuracy of the SOR method will be controlled by the tolerance
or error parameter, eps on line 7, and by the SOR parameter, w on line 8. The
initial guess is given in lines 10-12. The SOR method is executed in while loop
in lines 13-39 where m is the loop index. The counter for the number of nodes
that satisfy the error test is initialized in line 14 and updated in lines 20, 28 and
36. SOR is done for the left node in lines 15-21, for the interior nodes in lines
22-30 and for the right node in lines 31-37. In all three cases the m+ 1 iterate
of the unknowns over writes the m iterate of the unknowns, and the error test
is absolute value of the difference between successive iterates must be less than
eps. When numi equals n, the while loop will be terminated. The while loop
will also be terminated if the loop counter m is too large, in this case larger
than maxm = 500.

MATLAB Code sorfin.m
1. %
2. % SOR Algorithm for Tridiagonal Matrix
3. %
4. function [u, m, w] =sorfin(n,a,b,c,d)
5. maxm = 500; % maximum iterations
6. numi = 0; % counter for nodes satisfying error
7. eps = .1; % error tolerance
8. w = 1.8; % SOR parameter
9. m = 1;
10. for i =1:n
11. u(i) = 160.; % initial guess
12. end
13. while ((numi<n)*(m<maxm)) % begin SOR loop
14. numi = 0;
15. utemp = (d(1) -c(1)*u(2))/a(1); % do left node
16. utemp = (1.-w)*u(1) + w*utemp;
17. error = abs(utemp - u(1)) ;
18. u(1) = utemp;
19. if (error<eps)

104 CHAPTER 3. POISSON EQUATION MODELS

Table 3.1.1: Variable SOR Parameter
SOR Parameter Iterations for Conv.

1.80 178
1.85 133
1.90 077
1.95 125

20. numi = numi +1;
21. end
22. for i=2:n-1 % do interior nodes
23. utemp = (d(i) -b(i)*u(i-1) - c(i)*u(i+1))/a(i);
24. utemp = (1.-w)*u(i) + w*utemp;
25. error = abs(utemp - u(i));
26. u(i) = utemp;
27. if (error<eps)
28. numi = numi +1;
29. end
30. end
31. utemp = (d(n) -b(n)*u(n-1))/a(n); % do right node
32. utemp = (1.-w)*u(n) + w*utemp;
33. error = abs(utemp - u(n)) ;
34. u(n) = utemp ;
35. if (error<eps)
36. numi = numi +1; % exit if all nodes "converged"
37. end
38. m = m+1;
39. end

The calculations in Table 3.1.1 experiment with the SOR parameter where
n = 40, eps = 0.01, cond = 0.001, csur = 0.0001, usur = 70, W = 10 and
L = 1. The number of iterations that were required to reach the error test
are recorded in column two where it is very sensitive to the choice of the SOR
parameter.

Figure 3.1.1 is a graph of temperature versus space for variable thickness T
of the fin. If T is larger, then the temperature of the cooling fin will be larger.
Or, if T is smaller, then the temperature of the cooling fin will be closer to the
cooler surrounding temperature, which in this case is usur = 70.

3.1.6 Assessment

Previously, we noted some short falls of the cooling fin model with diffusion
in only one direction. The new models for such problems will have more com-
plicated matrices. They will not be tridiagonal, but they will still have large

3.1. STEADY STATE AND ITERATIVE METHODS 105

Figure 3.1.1: Cooling Fin with T = .05, .10 and .15

diagonal components relative to the other components in each row of the ma-
trix. This property is very useful in the analysis of whether or not iterative
methods converge to a solution of an algebraic system.

Definition. Let A = [aij]. A is called strictly diagonally dominant if and only
if for all i

|aii| >
X
j 6=i

|aij | .

Examples.

1. The 3× 3 example in the beginning of this section is strictly diagonally
dominant  3 −1 0

−1 3 −1
0 −1 3

 .
2. The matrix from the cooling fin is strictly diagonally dominant matrices
because B = 2K + h2C

A =


B −K 0 0
−K B −K 0
0 −K B −K
0 0 −2K B + 2ch

 .
The next section will contain the proof of the following theorem and more

examples that are not tridiagonal.

106 CHAPTER 3. POISSON EQUATION MODELS

Theorem 3.1.1 (Existence Theorem) Consider Ax = d and assume A is
strictly diagonally dominant. If there is a solution, it is unique. Moreover,
there is a solution.

Theorem 3.1.2 (Jacobi and Gauss-Seidel Convergence) Consider Ax = d.
If A is strictly diagonally dominant, then for all x0 both the Jacobi and the
Gauss-Seidel algorithms will converge to the solution.

Proof. Let xm+1 be from the Jacobi iteration and Ax = d. The component
forms of these are

aiix
m+1
i = di −

P
j 6=i

aijx
m
j

aiixi = di −
P
j 6=i

aijxj .

Let the error at node i be

em+1i = xm+1i − xi

Subtract the above to get

aiie
m+1
i = 0− P

j 6=i
aije

m
j

em+1i = 0− P
j 6=i

aij
aii

emj

Use the triangle inequality

¯̄
em+1i

¯̄
=

¯̄̄̄
¯̄X
j 6=i

aij
aii

emi

¯̄̄̄
¯̄ ≤X

j 6=i

¯̄̄̄
aij
aii

¯̄̄̄ ¯̄
emj
¯̄
.

°°em+1°° ≡ max
i

¯̄
em+1i

¯̄ ≤ max
i

P
j 6=i

¯̄̄
aij
aii

¯̄̄ ¯̄
emj
¯̄

≤ (max
i

P
j 6=i

¯̄̄
aij
aii

¯̄̄
) kemk .

Because A is strictly diagonally dominant,

r = max
i

X
j 6=i

¯̄̄̄
aij
aii

¯̄̄̄
< 1.

°°em+1°° ≤ r kemk ≤ r(r
°°em−1°°) ≤ . . . ≤ rm+1

°°e0°°
Since r < 1, the norm of the error must go to zero.

3.2. HEAT TRANSFER IN 2D FIN AND SOR 107

3.1.7 Exercises

1. By hand do two iterations of the Jacobi and Gauss-Seidel methods for
the 3× 3 example  3 1 0

1 3 1
0 1 3

  x1
x2
x3

 =
 1
2
3

.
2. Use the SOR method for the cooling fin and verify the calculations in
Table 3.1.1. Repeat the calculations but now use n = 20 and 80 as well as
n = 40.
3. Use the SOR method for the cooling fin and experiment with the para-
meters eps = .1, .01 and .001. For a fixed n = 40 and eps find by numerical
experimentation the ω such that the number of iterations required for conver-
gence is a minimum.
4. Use the SOR method on the cooling fin problem and vary the width
W = 5, 10 and 20. What effect does this have on the temperature?
5. Prove Gauss-Seidel method converges for strictly diagonally dominant
matrices.
6. The Jacobi algorithm can be described in matrix form by

xm+1 = D−1(L+ U)xm +D−1d where
A = D − (L+ U),

D = diag(A).

Assume A is strictly diagonally dominant.
(a). Show

°°D−1(L+ U)
°° < 1.

(b). Use the results in Chapter 2.5 to prove convergence of the Jacobi
algorithm.

3.2 Heat Transfer in 2D Fin and SOR

3.2.1 Introduction

This section contains a more detailed description of heat transfer models with
diffusion in two directions. The SOR algorithm is used to solve the resulting
algebraic problems. The models generate block tridiagonal algebraic systems,
and block versions of SOR and the tridiagonal algorithms will be described.

3.2.2 Applied Area

In the previous sections we considered a thin and long cooling fin so that one
could assume heat diffusion is in only one direction moving normal to the mass
to be cooled. If the fin is thick (large T) or if the fin is not long (smallW), then
the temperature will significantly vary as one moves in the z or y directions.

108 CHAPTER 3. POISSON EQUATION MODELS

Figure 3.2.1: Diffusion in Two Directions

In order to model the 2D fin, assume temperature is given along the 2D
boundary and that the thickness T is small. Consequently, there will be dif-
fusion in just the x and y directions. Consider a small mass within the plate,
depicted in Figure 3.2.1, whose volume is (∆x∆yT). This volume will have
heat sources or sinks via the two (∆xT) surfaces, two (∆yT) surfaces, and two
(∆x∆y) surfaces as well as any internal heat equal to f(heat/(vol. time)). The
top and bottom surfaces will be cooled by a Newton like law of cooling to the
surrounding region whose temperature is usur. The steady state heat model
with diffusion through the four vertical surfaces will be given by the Fourier
heat law applied to each of the two directions

0 ≈ f(x, y)(∆x∆yT) ∆t

+(2∆x∆y) ∆tc (usur − u)

+(∆xT) ∆t (Kuy(x, y +∆y/2)−Kuy(x, y −∆y/2))
+(∆yT)∆t (Kux(x+∆x/2, y)−Kux(x−∆x/2, y)). (3.2.1)

This approximation gets more accurate as ∆x and ∆y go to zero. So, divide
by (∆x∆yT)∆t and let ∆x and ∆y go to zero. This gives a partial differential
equation (3.2.2).

Steady State 2D Diffusion.

0 = f(x, y) + (2c/T)(usur − u)

+(Kux(x, y))x + (Kuy(x, y))y (3.2.2)

for (x, y) in (0, L)× (0,W),

f(x, y) is the internal heat source,

K is the thermal conductivity and

c is the heat transfer coefficient.

3.2. HEAT TRANSFER IN 2D FIN AND SOR 109

3.2.3 Model

The partial differential equation (3.2.2) is usually associated with boundary
conditions, which may or may not have derivatives of the solution. For the
present, we will assume the temperature is zero on the boundary of (0, L) ×
(0,W), L = W = 1,K = 1, f(x, y) = 0 and T = 2. So, equation (3.2.2)
simplifies to

−uxx − uyy + cu = cusur. (3.2.3)

Let ui,j be the approximation of u(ih, jh) where h = dx = dy = 1.0/n.
Approximate the second order partial derivatives by the centered finite dif-
ferences, or use (3.2.1) with similar approximations to Kuy(x, y + ∆y/2) ≈
K(ui,j+1 − uij)/h.

Finite Difference Model of (3.2.3).

−[(ui+1,j −ui,j)/h− (ui,j − ui−1,j)/h]/h
−[(ui,j+1 − ui,j)/h− (ui,j − ui,j−1)/h]/h
+cui,j = cusur where 1 ≤ i, j ≤ n− 1. (3.2.4)

There are (n − 1)2 equations for (n − 1)2 unknowns ui,j . One can write
equation (3.2.4) as fixed point equations by multiplying both sides by h2, letting
f = cusur and solving for ui,j

ui,j = (h
2fij + ui,j−1 + ui−1,j + ui+1,j + ui,j+1)/(4 + ch2). (3.2.5)

3.2.4 Method

The point version of SOR for the problem in (3.2.4) or (3.2.5) can be very
efficiently implemented because we know exactly where and what the nonzero
components are in each row of the coefficient matrix. Since the unknowns are
identified by a grid pair (i, j), the SOR computation for each unknown will be
done within two nested loops. The classical order is given by having the i-loop
inside and the j-loop on the outside. In this application of the SOR algorithm
the lower sum is u(i, j−1)+u(i−1, j) and the upper sum is u(i+1, j)+u(i, j+1).
SOR Algorithm for (3.2.5) with f = cusur.

for m = 0, maxit
for j = 2, n

for i = 2,n
utemp=(h*h*f(i,j) + u(i,j-1) + u(i-1,j)

+ u(i+1,j) + u(i,j+1))/(4+c*h*h)
u(i,j)=(1-ω)*u(i,j)+ω*utemp

endloop
endloop
test for convergence

endloop.

110 CHAPTER 3. POISSON EQUATION MODELS

The finite difference model in (3.2.5) can be put into matrix form by mul-
tiplying the equations (3.2.5) by h2 and listing the unknowns starting with
the smallest y values (smallest j) and moving from the smallest to the largest
x values (largest i). The first grid row of unknowns is denoted by U1 =
[u11 u21 u31 u41]

T for n = 5. Hence, the block form of the above system
with boundary values set equal to zero is

B −I
−I B −I

−I B −I
−I B




U1
U2
U3
U4

 = h2


F1
F2
F3
F4

 where

B =


4 + h2c −1
−1 4 + h2c −1

−1 4 + h2c −1
−1 4 + h2c

 ,

Uj =


u1j
u2j
u3j
u4j

 , Fj =


f1j
f2j
f3j
f4j

 with fij = f(ih, jh).

The above block tridiagonal system is a special case of the following block
tridiagonal system where all block components are N × N matrices (N = 4).
The block system has N2 blocks, and so there are N2 unknowns. If the full
version of the Gaussian elimination algorithm was used, it would require ap-
proximately (N2)3/3 = N6/3 operations

A1 C1
B2 A2 C2

B3 A3 C3
B4 A4




X1

X2

X3

X4

 =


D1

D2

D3

D4

 .
Or, for X0 = 0 = X5 and i = 1, 2, 3, 4

BiXi−1 +AiXi + CiXi+1 = Di. (3.2.6)

In the block tridiagonal algorithm for (3.2.6) the entries are either N ×N
matrices or N × 1 column vectors. The "divisions" for the "point" tridiagonal
algorithm must be replaced by matrix solves, and one must be careful to pre-
serve the proper order of matrix multiplication. The derivation of the following
is similar to the derivation of the point form.

Block Tridiagonal Algorithm for (3.2.6).

α(1) = A(1), solve α(1)*g(1)= C(1) and solve α(1)*Y(1) = D(1)
for i = 2, N

α(i) = A(i)- B(i)*g(i-1)

3.2. HEAT TRANSFER IN 2D FIN AND SOR 111

solve α(i)*g(i) = C(i)
solve α(i)*Y(i) = D(i) - B(i)*Y(i-1)

endloop
X(N) = Y(N)
for i = N - 1,1

X(i) = Y(i) - g(i)*X(i+1)
endloop.

The block or line version of the SOR algorithm also requires a matrix solve
step in place of a "division." Note the matrix solve has a point tridiagonal
matrix for the problem in (3.2.4).

Block SOR Algorithm for (3.2.6).

for m = 1,maxit
for i = 1,N

solve A(i)*Xtemp = D(i) - B(i)*X(i-1) - C(i)*X(i+1)
X(i) = (1-w)*X(i) + w*Xtemp

endloop
test for convergence

endloop.

3.2.5 Implementation

The point SOR algorithm for a cooling plate, which has a fixed temperature at
its boundary, is relatively easy to code. In the MATLAB function file sor2d.m,
there are two input parameters for n and w, and there are outputs for w, soriter
(the number of iterations needed to "converge") and the array u (approximate
temperature array). The boundary temperatures are fixed at 200 and 70 as
given by lines 7-10 where ones(n + 1) is an (n + 1) × (n + 1) array whose
components are all equal to 1, and the values of u in the interior nodes define
the initial guess for the SOR method. The surrounding temperature is defined
in line 6 to be 70, and so the steady state temperatures should be between 70
and 200. Lines 14-30 contain the SOR loops. The unknowns for the interior
nodes are approximated in the nested loops beginning in lines 17 and 18. The
counter numi indicates the number of nodes that satisfy the error tolerance,
and numi is initialized in line 15 and updated in lines 22-24. If numi equals the
number of unknowns, then the SOR loop is exited, and this is tested in lines
27-29. The outputs are given in lines 31-33 where meshc(x, y, u0) generates a
surface and contour plot of the approximated temperature.

MATLAB Code sor2d.m

1. function [w,soriter,u] = sor2d(n,w)
2. h = 1./n;
3. tol =.1*h*h;
4. maxit = 500;

112 CHAPTER 3. POISSON EQUATION MODELS

5. c = 10.;
6. usur = 70.;
7. u = 200.*ones(n+1); % initial guess and hot boundary
8. u(n+1,:) = 70; % cooler boundaries
9. u(:,1) = 70;
10. u(:,n+1) = 70
11. f = h*h*c*usur*ones(n+1);
12. x =h*(0:1:n);
13. y = x;
14. for iter =1:maxit % begin SOR iterations
15. numi = 0;
16. for j = 2:n % loop over all unknowns
17. for i = 2:n
18. utemp = (f(i,j) + u(i,j-1) + u(i-1,j) +

u(i+1,j) + u(i,j+1))/(4.+h*h*c);
19. utemp = (1. - w)*u(i,j) + w*utemp;
20. error = abs(utemp - u(i,j));
21. u(i,j) = utemp;
22. if error<tol % test each node for convergence
23. numi = numi + 1;
24. end
25. end
26. end
27. if numi==(n-1)*(n-1) % global convergence test
28. break;
29. end
30 end
31. w
32. soriter = iter
33. meshc(x,y,u’)

The graphical output in Figure 3.2.2 is for c = 10.0, and one can see the
plate has been cooled to a lower temperature. Also, we have graphed the
temperature by indicating the equal temperature curves or contours. For 392

unknowns, error tolerance tol = 0.01h2 and the SOR parameter ω = 1.85, it
took 121 iterations to converge. Table 3.2.1 records numerical experiments with
other choices of ω, and this indicates that ω near 1.85 gives convergence in a
minimum number of SOR iterations.

3.2.6 Assessment

In the first 2D heat diffusion model we kept the boundary conditions simple.
However, in the 2D model of the cooling fin one should consider the heat that
passes through the edge portion of the fin. This is similar to what was done

3.2. HEAT TRANSFER IN 2D FIN AND SOR 113

Figure 3.2.2: Temperature and Contours of Fin

Table 3.2.1: Convergence and SOR Parameter
SOR Parameter Iter. for Conv.

1.60 367
1.70 259
1.80 149
1.85 121
1.90 167

114 CHAPTER 3. POISSON EQUATION MODELS

Figure 3.2.3: Cooling Fin Grid

for the cooling fin with diffusion in just the x direction. There the heat flux at
the tip was given by the boundary condition Kux(L) = c(usur−u(L)). For the
2D steady state cooling fin model we have similar boundary conditions on the
edge of the fin that is away from the mass to be cooled.
The finite difference model must have additional equations for the cells near

the edge of the fin. So, in Figure 3.2.3 there are 10 equations for the (∆x ∆y)
cells (interior), 5 equations for the (∆x/2 ∆y) cells (right), 4 equations for the
(∆x ∆y/2) cells (bottom and top) and 2 equations for the (∆x/2 ∆y/2) cells
(corner). For example, the cells at the right most side with (∆x/2 ∆y) the
finite difference equations are for i = nx and 1 < j < ny. The other portions
of the boundary are similar, and for all the details the reader should examine
the Fortran code fin2d.f90.

Finite Difference Model of (3.2.2) where i = nx and 1 < j < ny.

0 = (2∆x/2 ∆y)c(usur − unx,j)

+(∆x/2 T)[K(unx,j+1 − unx,j)/∆y −K(unx,j − unx,j−1)/∆y]
+(∆yT)[c(usur − unx,j)−K(unx,j − unx−1,j)/∆x]. (3.2.7)

Another question is related to the existence of solutions. Note the diagonal
components of the coefficient matrix are much larger than the off diagonal
components. For each row the diagonal component is strictly larger than the
sum of the absolute value of the off diagonal components. In the finite difference
model for (3.2.4) the diagonal component is 4/h2 + c and the four off diagonal
components are −1/h2. So, like the 1D cooling fin model the 2D cooling fin
model has a strictly diagonally dominant coefficient matrix.

3.2. HEAT TRANSFER IN 2D FIN AND SOR 115

Theorem 3.2.1 (Existence Theorem) Consider Ax = d and assume A is
strictly diagonally dominant. If there is a solution, it is unique. Moreover,
there is a solution.

Proof. Let x and y be two solutions. Then A(x − y) = 0. If x − y is not a
zero column vector, then we can choose i so that |xi− yi| = maxj |xj − yj | > 0.

aii (xi − yi) +
X
j 6=i

aij (xj − yj) = 0.

Divide by xi − yi and use the triangle inequality to contradict the strict di-
agonal dominance. Since the matrix is square, the existence follows from the
uniqueness.

3.2.7 Exercises

1. Consider the MATLAB code for the point SOR algorithm.
(a). Verify the calculations in Table 3.2.1
(b). Experiment with the convergence parameter tol and observe the number

of iterations required for convergence.
2. Consider the MATLAB code for the point SOR algorithm. Experiment
with the SOR parameter ω and observe the number of iterations for convergence.
Do this for n = 5, 10, 20 and 40 and find the ω that gives the smallest number
of iterations for convergence.
3. Consider the MATLAB code for the point SOR algorithm. Let c = 0,
f(x, y) = 2π2sin(πx)sin(πy) and require u to be zero on the boundary of
(0, 1)× (0, 1).
(a). Show the solution is u(x, y) = sin(πx)sin(πy).
(b). Compare it with the numerical solution with n = 5, 10, 20 and 40.

Observe the error is of order h2.
(c). Why have we used a convergence test with tol = eps ∗ h ∗ h?

4. In the MATLAB code modify the boundary conditions so that at u(0, y) =
200, u(x, 0) = u(x, 1) = u(1, y) = 70. Experiment with n and ω.

5. Implement the block tridiagonal algorithm for problem 3.
6. Implement the block SOR algorithm for problem 3.
7. Use Theorem 3.2.1 to show the block diagonal matrix from (3.2.4) for
the block SOR is nonsingular.
8. Use the Schur complement as in Chapter 2.4 and Theorem 3.2.1 to show
the alpha matrices in the block tridiagonal algorithm applied to (3.2.4) are
nonsingular.

116 CHAPTER 3. POISSON EQUATION MODELS

3.3 Fluid Flow in a 2D Porous Medium

3.3.1 Introduction

In this and the next section we present two fluid flow models in 2D: flow in a
porous media and ideal fluids. Both these models are similar to steady state
2D heat diffusion. The porous media flow uses an empirical law called Darcy’s
law, which is similar to the Fourier’s heat law. An application of this model to
groundwater management will be studied.

3.3.2 Applied Area

In both applications assume the velocity of the fluid is (u(x, y), v(x, y), 0), that
is, it is a 2D steady state fluid flow. In both flows in a porous medium and ideal
fluid it is useful to be able to give a mathematical description of compressibility
of the fluid. The compressibility of the fluid can be quantified by the divergence
of the velocity. In 2D the divergence of (u,v) is ux + vy. This indicates how
much mass enters a small volume in a given unit of time. In order to understand
this, consider the small thin rectangular mass as depicted in Figure 3.3.1 with
density ρ and approximate ux + vy by finite differences. Let ∆t be the change
in time so that u(x +∆x, y)∆t approximates the change in the x direction of
the mass leaving (for u(x+∆x, y) > 0) the front face of the volume (∆x∆yT).

change in mass = sum via four vertical faces of (∆x∆yT)

= ρT ∆y (u(x+∆x, y)− u(x, y))∆t

+ρT ∆x (v(x, y +∆y)− v(x, y))∆t. (3.3.1)

Divide by (∆x∆yT)∆t and let ∆x and ∆y go to zero to get

rate of change of mass per unit volume = ρ(ux + vy). (3.3.2)

If the fluid is incompressible, then ux + vy = 0.
Consider a shallow saturated porous medium with at least one well. Assume

the region is in the xy-plane and that the water moves towards the well in such
a way that the velocity vector is in the xy-plane. At the top and bottom of the
xy region assume there is no flow through these boundaries. However, assume
there is ample supply from the left and right boundaries so that the pressure is
fixed. The problem is to determine the flow rates of well(s), location of well(s)
and number of wells so that there is still water to be pumped out. If a cell does
not contain a well and is in the interior, then ux + vy = 0. If there is a well in
a cell, then ux + vy < 0.

3.3.3 Model

Both porous and ideal flow models have a partial differential equation similar
to that of the 2D heat diffusion model, but all three have different boundary

3.3. FLUID FLOW IN A 2D POROUS MEDIUM 117

Figure 3.3.1: Incompressible 2D Fluid

conditions. For porous fluid flow problems, they are either a given function
along part of the boundary, or they are a zero derivative for the other parts of
the boundary. The motion of the fluid is governed by an empirical law called
Darcy’s law.

Darcy’s Law.

(u, v) = −K(hx, hy) where (3.3.3)

h is the hydraulic head pressure and

K is the hydraulic conductivity.

The hydraulic conductivity depends on the pressure. However, if the porous
medium is saturated, then it can be assumed to be constant. Next couple
Darcy’s law with the divergence of the velocity to get the following partial
differential equation for the pressure.

ux + vy = −(Khx)x − (Khy)y = f. (3.3.4)

Groundwater Fluid Flow Model.

−(Khx)x − (Khy)y =

½
0 , (x, y) /∈ well
−R , (x, y) ∈ well

(x, y) ∈ (0, L)× (0,W),

Khy = 0 for y = 0 and y =W and

h = h∞ for x = 0 and x = L.

3.3.4 Method

We will use the finite difference method coupled with the SOR iterative scheme.
For the (∆x∆y) cells in the interior this is similar to the 2D heat diffusion
problem. For the portions of the boundary where the a derivative is set equal

118 CHAPTER 3. POISSON EQUATION MODELS

Figure 3.3.2: Groundwater 2D Porous Flow

zero on a half cell (∆x/2 ∆y) or (∆x ∆y/2), we insert some additional code
inside the SOR loop. For example, consider the groundwater model where
hy = 0 at y =W on the half cell (∆x ∆y/2). The finite difference equation for
u = h , dx = ∆x and dy = ∆y in (3.3.5) and corresponding line of SOR code
in (3.3.6) are

0 = −[(0)− (u(i, j)− u(i, j − 1))/dy]/(dy/2)
−[(u(i+ 1, j)− u(i, j))/dx−

(u(i, j)− u(i− 1, j))/dx]/dx (3.3.5)

utemp = ((u(i+ 1, j) + u(i− 1, j))/(dx ∗ dx)
+2 ∗ u(i, j − 1)/(dy ∗ dy))/(2/(dx ∗ dx) + 2/(dy ∗ dy))

u(i, j) = (1− w) ∗ u(i, j) + w ∗ utemp. (3.3.6)

3.3.5 Implementation

In the following MATLAB code por2d.m the SOR method is used to solve the
discrete model for steady state saturated 2D groundwater porous flow. Lines
1-44 initialize the data. It is interesting to experiment with eps in line 6, the
SOR parameter ww in line 7, nx and ny in lines 9,10, the location and flow
rates of the wells given in lines 12-16, and the size of the flow field given in lines
28,29. In line 37 R_well is calibrated to be independent of the mesh. The SOR
iteration is done in the while loop in lines 51-99. The bottom nodes in lines 73-
85 and top nodes in lines 86-97, where there are no flow boundary conditions,
must be treated differently than the interior nodes in lines 53-71. The locations
of the two wells are given by the if statements in lines 58-63. The output is
in lines 101-103 where the number of iterations for convergence and the SOR
parameter are printed, and the surface and contour plots of the pressure are
graphed by the MATLAB command meshc(x,y,u’).

MATLAB Code por2d.m

1. % Steady state saturated 2D porous flow.

3.3. FLUID FLOW IN A 2D POROUS MEDIUM 119

2. % SOR is used to solve the algebraic system.
3. % SOR parameters
4. clear;
5. maxm = 500;
6. eps = .01;
7. ww = 1.97;
8. % Porous medium data
9. nx = 50;
10. ny = 20;
11. cond = 10.;
12. iw = 15;
13. jw = 12;
14. iwp = 32;
15. jwp = 5;
16. R_well = -250.;
17. uleft = 100. ;
18. uright = 100.;
19. for j=1:ny+1
20. u(1,j) = uleft;
21. u(nx+1,j) = uright;
22. end
23. for j =1:ny+1
24. for i = 2:nx
25. u(i,j) = 100.;
26. end
27. end
28. W = 1000.;
29. L = 5000.;
30. dx = L/nx;
31. rdx = 1./dx;
32. rdx2 = cond/(dx*dx);
33. dy = W/ny;
34. rdy = 1./dy;
35. rdy2 = cond/(dy*dy);
36. % Calibrate R_well to be independent of the mesh
37. R_well = R_well/(dx*dy);
38. xw = (iw)*dx;
39. yw = (jw)*dy;
40. for i = 1:nx+1
41. x(i) = dx*(i-1);
42. end
43. for j = 1:ny+1
44. y(j) = dy*(j-1);
45. end
46. % Execute SOR Algorithm

120 CHAPTER 3. POISSON EQUATION MODELS

47. nunkno = (nx-1)*(ny+1);
48. m = 1;
49. numi = 0;
50. while ((numi<nunkno)*(m<maxm))
51. numi = 0;
52. % Interior nodes
53. for j = 2:ny
54. for i=2:nx
55. utemp = rdx2*(u(i+1,j)+u(i-1,j));
56. utempp = utemp + rdy2*(u(i,j+1)+u(i,j-1));
57. utemp = utempp/(2.*rdx2 + 2.*rdy2);
58. if ((i==iw)*(j==jw))
59. utemp=(utempp+R_well)/(2.*rdx2+2.*rdy2);
60. end
61. if ((i==iwp)*(j==jwp))
62. utemp =(utempp+R_well)/(2.*rdx2+2.*rdy2);
63. end
64. utemp = (1.-ww)*u(i,j) + ww*utemp;
65. error = abs(utemp - u(i,j)) ;
66. u(i,j) = utemp;
67. if (error<eps)
68. numi = numi +1;
69. end
70. end
71. end
72. % Bottom nodes
73. j = 1;
74. for i=2:nx
75. utemp = rdx2*(u(i+1,j)+u(i-1,j));
76. utemp = utemp + 2.*rdy2*(u(i,j+1));
77. utemp = utemp/(2.*rdx2 + 2.*rdy2);
78. utemp = (1.-ww)*u(i,j) + ww*utemp;
79. error = abs(utemp - u(i,j)) ;
80. u(i,j) = utemp;
81. if (error<eps)
82. numi = numi +1;
83. end
84. end
85. % Top nodes
86. j = ny+1;
87. for i=2:nx
88. utemp = rdx2*(u(i+1,j)+u(i-1,j));
89. utemp = utemp + 2.*rdy2*(u(i,j-1));
90. utemp = utemp/(2.*rdx2 + 2.*rdy2);
91. utemp = (1.-ww)*u(i,j) + ww*utemp;

3.3. FLUID FLOW IN A 2D POROUS MEDIUM 121

92. error = abs(utemp - u(i,j));
93. u(i,j) = utemp;
94. if (error<eps)
95. numi = numi +1;
96. end
97. end
98. m = m+1;
99. end
100. % Output to Terminal
101. m
102. ww
103. meshc(x,y,u’)

The graphical output is given in Figure 3.3.3 where there are two wells and
the pressure drops from 100 to around 45. This required 199 SOR iterations,
and SOR parameter w = 1.97 was found by numerical experimentation. This
numerical approximation may have significant errors due to either to the SOR
convergence criteria eps = .01 in line 6 being too large or the mesh size in lines
9 and 10 being too large. If eps = .001, then 270 SOR iterations are required
and the solution did not change by much. If eps = .001, ny is doubled from
20 to 40, and the jw and jwp are also doubled so that the wells are located
in the same position in space, then 321 SOR iterations are computed and little
difference in the graphs is noted. If the flow rate at both wells is increased from
250. to 500., then the pressure should drop. Convergence was attained in 346
SOR iterations for eps = .001, nx = 50 and ny = 40, and the graph shows the
pressure at the second well to be negative, which indicates the well has gone
dry!

3.3.6 Assessment

This porous flow model has enough assumptions to rule out many real applica-
tions. For groundwater problems the soils are usually not fully saturated, and
the hydraulic conductivity can be highly nonlinear or vary with space according
to the soil types. Often the soils are very heterogeneous, and the soil properties
are unknown. Porous flows may require 3D calculations and irregular shaped
domains. The good news is that the more complicated models have many sub-
problems, which are similar to our present models from heat diffusion and fluid
flow in saturated porous media.

3.3.7 Exercises

1. Consider the groundwater problem. Experiment with the choice of w and
eps. Observe the number of iterations required for convergence.
2. Experiment with the mesh sizes nx and ny, and convince yourself the
discrete problem has converged to the continuous problem.

122 CHAPTER 3. POISSON EQUATION MODELS

Figure 3.3.3: Pressure for Two Wells

3. Consider the groundwater problem. Experiment with the physical para-
meters K = cond, W , L and pump rate R = R_well.
4. Consider the groundwater problem. Experiment with the number and
location of the wells.

3.4 Ideal Fluid Flow

3.4.1 Introduction

An ideal fluid is a steady state flow in 2D that is incompressible and has no
circulation. In this case the velocity of the fluid can be represented by a steam
function, which is a solution of a partial differential equation that is similar to
the 2D heat diffusion and 2D porous flow models. The applied problem could
be viewed as a first model for flow of a shallow river about an object, and
the numerical solution will also be given by a variation of the previous SOR
MATLAB codes.

3.4.2 Applied Area

Figure 3.4.1 depicts the flow about an obstacle. Because the fluid is not com-
pressible, it must significantly increase its speed in order to pass near the ob-
stacle. This can cause severe erosion of the near by soil. The problem is to
determine these velocities of the fluid given the upstream velocity and the lo-
cation and shape of the obstacle.

3.4. IDEAL FLUID FLOW 123

Figure 3.4.1: Ideal Flow About an Obstacle

3.4.3 Model

We assume the velocity is a 2D steady state incompressible fluid flow. The
incompressibility of the fluid can be characterized by the divergence of the
velocity

ux + vy = 0. (3.4.1)

A fluid with no circulation or rotation can be described by the curl of the
velocity vector. In 2D the curl of (u, v) is vx − uy. Also the discrete form of
this gives some insight to the meaning of this. Consider the loop about the
rectangular region given in Figure 3.4.2. Let A be the cross sectional area in
this loop. The momentum of the vertical segment of the right side is ρA∆y
v(x+∆x, y). The circulation or angular momentum of the loop about the tube
with cross section area A and density ρ is

ρA∆y(v(x+∆x, y)− v(x, y))− ρA∆x(u(x, y +∆y)− u(x, y)).

Divide by ρ(A∆y∆x) and let ∆x and ∆y go to zero to get vx − uy. If there is
no circulation, then this must be zero. The fluid is called irrotational if

vx − uy = 0. (3.4.2)

An ideal 2D steady state fluid flow is defined to be incompressible and
irrotational so that both equations (3.4.1) and (3.4.2) hold. One can use the
incompressibility condition and Green’s theorem (more on this later) to show
that there is a stream function, Ψ, such that

(Ψx,Ψy) = (−v, u). (3.4.3)

The irrotational condition and (3.4.3) give

vx − uy = (−Ψx)x − (Ψy)y = 0.

124 CHAPTER 3. POISSON EQUATION MODELS

Figure 3.4.2: Irrotational 2D Flow vx − uy = 0

If the velocity upstream to the left in Figure 3.4.1 is (u0, 0), then let Ψ = u0 y.
If the velocity at the right in Figure is (u, 0), then let Ψx = 0. Equation (3.4.4)
and these boundary conditions give the ideal fluid flow model.
We call Ψ a stream function because the curves (x(τ), y(τ)) defined by

setting Ψ to a constant are parallel to the velocity vectors (u, v). In order
to see this, let Ψ(x(τ), y(τ)) = c, compute the derivative with respect to τ and
use the chain rule

0 =
d

dτ
Ψ(x(τ), y(τ))

= Ψx
dx

dτ
+Ψy

dy

dτ

= (−v, u) · (dx
dτ

,
dy

dτ
).

Since (u, v) · (−v, u) = 0, (u, v) and the tangent vector to the curve given by
Ψ(x(τ), y(τ)) = c must be parallel.

Ideal Flow Around an Obstacle.

−Ψxx −Ψyy = 0 for (x, y) ∈ (0, L)× (0,W),

Ψ = u0y for x = 0 (u = u0),

Ψ = u0W for y =W (v = 0)

Ψ = 0 for y = 0 or (x, y) on the obstacle and

Ψx = 0 for x = L (v = 0).

3.4.4 Method

Use the finite difference method coupled with the SOR iterative scheme. For
the (∆x∆y) cells in the interior this is similar to the 2D heat diffusion problem.
For the portions of the boundary where the a derivative is set equal zero on a
half cell (∆x/2 ∆y), insert some additional code inside the SOR loop. In the
obstacle model where Ψx = 0 at x = L we have half cells (∆x/2 ∆y). The

3.4. IDEAL FLUID FLOW 125

finite difference equation in equation (3.4.5) and corresponding line in (3.4.6)
of SOR code with u = Ψ, dx = ∆x and dy = ∆y are

0 = −[(0)/dx− (u(i, j)− u(i− 1, j))/dx]/dx/2
−[(u(i, j + 1)− u(i, j))/dy

− (u(i, j)− u(i, j − 1))/dy]/dy (3.4.4)

utemp = (2 ∗ u(i− 1, j)/(dx ∗ dx) +
(u(i, j + 1) + u(i, j − 1))/(dy ∗ dy))

/(2/(dx ∗ dx) + 2/(dy ∗ dy))
u(i, j) = (1− w) ∗ u(i, j) + w ∗ utemp. (3.4.5)

3.4.5 Implementation

The MATLAB code ideal2d.m has a similar structure as por2d.m, and also
it uses the SOR scheme to approximate the solution to the algebraic system
associated with the ideal flow about an obstacle. The obstacle is given by
a darken rectangle in Figure 3.4.1, and can be identified by indicating the
indices of the point (ip, jp) as is done in lines 11,12. Other input data is
given in lines 4-39. The SOR scheme is executed using the while loop in lines
46-90. The SOR calculations for the various nodes are done in three groups:
the interior bottom nodes in lines 48-62, the interior top nodes in lines 62-75
and the right boundary nodes in lines 76-88. Once the SOR iterations have
been completed, the output in lines 92-94 prints the number of SOR iterations,
the SOR parameter and the contour graph of the stream line function via the
MATLAB command contour(x,y,u’).

MATLAB Code ideal2d.m

1. % This code models flow around an obstacle.
2. % SOR iterations are used to solve the system.
3. % SOR parameters
4. clear;
5. maxm = 1000;
6. eps = .01;
7. ww = 1.6;
8. % Flow data
9. nx = 50;
10. ny = 20;
11. ip = 40;
12. jp = 14;
13. W = 100.;
14. L = 500.;
15. dx = L/nx;
16. rdx = 1./dx;

126 CHAPTER 3. POISSON EQUATION MODELS

17. rdx2 = 1./(dx*dx);
18. dy = W/ny;
19. rdy = 1./dy;
20. rdy2 = 1./(dy*dy);
21. % Define Boundary Conditions
22. uo = 1.;
23. for j=1:ny+1
24. u(1,j) = uo*(j-1)*dy;
25. end
26. for i = 2:nx+1
27. u(i,ny+1) = uo*W;
28. end
29. for j =1:ny
30. for i = 2:nx+1
31. u(i,j) = 0.;
32. end
33. end
34. for i = 1:nx+1
35. x(i) = dx*(i-1);
36. end
37. for j = 1:ny+1
38. y(j) = dy*(j-1);
39. end
40. %
41. % Execute SOR Algorithm
42. %
43. unkno = (nx)*(ny-1) - (jp-1)*(nx+2-ip);
44. m = 1;
45. numi = 0;
46. while ((numi<unkno)*(m<maxm))
47. numi = 0;
48. % Interior Bottom Nodes
49. for j = 2:jp
50. for i=2:ip-1
51. utemp = rdx2*(u(i+1,j)+u(i-1,j));
52. utemp = utemp + rdy2*(u(i,j+1)+u(i,j-1));
53. utemp = utemp/(2.*rdx2 + 2.*rdy2);
54. utemp = (1.-ww)*u(i,j) + ww*utemp;
55. error = abs(utemp - u(i,j));
56. u(i,j) = utemp;
57. if (error<eps)
58. numi = numi +1;
59. end
60. end
61. end

3.4. IDEAL FLUID FLOW 127

62. % Interior Top Nodes
63. for j = jp+1:ny
64. for i=2:nx
65. utemp = rdx2*(u(i+1,j)+u(i-1,j));
66. utemp = utemp + rdy2*(u(i,j+1)+u(i,j-1));
67. utemp = utemp/(2.*rdx2 + 2.*rdy2);
68. utemp = (1.-ww)*u(i,j) + ww*utemp;
69. error = abs(utemp - u(i,j)) ;
70. u(i,j) = utemp;
71. if (error<eps)
72. numi = numi +1;
73. end
74. end
75. end
76. % Right Boundary Nodes
77. i = nx+1;
78. for j = jp+1:ny
79. utemp = 2*rdx2*u(i-1,j);
80. utemp = utemp + rdy2*(u(i,j+1)+u(i,j-1));
81. utemp = utemp/(2.*rdx2 + 2.*rdy2);
82. utemp = (1.-ww)*u(i,j) + ww*utemp;
83. error = abs(utemp - u(i,j));
84. u(i,j) = utemp;
85. if (error<eps)
86. numi = numi +1;
87. end
88. end
89. m = m +1;
90. end
91. % Output to Terminal
92. m
93. ww
94. contour(x,y,u’)

The obstacle model uses the parameters L = 500,W = 100 and u0 = 1.
Since u0 = 1, the stream function must equal 1y in the upstream position, the
left side of Figure 3.4.1. The x component of the velocity is u0 = 1, and the y
component of the velocity will be zero. The graphical output gives the contour
lines of the stream function. Since these curves are much closer near the exit,
the right side of the figure, the x component of the velocity must be larger
above the obstacle. If the obstacle is made smaller, then the exiting velocity
will not be as large.

128 CHAPTER 3. POISSON EQUATION MODELS

Figure 3.4.3: Flow Around an Obstacle

3.4.6 Assessment

This ideal fluid flow model also has enough assumptions to rule out many real
applications. Often there is circulation in flow of water, and therefore, the
irrotational assumption is only true for slow moving fluids in which circulation
does not develop. Air is a compressible fluid. Fluid flows may require 3D
calculations and irregular shaped domains. Fortunately, the more complicated
models have many subproblems which are similar to our present models from
heat diffusion, fluid flow in saturated porous medium and ideal fluid flow.
The existence of stream functions such that (Ψx,Ψy) = (−v, u) needs to

be established. Recall the conclusion of Green’s Theorem where Ω is a simply
connected region in 2D with boundary C given by functions with piecewise
continuous first derivativesI

C

Pdx+Qdy =

ZZ
Ω

Qx − Pydxdy. (3.4.6)

Suppose ux+vy = 0 and letQ = u and P = −v. Since Qx−Py = (u)x−(−v)y =
0, then the line integral about a closed curve will always be zero. This means
that the line integral will be independent of the path taken between two points.
Define the stream function to be the line integral of (P,Q) = (−v, u) starting

at some (x0, y0) and ending at (x, y). This is single valued because the line
integral is independent of the path taken. In order to show that (Ψx,Ψy) =
(−v, u), first consider the special path C1+C1x in Figure 3.4.4 and show Ψx =

3.4. IDEAL FLUID FLOW 129

Figure 3.4.4: Two Paths to (x,y)

−v = P

Ψx =
d

dx

Z
C1

Pdx+Qdy +
d

dx

Z
C1x

Pdx+Qdy

= 0 +
d

dx

Z
C1x

Pdx+Q0

= P.

The proof that Ψy = u = Q is similar and uses the path C2 + C2y in Figure
3.4.4. We have just proved the following theorem.

Theorem 3.4.1 (Existence of Stream Function) If u(x,y) and v(x,y) have con-
tinuous first order partial derivatives and ux + vy = 0, then there is a stream
function such that (Ψx,Ψy) = (−v, u).

3.4.7 Exercises

1. Consider the obstacle problem. Experiment with the different values of
w and eps. Observe the number of iterations required for convergence.

2. Experiment with the mesh size and convince your self the discrete prob-
lem has converged to the continuous problem.

3. Experiment with the physical parametersW,L and incoming velocity u0.

4. Choose a different size and shape obstacle. Compare the velocities near
the obstacle. What happens if there is more than one obstacle?

5. Prove the other part of Theorem 3.4.1., Ψy = u.

130 CHAPTER 3. POISSON EQUATION MODELS

3.5 Deformed Membrane and Steepest Descent

3.5.1 Introduction

The objective of this and the next section is to introduce the conjugate gradient
method for solving special algebraic systems where the coefficient matrix A is
symmetric (A = AT) and positive definite (xTAx > 0 for all nonzero real
vectors x). This method will be motivated by the applied problem to find the
deformation of membrane if the position on the boundary and the pressure on
the membrane are known. The model will initially be in terms of finding the
deformation so that the potential energy of the membrane is a minimum, but
it will be reformulated to a partial differential equation. Also, the method of
steepest descent in a single direction will be introduced. In the next section
this will be generalized from the steepest descent method from one to multiple
directions, which will eventually give rise to the conjugate gradient method.

3.5.2 Applied Area

Consider a membrane whose edges are fixed, for example, a musical drum. If
there is pressure (force per unit area) applied to the interior of the membrane,
then the membrane will deform. The objective is to find the deformation for
every location on the membrane. Here we will only focus on the time indepen-
dent model, and also we will assume the deformation and its first order partial
derivative are "relatively" small. These two assumptions will allow us to for-
mulate a model, which is similar to the heat diffusion and fluid flow models in
the previous sections.

3.5.3 Model

There will be three equivalent models. The formulation of the minimum po-
tential energy model will yield the weak formulation and the partial differential
equation model of a steady state membrane with small deformation. Let u(x, y)
be the deformation at the space location (x, y). The potential energy has two
parts: one from the expanded surface area, and one from an applied pressure.
Consider a small patch of the membrane above the rectangular region ∆x∆y.
The surface area above the region ∆x∆y is approximately, for a small patch,

∆S = (1 + u2x + u2y)
1/2∆x∆y.

The potential energy of this patch from the expansion of the membrane will be
proportional to the difference ∆S − ∆x∆y. Let the proportionality constant
be given by the tension T . Then the potential energy of this patch from the
expansion is

T (∆S −∆x∆y) = T ((1 + u2x + u2y)
1/2 − 1)∆x∆y.

3.5. DEFORMED MEMBRANE AND STEEPEST DESCENT 131

Now, apply the first order Taylor polynomial approximation to f(p) = (1 +
p)1/2 ≈ f(0) + f 0(0)(p− 0) ≈ 1 + 1/2 p. Assume p = u2x + u2y is small to get an
approximate potential energy

T (∆S −∆x∆y) ≈ T/2 (u2x + u2y)∆x∆y. (3.5.1)

The potential energy from the applied pressure, f(x, y), is the force times
distance. Here force is pressure times area, f(x, y)∆x∆y. So, if the force is
positive when it is applied upward, then the potential energy from the applied
pressure is

−uf∆x∆y. (3.5.2)

Combine (3.5.1) and (3.5.2) so that the approximate potential energy for the
patch is

T/2 (u2x + u2y)∆x∆y − uf∆x∆y. (3.5.3)

The potential energy for the entire membrane is found by adding the potential
energy for each patch in (3.5.3) and letting ∆x,∆y go to zero

potential energy = P (u) ≡
ZZ

(T/2 (u2x + u2y)− uf)dxdy. (3.5.4)

The choice of suitable u(x, y) should be functions such that this integral is finite
and the given deformations at the edge of the membrane are satisfied. Denote
this set of functions by S. The precise nature of S is a little complicated, but
S should at least contain the continuous functions with piece wise continuous
partial derivatives so that the double integral in (3.5.4) exists.

Definition. The function u in S is called an energy solution of the steady state
membrane problem if and only if P (u) = minP (v) where v is any function in
S and P (u) is from (3.5.4).

The weak formulation is easily derived from the energy formulation. Let
ϕ be any function that is zero on the boundary of the membrane and such
that u+ λϕ, for −1 < λ < 1, is also in the set of suitable functions, S. Define
F (λ) ≡ P (u + λϕ). If u is an energy solution, then F will be a minimum
real valued function at λ = 0. Therefore, by expanding P (u+ λϕ), taking the
derivative with respect to λ and setting λ = 0

0 = F 0(0) = T

ZZ
uxϕx + uyϕydxdy −

ZZ
ϕfdxdy. (3.5.5)

Definition. The function u in S is called a weak solution of the steady state
membrane problem if and only if (3.5.5) holds for all ϕ that are zero on the
boundary and u+ λϕ are S.

We just showed an energy solution must also be a weak solution. If there
is a weak solution, then we can show there is only one such solution. Suppose

132 CHAPTER 3. POISSON EQUATION MODELS

u and U are two weak solutions so that (3.5.5) must hold for both u and U .
Subtract these two versions of (3.5.5) to get

0 = T

ZZ
uxϕx + uyϕydxdy − T

ZZ
Uxϕx + Uyϕydxdy

= T

ZZ
(u− U)xϕx + (u− U)yϕydxdy. (3.5.6)

Now, let w = u − U and note it is equal to zero on the boundary so that we
may choose ϕ = w. Equation (3.5.6) becomes

0 =

ZZ
w2x + w2ydxdy.

Then both partial derivatives of w must be zero so that w is a constant. But,
w is zero on the boundary and so w must be zero giving u and U are equal.
A third formulation is the partial differential equation model. This is often

called the classical model and requires second order partial derivatives of u.
The first two models only require first order partial derivatives.

−T (uxx + uyy) = f. (3.5.7)

Definition. The classical solution of the steady state membrane problem re-
quires u to satisfy (3.5.7) and the given values on the boundary.

Any classical solution must be a weak solution. This follows from the con-
clusion of Green’s theoremZZ

Qx − Pydxdy =

I
Pdx+Qdy.

Let Q = Tϕux and P = −Tϕuy and use ϕ = 0 on the boundary so that the
line integral on the right side is zero. The left side isZZ

(Tϕux)x − (−Tϕuy)ydxdy =
ZZ

Tϕxux + Tϕyuy + T (uxx + uyy)ϕdxdy

Because u is a classical solution and the right side is zero, the conclusion of
Greens’s theorem givesZZ

Tϕxux + Tϕyuy − ϕfdxdy = 0.

This is equivalent to (3.5.5) so that the classical solution must be a weak solu-
tion.
We have shown any energy or classical solution must be a weak solution.

Since a weak solution must be unique, any energy or classical solution must be
unique. In fact, the three formulations are equivalent. In order to understand
this, one must be more careful about the definition of a suitable set of functions,
S. However, we do state this result even though this set has not been precisely
defined.

Theorem 3.5.1 (Equivalence of Formulations) The energy, weak and classical
formulations of the steady state membrane are equivalent.

3.5. DEFORMED MEMBRANE AND STEEPEST DESCENT 133

3.5.4 Method

The energy formulation can be discretized via the classical Rayleigh-Ritz ap-
proximation scheme where the solution is approximated by a linear combination
of a finite number of suitable functions, ϕj(x, y), where j = 1, · · · , n

u(x, y) ≈
nX
j=1

ujϕj(x, y). (3.5.8)

These functions could be polynomials, trig functions or other likely candidates.
The coefficients, uj , in the linear combination are the unknowns and must be
chosen so that the energy in (3.5.4) is a minimum

F (u1, · · · , un) ≡ P (
nX
j=1

ujϕj(x, y)). (3.5.9)

Definition. The Rayleigh-Ritz approximation of the energy formulation is
given by u in (3.5.8) where uj are chosen such that F : Rn → R in (3.5.9) is a
minimum.

The uj can be found from solving the algebraic system that comes from
setting all the first order partial derivatives of F equal to zero.

0 = Fui =
nX
j=1

(T

ZZ
ϕixϕjx + ϕiyϕjydxdy)uj −

ZZ
ϕifdxdy

=
nX
j=1

aijuj − di

= the i component of Au− d where (3.5.10)

aij ≡ T

ZZ
ϕixϕjx + ϕiyϕjydxdy and

di ≡
ZZ

ϕifdxdy.

This algebraic system can also be found from the weak formulation by putting
u(x, y) in (3.5.8) and ϕ = ϕi(x, y) into the weak equation (3.5.5). The matrix
A has the following properties: (i) symmetric, (ii) positive definite and (iii)
F (u) = 1/2 uTAu − uT d. The symmetric property follows from the definition
of aij . The positive definite property follows from

1/2 uTAu = T/2

ZZ
(
nX
j=1

ujϕjx)
2 + (

nX
j=1

ujϕjy)
2dxdy > 0. (3.5.11)

The third property follows from the definitions of F,A and d. The following
important theorem shows that the algebraic problem Au = d (3.5.10) is equiv-
alent to the minimization problem given in (3.5.9). A partial proof is given at

134 CHAPTER 3. POISSON EQUATION MODELS

the end of this section, and this important result will be again used in the next
section and in chapter nine.

Theorem 3.5.2 (Discrete Equivalence Formulations) Let A be any symmetric
positive definite matrix. The following are equivalent: (i) Ax = d and (ii) J(x)
= min

y
J(y) where J(x) ≡ 1

2 xTAx− xT d.

The steepest descent method is based on minimizing the discrete energy
integral, which we will now denote by J(x). Suppose we make an initial guess,
x, for the solution and desire to move in some direction p so that the new
x, x+ = x + cp, will make J(x+) a minimum. The direction, p, of steepest
descent, where the directional derivative of J(x) is largest, is given by p =
∇J(x) ≡ [J(x)xi] = −(d−Ax) ≡ −r. Once this direction has been established
we need to choose the c so that f(c) = J(x+ cr) is a minimum where

J(x+ cr) =
1

2
(x+ cr)TA(x+ cr)− (x+ cr)T d.

Because A is symmetric, rTAx = xTAr and

J(x+ cr) =
1

2
xTAx+ crTAx+

1

2
c2rTAr − xTd− crT d

= J(x)− crT (d−Ax) +
1

2
c2rTAr

= J(x)− crT r +
1

2
c2rTAr.

Choose c so that −crT r + 1
2c
2rTAr is a minimum. You can use derivatives or

complete the square or you can use the discrete equivalence theorem. In the
latter case x is replaced by c and the matrix A is replaced by the 1× 1 matrix
rTAr, which is positive for nonzero r because A is positive definite. Therefore,
c = rT r/rTAr.

Steepest Descent Method for J(x) = min
y

J(y).

Let x0 be an initial guess
r0 = d−Ax0

for m = 0, maxm
c = (rm)T rm/(rm)TArm

xm+1 = xm + crm

rm+1 = rm − cArm

test for convergence
endloop.

In the above the next residual is computed in terms of the previous residual
by rm+1 = rm − cArm. This is valid because

rm+1 = d−A(xm + crm) = d−Axm −A(crm) = rm − cArm.

The test for convergence could be the norm of the new residual or the norm of
the residual relative to the norm of d.

3.5. DEFORMED MEMBRANE AND STEEPEST DESCENT 135

3.5.5 Implementation

MATLAB will be used to execute the steepest descent method as it is applied to
the finite difference model for −uxx−uyy = f. The coefficient matrix is positive
definite, and so, we can use this particular scheme. In the MATLAB code st.m
the partial differential equation has right side equal to 200(1+sin(πx)sin(πy)),
and the solution is required to be zero on the boundary of (0, 1) × (0, 1). The
right side is computed and stored in lines 13-18. The vectors are represented
as 2D arrays, and the sparse matrix A is not explicitly stored. Observe the use
of array operations in lines 26, 32 and 35. The while loop is executed in lines
23-37. The matrix product Ar is stored in the 2D array q and is computed in
lines 27-31 where we have used r is zero on the boundary nodes. The value for
c = rT r/rTAr is alpha as computed in line 32. The output is given in lines 38
and 39 where the semilog plot for the norm of the error versus the iterations is
generated by the MATLAB command semilogy(reserr).

MATLAB Code st.m

1. clear;
2. %
3. % Solves -uxx -uyy = 200+200sin(pi x)sin(pi y)
4. % Uses steepest descent
5. % Uses 2D arrays for the column vectors
6. % Does not explicitly store the matrix
7. %
9. n = 20;
10. h = 1./n;
11. u(1:n+1,1:n+1)= 0.0;
12. r(1:n+1,1:n+1)= 0.0;
13. r(2:n,2:n)= 1000.*h*h;
14. for j= 2:n
15. for i = 2:n
16. r(i,j)= h*h*200*(1+sin(pi*(i-1)*h)*sin(pi*(j-1)*h));
17. end
18. end
19. q(1:n+1,1:n+1)= 0.0;
20. err = 1.0;
21. m = 0;
22. rho = 0.0;
23. while ((err>.0001)*(m<200))
24. m = m+1;
25. oldrho = rho;
26. rho = sum(sum(r(2:n,2:n).^2)); % dotproduct
27. for j= 2:n % sparse matrix product Ar
28. for i = 2:n
29. q(i,j)=4.*r(i,j)-r(i-1,j)-r(i,j-1)-r(i+1,j)-r(i,j+1);

136 CHAPTER 3. POISSON EQUATION MODELS

Figure 3.5.1: Steepest Descent norm(r)

30. end
31. end
32. alpha = rho/sum(sum(r.*q)); % dotproduct
33. u = u + alpha*r;
34. r = r - alpha*q;
35. err = max(max(abs(r(2:n,2:n)))); % norm(r)
36. reserr(m) = err;
37. end
38. m
39. semilogy(reserr)

The steepest descent method appears to be converging, but after 200 iter-
ation the norm of the residual is still only about .01. In the next section the
conjugate gradient method will be described. A calculation with the conjugate
gradient method shows that after only 26 iterations, the norm of the residual
is about .0001. Generally, the steepest descent method is slow relative to the
conjugate gradient method. This is because the minimization is just in one
direction and not over higher dimensional sets.

3.5.6 Assessment

The Rayleigh-Ritz and steepest descent methods are classical methods, which
serve as introductions to current numerical methods such as the finite element
discretization method and the conjugate gradient iterative methods. MATLAB

3.5. DEFORMED MEMBRANE AND STEEPEST DESCENT 137

has a very nice partial differential equation toolbox that implements some of
these. For more information on various conjugate gradient schemes use the
MATLAB help command for pcg (preconditioned conjugate gradient).
The proof of the discrete equivalence theorem is based on the following

matrix calculations. First, we will show if A is symmetric positive definite and
if x satisfies Ax = d, then J(x) ≤ J(y) for all y. Let y = x + (y − x) and use
A = AT and r = d−Ax = 0

J(y) =
1

2
(x+ (y − x))TA(x+ (y − x))− (x+ (y − x))T d

=
1

2
xTAx+ (y − x)TAx

+
1

2
(y − x)TA(y − x)− xTd− (y − x)T d

= J(x) +
1

2
(y − x)TA(y − x). (3.5.12)

Because A is positive definite, (y−x)TA(y−x) is greater than or equal to zero.
Thus, J(y) is greater than or equal to J(x).
Second, we show if J(x) = min

y
J(y),then r = r(x) = 0. Suppose r is not

the zero vector so that rT r > 0 and rTAr > 0. Choose y so that y − x = rc
and 0 ≤ J(y) − J(x) = −crT r + 1

2 c2rTAr. Let c = �rT r/rTAr to give a
contradiction for small enough �.
The weak formulation was used to show that any solution must be unique. It

also can be used to formulate the finite element method, which is an alternative
to the finite difference method. The finite difference method requires the domain
to be a union of rectangles. One version of the finite element method uses
the space domain as a finite union of triangles (elements) and the ϕj(x, y) are
piecewise linear functions on the triangles. For node j let ϕj(x, y) be continuous,
equal to 1.0 at node j, be a linear function for (x, y) in an adjacent triangles,
and zero elsewhere. This allows for the numerical approximations on domains
that are not rectangular. The interested reader should see the MATLAB code
fem2d.m and R. E. White [21].

3.5.7 Exercises

1. Verify line (3.5.5).
2. Verify lines (3.5.10) and (3.5.11).
3. Why is the steepest descent direction equal to ∇J? Show ∇J = −r, that
is, J(x)xi = −(d−Ax)xi .
4. Show the formula for the c = rT r/rTAr in the steepest descent method
is correct via both derivative and completing the square.
5. Duplicate the MATLAB computations giving Figure 3.5.1. Experiment
with the error tolerance err = 2.0, 1.0, 0.5 and 0.1.
6. In the MATLAB code st.m change the right side to 100xy + 40x5.

138 CHAPTER 3. POISSON EQUATION MODELS

7. In the MATLAB code st.m change the boundary conditions to u(x, 1) =
10x(1− x) and zero else where. Be careful in the matrix product q = Ar!
8. Fill in all the details leading to (3.5.12)

3.6 Conjugate Gradient Method

3.6.1 Introduction

The conjugate gradient method has three basic components: steepest descent
in multiple directions, conjugate directions and preconditioning. The multiple
direction version of steepest descent insures the largest possible decrease in the
energy. The conjugate direction insures that solution of the reduced algebraic
system is done with a minimum amount of computations. The preconditioning
modifies the initial problem so that the convergence is more rapid.

3.6.2 Method

The steepest descent method hinges on the fact that for symmetric positive
definite matrices the algebraic system Ax = d is equivalent to minimizing a
real valued function J(x) = 1

2x
TAx − xT d, which for the membrane problem

is a discrete approximation of the potential energy of the membrane. Make an
initial guess, x, for the solution and move in some direction p so that the new x,
x+ = x+cp, will make J(x+) a minimum. The direction, p, of steepest descent,
where the directional derivative of J is largest, is given by p = −r. Next choose
the c so that F (c) = J(x + cr) is a minimum, and this is c = rT r/rTAr.
In the steepest descent method just the current residual is used. If a linear
combination of all the previous residuals were to be used, then the "energy",
J(bx+), would be smaller than the J(x+) for the steepest descent method.
For multiple directions the new x should be the old x plus a linear combi-

nation of the all the previous residuals

xm+1 = xm + c0r
0 + c1r

1 + · · ·+ cmr
m. (3.6.1)

This can be written in matrix form where R is n × (m + 1), m << n, and is
formed by the residual column vectors

R =
£
r0 r1 · · · rm

¤
.

Then c is an (m+1)×1 column vector of the coefficients in the linear combination

xm+1 = xm +Rc. (3.6.2)

Choose c so that J(xm +Rc) is the smallest possible.

J(xm +Rc) =
1

2
(xm +Rc)TA(xm +Rc)− (xm +Rc)T d.

3.6. CONJUGATE GRADIENT METHOD 139

Because A is symmetric, cTRTAxm = (xm)TARc so that

J(xm +Rc) =
1

2
(xm)TAxm + cTRTAxm +

1

2
cT (RTAR)c

−(xm)Td− cTRT d

= J(xm)− cTRT (d−Axm) +
1

2
cT (RTAR)c

= J(xm)− cTRT rm +
1

2
cT (RTAR)c. (3.6.3)

Now choose c so that −cTRT rm + 1
2c

T (RTAR)c is a minimum. If RTAR is
symmetric positive definite, then use the discrete equivalence theorem. In this
case x is replace by c and the matrix A is replaced by the (m + 1) × (m + 1)
matrix RTAR. Since A is assumed to be symmetric positive definite, RTAR will
be symmetric and positive definite if the columns of R are linearly independent
(Rc = 0 implies c = 0). In this case c is (m+ 1)× 1 and will be the solution of
the reduced algebraic system

(RTAR)c = RT rm. (3.6.4)

The purpose of using the conjugate directions is to insure the matrix RTAR is
easy to invert. The ij component of RTAR is (ri)TArj , and the i component of
RT rm is (ri)T rm. RTAR would be easy to invert if it were a diagonal matrix,
and in this case for i not equal to j (ri)TArj = 0. This means the column
vectors would the "perpendicular" with respect to the inner product given by
xTAy where A is symmetric positive definite.
Here we may apply the Gram-Schmidt process. For two directions r0 and

r1 this has the form
p0 = r0 and p1 = r1 + bp0. (3.6.5)

Now, b is chosen so that (p0)TAp1 = 0

(p0)TA(r1 + bp0) = 0

(p0)TAr1 + b(p0)TAp0 =

and solve for
b = −(p0)TAr1/(p0)TAp0. (3.6.6)

By the steepest descent step in the first direction

x1 = x0 + cr0 where

c = (r0)T r0/(r0)TAr0 and (3.6.7)

r1 = r0 − cAr0.

The definitions of b in (3.6.6) and c in (3.6.7) yield the following additional
equations

(p0)T r1 = 0 and (p1)T r1 = (r1)T r1. (3.6.8)

140 CHAPTER 3. POISSON EQUATION MODELS

Moreover, use r1 = r0 − cAr0 in b = −(p0)TAr1/(p0)TAp0 and in (r1)T r1 to
show

b = (r1)T r1/(p0)Tp0. (3.6.9)

These equations allow for a simplification of (3.6.4) where R is now formed by
the column vectors p0 and p1·

(p0)TAp0 0
0 (p1)TAp1

¸ ·
c0
c1

¸
=

·
0

(r1)T r1

¸
.

Thus, c0 = 0 and c1 = (r
1)T r1/(p1)TAp1. From (3.6.1) with m = 1 and r0 and

r1 replaced by p0 and p1

x2 = x1 + c0p
0 + c1p

1 = x1 + 0p0 + c1p
1. (3.6.10)

For the three direction case we let p2 = r2 + bp1 and choose this new b to
be such that (p2)TAp1 = 0 so that b = −(p1)TAr2/(p1)TAp1. Use this new
b and the previous arguments to show (p0)T r2 = 0, (p1)T r2 = 0, (p2)T r2 =
(r2)T r2 and (p0)TAp2 = 0. Moreover, one can show b = (r2)T r2/(p1)T p1. The
equations give a 3× 3 simplification of (3.6.4) (p0)TAp0 0 0

0 (p1)TAp1 0
0 0 (p2)TAp2

 c0
c1
c2

 =
 0

0
(r2)T r2

 .
Thus, c0 = c1 = 0 and c2 = (r

2)T r2/(p2)TAp2. From (3.6.1) with m = 2 and
r0, r1 and r2 replaced by p0, p1,and p2

x3 = x2 + c0p
0 + c1p

1 + c2p
2 = x2 + 0p0 + 0p1 + c2p

3. (3.6.11)

Fortunately, this process continues, and one can show by mathematical induc-
tion that the reduced matrix in (3.6.4) will always be a diagonal matrix and
the right side will have only one nonzero component, namely, the last compo-
nent. Thus, the use of conjugate directions substantially reduces the amount
of computations, and the previous search direction vector do not need to be
stored.
In the following description the conjugate gradient method corresponds to

the case where the preconditioner is M = I. One common preconditioner is
SSOR where the SOR scheme is executed in a forward and then a backward
sweep. If A = D − L − LT where D is the diagonal part of A and −L is the
strictly lower triangular part of A, then M is

M = (D − wL)(1/((2− w)w))D−1(D − wLT).

The solve step is relatively easy because there is an lower triangular solve, a
diagonal product and an upper triangular solve. If the matrix is sparse, then
these solves will also be sparse solves. Other preconditioners can be found via
MATLAB help pcg and in Chapter 9.2.

3.6. CONJUGATE GRADIENT METHOD 141

Preconditioned Conjugate Gradient Method.

Let x0 be an initial guess
r0 = d−Ax0

solve Mbr0 = r0 and set p0 = br0
for m = 0, maxm

c = (brm)T rm/(pm)TApm
xm+1 = xm + cpm

rm+1 = rm − cApm

test for convergence
solve Mbrm+1 = rm+1

b = (brm+1)T rm+1/(brm)T rm
pm+1 = brm+1 + bpm

endloop.

3.6.3 Implementation

MATLAB will be used to execute the preconditioned conjugate gradient method
with the SSOR preconditioner as it is applied to the finite difference model for
−uxx − uyy = f. The coefficient matrix is symmetric positive definite, and so,
one can use this particular scheme. Here the partial differential equation has
right side equal to 200(1 + sin(πx)sin(πy)) and the solution is required to be
zero on the boundary of (0, 1)× (0, 1).
In the MATLAB code precg.m observe the use of array operations. The

vectors are represented as 2D arrays, and the sparse matrix A is not explicitly
stored. The preconditioning is done in lines 23 and 48 where a call to the user
defined MATLAB function ssor.m is used. The conjugate gradient method is
executed by the while loop in lines 29-52. In lines 33-37 the product Ap is
computed and stored in the 2D array q; note how p = 0 on the boundary grid is
used in the computation of Ap. The values for c = alpha and b = newrho/rho
are computed in lines 40 and 50. The conjugate direction is defined in line 51.

MATLAB Codes precg.m and ssor.m

1. clear;
2. %
3. % Solves -uxx -uyy = 200+200sin(pi x)sin(pi y)
4. % Uses PCG with SSOR preconditioner
5. % Uses 2D arrays for the column vectors
6. % Does not explicitly store the matrix
7. %
8. w = 1.5;
9. n = 20;
10. h = 1./n;
11. u(1:n+1,1:n+1)= 0.0;
12. r(1:n+1,1:n+1)= 0.0;

142 CHAPTER 3. POISSON EQUATION MODELS

13. rhat(1:n+1,1:n+1) = 0.0;
14. p(1:n+1,1:n+1)= 0.0;
15. q(1:n+1,1:n+1)= 0.0;
16. % Define right side of PDE
17. for j= 2:n
18. for i = 2:n
19. r(i,j)= h*h*(200+200*sin(pi*(i-1)*h)*sin(pi*(j-1)*h));
20. end
21. end
22. % Execute SSOR preconditioner
23. rhat = ssor(r,n,w);
24. p(2:n,2:n)= rhat(2:n,2:n);
25. err = 1.0;
26. m = 0;
27. newrho = sum(sum(rhat.*r));
28. % Begin PCG iterations
29. while ((err>.0001)*(m<200))
30. m = m+1;
31. % Executes the matrix product q = Ap
32. % Does without storage of A
33. for j= 2:n
34. for i = 2:n
35. q(i,j)=4.*p(i,j)-p(i-1,j)-p(i,j-1)-p(i+1,j)-p(i,j+1);
36. end
37. end
38. % Executes the steepest descent segment
39. rho = newrho;
40. alpha = rho/sum(sum(p.*q));
41. u = u + alpha*p;
42. r = r - alpha*q;
43. % Test for convergence
44. % Use the infinity norm of the residual
45. err = max(max(abs(r(2:n,2:n))));
46. reserr(m) = err;
47. % Execute SSOR preconditioner
48. rhat = ssor(r,n,w);
49. % Find new conjugate direction
50. newrho = sum(sum(rhat.*r));
51. p = rhat + (newrho/rho)*p;
52. end
53. m
54. semilogy(reserr)

1. function rhat=ssor(r,n,w)
2. rhat = zeros(n+1);

3.6. CONJUGATE GRADIENT METHOD 143

Figure 3.6.1: Convergence for CG and PCG

3. for j= 2:n
4. for i = 2:n
5. rhat(i,j)=w*(r(i,j)+rhat(i-1,j)+rhat(i,j-1))/4.;
6. end
7. end
8. rhat(2:n,2:n) = ((2.-w)/w)*(4.)*rhat(2:n,2:n);
9. for j= n:-1:2
10. for i = n:-1:2
11. rhat(i,j)=w*(rhat(i,j)+rhat(i+1,j)+rhat(i,j+1))/4.;
12. end
13. end

Generally, the steepest descent method is slow relative to the conjugate gra-
dient method. For this problem, the steepest descent method did not converge
in 200 iterations; the conjugate gradient method did converge in 26 iterations,
and the SSOR preconditioned conjugate gradient method converged in 11 iter-
ations. The overall convergence of both methods is recorded in Figure 3.6.1.

3.6.4 Assessment

The conjugate gradient method that we have described is for a symmetric pos-
itive definite coefficient matrix. There are a number of variations when the
matrix is not symmetric positive definite. The choice of preconditioners is im-
portant, but in practice this choice is often done somewhat experimentally or

144 CHAPTER 3. POISSON EQUATION MODELS

is based on similar computations. The preconditioner can account for about
40% of the computation for a single iteration, but it can substantially reduce
the number of iterations that are required for convergence. Another expensive
component of the conjugate gradient method is the matrix-vector product, and
so one should pay particular attention to the implementation of this.

3.6.5 Exercises

1. Show if A is symmetric positive definite and the columns of R are linearly
independent, then RTAR is also symmetric positive definite.
2. Verify line (3.6.8).
3. Verify line (3.6.9).
4. Duplicate the MATLAB computations that give Figure 3.6.1.. Experi-
ment with the SSOR parameter in the preconditioner.
5. In the MATLAB code precg.m change the right side to 100xy + 40x5.
6. In the MATLAB code precg.m change the boundary conditions to u(x, 1)
= 10x(1− x) and zero else where. Be careful in the matrix product q = Ap!
7. Read the MATLAB help pcg file and Chapter 9.3. Try some other pre-
conditioners and some of the MATLAB conjugate gradient codes.

Chapter 4

Nonlinear and 3D Models

In the previous chapter linear iterative methods were used to approximate the
solution to two dimensional steady state space problems. This often results in
three nested loops where the outer most loop is the iteration of the method and
the two inner most loops are for the two space directions. If the two dimensional
problem is nonlinear or if the problem is linear and in three directions, then there
must be one additional loop. In the first three sections nonlinear problems, the
Picard and Newton methods are introduced. The last three sections are devoted
to three space dimension problems, and these often require the use of high
performance computing. Applications will include linear and nonlinear heat
transfer, and in the next chapter space dependent population models, image
restoration and value of option contracts. A basic introduction to nonlinear
methods can be found in Burden and Faires [3]. A more current description of
nonlinear methods can be found in C. T. Kelley [8].

4.1 Nonlinear Problems in One Variable

4.1.1 Introduction

Nonlinear problems can be formulated as a fixed point of a function x = g(x),
or equivalently, as a root of f(x) ≡ x − g(x) = 0. This is a common problem
that arises in computations, and a more general problem is to find N unknowns
when N equations are given. The bisection algorithm does not generalize very
well to these more complicated problems. In this section we will present two
algorithms, Picard and Newton, which do generalize to problems with more
than one unknown.
Newton’s algorithm is one of the most important numerical schemes because,

under appropriate conditions, it has local and quadratic convergence properties.
Local convergence means that if the initial guess is sufficiently close to the root,
then the algorithm will converge to the root. Quadratic convergence means that
the error at the next step will be proportional to the square of the error at the

145

146 CHAPTER 4. NONLINEAR AND 3D MODELS

current step. In general, the Picard algorithm only has first order convergence
where the error at the next step is proportional to the error at the present step.
But, the Picard algorithm may converge to a fixed point regardless of the initial
guess.

4.1.2 Applied Area and Model

Consider the rapid cooling of an object, which has uniform temperature with
respect to the space variable. Heat loss by transfer from the object to the sur-
rounding region may be governed by equations that are different from Newton’s
law. Suppose a thin wire is glowing hot so that the main heat loss is via radi-
ation. Then Newton’s law of cooling may not be an accurate model. A more
accurate model is the Stefan radiation law

ut = c(u4sur − u4) = F (u) and u(0) = 973 where c = Aεσ

A = 1 is the area,

ε = .022 is the emissivity,

σ = 5.68 10−8 is the Stefan-Boltzmann constant and
usur = 273 is the surrounding temperature.

The derivative of F is −4cu3 and is large and negative for temperature near the
initial temperature, F 0(973) = −4.6043. Problems of this nature are called stiff
differential equations. Since the right side is very large, very small time steps
are required in Euler’s method where u+ is the approximation of u(t) at the
next time step and h is the increment in time u+ = u+ hF (u). An alternative
is to evaluate F (u(t)) at the next time step so that an implicit variation on
Euler’s method is u+ = u + hF (u+). So, at each time step one must solve a
fixed point problem.

4.1.3 Method: Picard

We will need to use an algorithm, which is suitable for stiff differential equations.
The model is a fixed point problem

u = g(u) ≡ uold + hF (u). (4.1.1)

For small enough h this can be solved by the Picard algorithm

um+1 = g(um) where (4.1.2)

the m indicates an inner iteration and not the time step. The initial guess for
this iteration can be taken from one step of the Euler algorithm.

Example 1. Consider the first time step for ut = f(t, u) = t2+u2 and u(0) = 1.
A variation on equation (4.1.1) has the form

u = g(u) = 1 + (h/2)(f(0, 1) + f(h, u))

= 1 + (h/2)((0 + 1) + (h2 + u2)).

4.1. NONLINEAR PROBLEMS IN ONE VARIABLE 147

This can be solved using the quadratic formula, but for small enough h one can
use (4.1.2) several iterations. Let h = .1 and let the first guess be u0 = 1 (m =
0). Then the calculations from (4.1.2) will be: 1.100500, 1.111055, 1.112222,
1.112351. If we are "satisfied" with the last calculation, then let it be the value
of the next time set, uk where k = 1 is the first time step so that this is an
approximation of u(1h).
Consider the general problem of finding the fixed point of g(x)

g(x) = x. (4.1.3)

The Picard algorithm has the form of successive approximation as in (4.1.2),
but for more general g(x). In the algorithm we continue to iterate (4.1.2)
until there is little difference in two successive calculations. Another possible
stopping criteria is to examine the size of the nonlinear residual f(x) = g(x)−x.
Example 2. Find the square root of 2. This could also be written either as
0 = 2 − x2 for the root, or as x = x + 2 − x2 = g(x) for the fixed point
of g(x). Try an initial approximation of the fixed point, say, x0 = 1. Then
the subsequent iterations are x1 = g(1) = 2, x2 = g(2) = 0, x3 = g(0) = 2,
and so on 0, 2, 0, 2......! So, the iteration does not converge. Try another initial
x0 = 1.5 and it still does not converge x1 = g(1.5) = 1.25, x2 = g(1.25) =
1.6875, x3 = g(1.6875) = .83984375! Note, this last sequence of numbers is
diverging from the solution. A good way to analyze this is to use the mean
value theorem g(x)− g(

√
2) = g0(c)(x−√2) where c is some where between x

and
√
2. Here g0(c) = 1− 2c. So, regardless of how close x is to √2, g0(c) will

approach 1− 2√2, which is strictly less than -1. Hence for x near √2 we have
|g(x)− g(

√
2)| > |x−√2|!

In order to obtain convergence, it seems plausible to require g(x) to move
points closer together, which is in contrast to the above example where they
are moved farther apart.

Definition. g : [a, b] → R is called contractive on [a,b] if and only if for all x
and y in [a,b] and positive r < 1

|g(x)− g(y)| ≤ r|x− y|. (4.1.4)

Example 3. Consider ut = u/(1 + u) with u(0) = 1. The implicit Euler
method has the form uk+1 = uk + huk+1/(1 + uk+1) where k is the time step.
For the first time step with x = uk+1 the resulting fixed point problem is
x = 1 + hx/(1 + x) = g(x). One can verify that the first 6 iterates of Picard’s
algorithm with h = 1 are 1.5, 1.6, 1.6153, 1.6176, 1.6180 and 1.6180. The
algorithm has converged to within 10−4, and we stop and set u1 = 1.610. The
function g(x) is contractive, and this can be seen by direct calculation

g(x)− g(y) = h[1/((1 + x)(1 + y))](x− y). (4.1.5)

The term in the square bracket is less then one if both x and y are positive.

148 CHAPTER 4. NONLINEAR AND 3D MODELS

Example 4. Let us return to the radiative cooling problem in example 1 where
we must solve a stiff differential equation. If we use the above algorithm with a
Picard solver, then we will have to find a fixed point of g(x) = bx+(h/2)(f(bx)+
f(x)) where f(x) = c(u4sur − x4). In order to show that g(x) is contractive, use
the mean value theorem so that for some c between x and y

g(x)− g(y) = g0(c)(x− y)

|g(x)− g(y)| ≤ max|g0(c)||x− y|. (4.1.6)

So, we must require r = max|g0(c)| < 1. In our case, g0(x) = (h/2)f 0(x) =
(h/2)(−4cx3). For temperatures between 273 and 973, this means

(h/2)4.6043 < 1., that is, h < (2/4.6043).

4.1.4 Method: Newton

Consider the problem of finding the root of the equation

f(x) = 0. (4.1.7)

The idea behind Newton’s algorithm is to approximate the function f(x) at a
given point by a straight line. Then find the root of the equation associated
with this straight line. One continues to repeat this until little change in ap-
proximated roots is observed. The equation for the straight line at the iteration
m is (y − f(xm))/(x − xm) = f 0(xm). Define xm+1 so that y = 0 where the
straight line intersects the x axis (0− f(xm))/(xm+1−xm) = f 0(xm). Solve for
xm+1 to obtain Newton’s algorithm

xm+1 = xm − f(xm)/f 0(xm). (4.1.8)

There are two common stopping criteria for Newton’s algorithm. The first
test requires two successive iterates to be close. The second test requires the
function to be near zero.

Example 5. Consider f(x) = 2 − x2 = 0. The derivative of f (x) is -2x,
and the iteration in (4.1.8) can be viewed as a special Picard algorithm where
g(x) = x−(2−x2)/(−2x). Note g0(x) = −1/x2+1/2 so that g(x) is contractive
near the root. Let x0 = 1. The iterates converge and did so quadratically as is
indicated in Table 4.1.1.

Example 6. Consider f(x) = x1/3 − 1. The derivative of f(x) is (1/3)x−2/3.
The corresponding Picard iterative function is g(x) = −2x+3x2/3. Here g0(x) =
−2 + 2x−1/3 so that it is contractive suitably close to the root x = 1. Table
4.1.2 illustrates the local convergence for a variety of initial guesses.

4.1. NONLINEAR PROBLEMS IN ONE VARIABLE 149

Table 4.1.1: Quadratic Convergence
m xm Em Em/(Em−1)2

1 1.0 0.414213
1 1.5 0.085786 2.000005
2 1.4166666 0.002453 3.000097
3 1.4142156 0.000002 3.008604

Table 4.1.2: Local Convergence
x0 m for conv. x0 m for conv.
10.0 no conv. 00.1 4
05.0 no conv. -0.5 6
04.0 6 -0.8 8
03.0 5 -0.9 20
01.8 3 -1.0 no conv.

4.1.5 Implementation

The MATLAB file picard.m uses the Picard algorithm for solving the fixed point
problem x = 1+ h(x/(1+ x)), which is defined in the function file gpic.m. The
iterates are computed in the loop given by lines 4-9. The algorithm is stopped
in lines 6-8 when the difference between two iterates is less than .0001.

MATLAB Codes picard.m and gpic.m

1. clear;
2. x(1) = 1.0;
3. eps = .0001;
4. for m=1:20
5. x(m+1) = gpic(x(m));
6. if abs(x(m+1)-x(m))<eps
7. break;
8. end
9. end
10. x’
11. m
12. fixed_point = x(m+1)

function gpic = gpic(x)
gpic = 1. + 1.0*(x/(1. + x));

picard
ans =
1.0000
1.5000
1.6000

150 CHAPTER 4. NONLINEAR AND 3D MODELS

1.6154
1.6176
1.6180
1.6180
m =
6
fixed_point =
1.6180

The MATLAB file newton.m contains the Newton algorithm for solving the
root problem 0 = 2 − x2, which is defined in the function file fnewt.m. The
iterates are computed in the loop given by lines 4-9. The algorithm is stopped in
lines 6-8 when the residual f(xm) is less than .0001. The numerical results are
in Table 4.4.1 where convergence is obtained after three iterations on Newton’s
method.

MATLAB Codes newton.m, fnewt.m and fnewtp.m

1. clear;
2. x(1) = 1.0;
3. eps = .0001;
4. for m=1:20
5. x(m+1) = x(m) - fnewt(x(m))/fnewtp(x(m));
6. if abs(fnewt(x(m+1)))<eps
7. break;
8. end
9. end
10. x’
11. m
12. fixed_point = x(m+1)

function fnewt = fnewt(x)
fnewt =2 - x^2;

function fnewtp = fnewtp(x)
fnewtp = -2*x;

4.1.6 Assessment

In the radiative cooling model we have also ignored the good possibility that
there will be differences in temperature according to the location in space. In
such cases there will be diffusion of heat, and one must model this mode of heat
transfer.
We indicated that the Picard algorithm may converge if the mapping g(x)

is contractive. The following theorem makes this more precise. Under some
additional assumptions the new error is bounded by the old error.

4.1. NONLINEAR PROBLEMS IN ONE VARIABLE 151

Theorem 4.1.1 (Picard Convergence) Let g:[a,b]→[a,b] and assume that x is
a fixed point of g and x is in [a,b]. If g is contractive on [a,b], then the Picard
algorithm in (4.1.2) converges to the fixed point. Moreover, the fixed point is
unique.

Proof. Let xm+1 = g(xm) and x = g(x). Repeatedly use the contraction
property (4.1.4).

|xm+1 − x| = |g(xm)− g(x)|
≤ r|xm − x|
= r|g(xm−1)− g(x)|
≤ r2|xm−2 − x|

...

≤ rm+1|x0 − x|. (4.1.9)

Since 0 ≤ r < 1, rm+1 must go to zero as m increases.
If there is a second fixed point y, then |x − y| = |g(x) − g(y)| ≤ r|y − x|

where r < 1. So, if x and y are different, then |y − x| is not zero. Divide both
sides by |y − x| to get 1 ≤ r, which is a contradiction to our assumption that
r < 1. Evidently, x = y.

In the above examples we noted that Newton’s algorithm was a special case
of the Picard algorithm with g(x) = x − f(x)/f 0(x). In order to show g(x) is
contractive, we need to have, as in (4.1.6), |g0(x)| < 1.

g0(x) = 1− (f 0(x)2 − f(x)f 00(x))/f 0(x)2 = f(x)f 00(x)/f 0(x)2 (4.1.10)

If bx is a solution of f(x) = 0 and f(x) is continuous, then we can make f(x)
as small as we wish by choosing x close to bx. So, if f 00(x)/f 0(x)2 is bounded,
then g(x) will be contractive for x near bx. Under the conditions listed in the
following theorem this establishes the local convergence.

Theorem 4.1.2 (Newton’s Convergence) Consider f(x) = 0 and assume bx is
a root. If f 0(bx) is not zero and f 00(x) is continuous on an interval containingbx, then
1. Newton’s algorithm converges locally to the bx, that is, for x0 suitably close
to bx and

2. Newton’s algorithm converges quadratically, that is,

|xm+1 − bx| ≤ [max|f 00(x)|/(2min|f 0(x)|]|xm − bx|2. (4.1.11)

Proof. In order to prove the quadratic convergence, use the extended mean
value theorem where a = xm and x = bx to conclude that there is some c such
that

0 = f(bx) = f(xm) + f 0(xm)(bx− xm) + (f 00(c)/2)(bx− xm)2.

152 CHAPTER 4. NONLINEAR AND 3D MODELS

Divide the above by f 0(xm) and use the definition of xm+1

0 = −(xm+1 − xm) + (bx− xm) + (f 00(c)/(2f 0(xm))(bx− xm)2

= −(xm+1 − bx) + (f 00(c)/(2f 0(xm))(bx− xm)2.

.
Since f 0(x) for some interval about bx must be bounded away from zero, and
f 00(x) and f 0(x) are continuous, the inequality in (4.1.11) must hold.

4.1.7 Exercises

1. Consider the fixed point example 1 and verify those computations. Ex-
periment with increased sizes of h. Notice the algorithm may not converge if
|g0(u)| > 1.
2. Verify the example 3 for ut = u/(1 + u). Also, find the exact solution
and compare it with the two discretization methods: Euler and implicit Euler.
Observe the order of the errors.
3. Consider the applied problem with radiative cooling in example 4. Solve
the fixed point problems x = g(x), with g(x) in example 4, by the Picard algo-
rithm using a selection of step sizes. Observe how this affects the convergence
of the Picard iterations.
4. Solve for x such that x = e−x.
5. Use Newton’s algorithm to solve 0 = 7− x3. Observe quadratic conver-
gence.

4.2 Nonlinear Heat Transfer in a Wire

4.2.1 Introduction

In the analysis for most of the heat transfer problems we assumed the tem-
perature varied over a small range so that the thermal properties could be
approximated by constants. This always resulted in a linear algebraic problem,
which could be solved by a variety of methods. Two possible difficulties are
nonlinear thermal properties or larger problems, which are a result of diffusion
in two or three directions. In this section we consider the nonlinear problems.

4.2.2 Applied Area

The properties of density, specific heat and thermal conductivity can be nonlin-
ear. The exact nature of the nonlinearity will depend on the material and the
range of the temperature variation. Usually, data is collected that reflects these
properties, and a least squares curve fit is done for a suitable approximating
function. Other nonlinear terms can evolve from the heat source or sink terms
in either the boundary conditions or the source term on the right side of the
heat equation. We consider one such case.

4.2. NONLINEAR HEAT TRANSFER IN A WIRE 153

Consider a cooling fin or plate, which is glowing hot, say at 900 degrees
Kelvin. Here heat is being lost by radiation to the surrounding region. In this
case the heat lost is not proportional, as in Newton’s law of cooling, to the
difference in the surrounding temperature, usur, and the temperature of the
glowing mass, u. Observations indicate that the heat loss through a surface area,
A, in a time interval, ∆t, is equal to ∆t Aεσ(u4sur−u4) where ε is the emissivity
of the surface and σ is the Stefan-Boltzmann constant. If the temperature is
not uniform with respect to space, then couple this with the Fourier heat law
to form various nonlinear differential equations or boundary conditions.

4.2.3 Model

Consider a thin wire of length L and radius r. Let the ends of the wire have a
fixed temperature of 900 and let the surrounding region be usur = 300. Suppose
the surface of the wire is being cooled via radiation. The lateral surface area of
a small cylindrical portion of the wire has area A = 2πrh. Therefore, the heat
leaving the lateral surface in ∆t time is

∆t(2πrh)(εσ(u4sur − u4)).

Assume steady state heat diffusion in one direction and apply the Fourier heat
law to get

0 ≈ ∆t(2πrh)(εσ(u4sur − u4)) +

∆tK(πr2)ux(x+ h/2)−∆tK(πr2)ux(x− h/2).

Divide by ∆t(πr2)h and let h go to zero so that

0 = (2εσ/r)(u4sur − u4) + (Kux)x.

The continuous model for the heat transfer is

−(Kux)x = c(u4sur − u4) where c = 2εσ/r and (4.2.1)

u(0) = 900 = u(L). (4.2.2)

The thermal conductivity will also be temperature dependent, but for simplicity
assume K is a constant and will be incorporated into c.
Consider the nonlinear differential equation −uxx = f(u). The finite differ-

ence model is for h = L/(n+ 1) and ui ≈ u(ih) with u0 = 900 = un+1

−ui−1 + 2ui − ui+1 = h2f(ui) for i = 1, ..., n.

This discrete model has n unknowns, ui, and n equations

Fi(u) ≡ h2f(ui) + ui−1 − 2ui + ui+1 = 0. (4.2.3)

Nonlinear problems can have multiple solutions. For example, consider the
intersection of the unit circle x2+y2−1 = 0 and the hyperbola x2−y2−1/2 = 0.
Here n = 2 with u1 = x and u2 = y, and there are four solutions. In applications
this can present problems in choosing the solution that most often exists in
nature.

154 CHAPTER 4. NONLINEAR AND 3D MODELS

4.2.4 Method

In order to derive Newton’s method for n equations and n unknowns, it is
instructive to review the one unknown and one equation case. The idea behind
Newton’s algorithm is to approximate the function f(x) at a given point by a
straight line. Then find the root of the equation associated with this straight
line. We make use of the approximation

∆f ≈ f 0(x)∆x. (4.2.4)

The equation for the straight line at iteration m is

(y − f(xm) = f 0(xm)(x− xm). (4.2.5)

Define xm+1 so that y = 0 and solve for xm+1 to obtain Newton’s algorithm

xm+1 = xm − f(xm)/f 0(xm). (4.2.6)

The derivation of Newton’s method for more than one equation and one
unknown requires an analog of the approximation in (4.2.4). Consider Fi(u)
as a function of n variables uj . If just the j component of u changes, then
(4.2.4) will hold with x replaced by uj and f(x) replaced by Fi(u). If all of the
components change, then the net change in Fi(u) can be approximated by sum
of the partial derivatives of Fi(u) with respect to uj times the change in uj :

∆Fi = Fi(u1 +∆u1, · · · , un +∆un)− Fi(u1, · · · , un)
≈ Fiu1(u)∆u1 + · · ·+ Fiun(u)∆un. (4.2.7)

For n = 2 this is depicted by Figure 4.2.1 with i = 1 and

∆Fi = A+B where

A ≈ Fiu1(u)∆u1 and B ≈ Fiu2(u)∆u2.

The equation approximations in (4.2.7) can be put into matrix form

∆F ≈ F 0(u)∆u (4.2.8)

where ∆F = [∆F1 · · · ∆Fn]T and ∆u = [∆u1 · · · ∆un]T are n × 1
column vectors, and F 0(u) is defined as the n×n derivative or Jacobian matrix

F 0 ≡

 F1u1 · · · F1un
...

. . .
...

Fnu1 · · · Fnun

 .
Newton’s method is obtained by letting u = um,∆u = um+1 − um and

∆F = 0−F (um). The vector approximation in (4.2.8) is replaced by an equality
to get

0− F (um) = F 0(um)(um+1 − um). (4.2.9)

4.2. NONLINEAR HEAT TRANSFER IN A WIRE 155

Figure 4.2.1: Change in F1

This vector equation can be solved for um+1, and we have the n variable Newton
method

um+1 = um − F 0(um+1)−1F (um). (4.2.10)

In practice the inverse of the Jacobian matrix is not used, but one must find
the solution, ∆u, of

0− F (um) = F 0(um)∆u. (4.2.11)

Consequently, Newton’s method consists of solving a sequence of linear prob-
lems. One usually stops when either F is "small", or ∆u is "small "

Newton’s Algorithm.

choose initial u0

for m = 1,maxit
compute F (um) and F 0(um)
solve F 0(um)∆u = −F (um)
um+1 = um +∆u

test for convergence
endloop.

Example 1. Let n = 2, F1(u) = u21 + u22 − 1 and F2(u) = u21 − u22 − 1/2. The
Jacobian matrix is 2×2, and it will be nonsingular if both variables are nonzero

F 0(u) =
·
2u1 2u2
2u1 −2u2

¸
. (4.2.12)

If the initial guess is near a solution in a particular quadrant, then Newton’s
method may converge to the solution in that quadrant.

156 CHAPTER 4. NONLINEAR AND 3D MODELS

Example 2. Consider the nonlinear differential equation for the radiative heat
transfer problem in (4.2.1)-(4.2.3) where

Fi(u) = h2f(ui) + ui−1 − 2ui + ui+1 = 0. (4.2.13)

The Jacobian matrix is easily computed and must be tridiagonal because each
Fi(u) only depends on ui−1, ui and ui+1

F 0(u) =


h2f 0(u1)− 2 1

1 h2f 0(u2)− 2 . . .
. . .

. . . 1
1 h2f 0(un)− 2

 .
For the Stefan cooling model where the absolute temperature is positive f 0(u) <
0. Thus, the Jacobian matrix is strictly diagonally dominant and must be non-
singular so that the solve step can be done in Newton’s method.

4.2.5 Implementation

The following is a MATLAB code, which uses Newton’s method to solve the 1D
diffusion problem with heat loss due to radiation. We have used the MATLAB
command A\d to solve each linear subproblem. One could use an iterative
method, and this might be the best way for larger problems where there is
diffusion of heat in more than one direction.
In the MATLAB code nonlin.m the Newton iteration is done in the outer

loop in lines 13-36. The inner loop in lines 14-29 recomputes the Jacobian
matrix by rows FP = F 0 (u) and updates the column vector F = F (u). The
solve step and the update to the approximate solution are done in lines 30
and 31. In lines 32-35 the Euclidean norm of the residual is used to test for
convergence. The output is generated by lines 37-41.

MATLAB Codes nonlin.m, fnonl.m and fnonlp.m

1. clear;
2. % This code is for a nonlinear ODE.
3. % Stefan radiative heat lose is modeled.
4. % Newton’s method is used.
5. % The linear steps are solved by A\d.
6. uo = 900.;
7. n = 19;
8. h = 1./(n+1);
9. FP = zeros(n);
10. F = zeros(n,1);
11. u = ones(n,1)*uo;
12. % begin Newton iteration
13. for m =1:20

4.2. NONLINEAR HEAT TRANSFER IN A WIRE 157

14. for i = 1:n %compute Jacobian matrix
15. if i==1
16. F(i) = fnonl(u(i))*h*h + u(i+1) - 2*u(i) + uo;
17. FP(i,i) = fnonlp(u(i))*h*h - 2;
18. FP(i,i+1) = 1;
19. elseif i<n
20. F(i) = fnonl(u(i))*h*h + u(i+1) - 2*u(i) + u(i-1);
21. FP(i,i) = fnonlp(u(i))*h*h - 2;
22. FP(i,i-1) = 1;
23. FP(i,i+1) = 1;
24. else
25. F(i) = fnonl(u(i))*h*h - 2*u(i) + u(i-1) + uo;
26. FP(i,i) = fnonlp(u(i))*h*h - 2;
27. FP(i,i-1) = 1;
28. end
29. end
30. du = FP\F; % solve linear system
31. u = u - du;
32. error = norm(F);
33. if error<.0001
34. break;
35. end
36. end
37. m;
38. error;
39. uu = [900 u’ 900];
40. x = 0:h:1;
41. plot(x,uu)

function fnonl = fnonl(u)
fnonl = .00000005*(300^4 - u^4);

function fnonlp = fnonlp(u)
fnonlp = .00000005*(-4)*u^3;

We have experimented with c = 10−8, 10−7 and 10−6. The curves in Figure
4.2.2 indicate the larger the c the more the cooling, that is, the lower the
temperature. Recall, from (4.2.1) c = (2εσ/r)/K so variable ε,K or r can
change c.
The next calculations were done to illustrate the very rapid convergence of

Newton’s method. The second column in Table 4.2.1 has norms of the residual
as a function of the Newton iterations m.

158 CHAPTER 4. NONLINEAR AND 3D MODELS

Figure 4.2.2: Temperatures for Variable c

Table 4.2.1: Newton’s Rapid Convergence
m Norm of F
1 706.1416
2 197.4837
3 049.2847
4 008.2123
5 000.3967
6 000.0011
7 7.3703e-09

4.2. NONLINEAR HEAT TRANSFER IN A WIRE 159

4.2.6 Assessment

Nonlinear problems are very common, but they are often linearized by using
linear Taylor polynomial approximations of the nonlinear terms. This is done
because it is easier to solve one linear problem than a nonlinear problem where
one must solve a sequence on linear subproblems. However, Newton’s method
has, under some assumption on F(u), the two very important properties of local
convergence and quadratic convergence. These two properties have contributed
to the wide use and many variations of the Newton’s method for solving non-
linear algebraic systems.
Another nonlinear method is a Picard method in which the nonlinear terms

are evaluated at the previous iteration, and the resulting linear problem is
solved for the next iterate. For example, consider the problem −uxx = f(u)
with u given on the boundary. Let um be given and solve the linear problem
−um+1xx = f(um) for the next iterate um+1. This method does not always
converge, and in general it does not converge quadratically.

4.2.7 Exercises

1. Apply Newton’s method to the example 1 with n = 2. Experiment
with different initial guesses in each quadrant. Observe local and quadratic
convergence.
2. Apply Newton’s method to the radiative heat transfer problem. Exper-
iment with different n, eps, L and emissivities. Observe local and quadratic
convergence as well as the number of Newton iterations required for conver-
gence.
3. In problem 2 determine how much heat is lost through the wire per unit
time.
4. Consider the linearized version of −uxx = c(u4sur−u4) = f(u) where f(u)
is replaced by its first order Taylor polynomial f(usur) + f 0(usur)(u − usur).
Compare the nonlinear and linearized solutions.
5. Try the Picard method on −uxx = c(u4sur − u4).
6. Consider the 1D diffusion problem where

K(u) = .001(1 + .01u+ .000002u2).

Find the nonlinear algebraic system and solve it using Newton’s method.
7. Consider a 2D cooling plate that satisfies

−(Kux)x − (Kuy)y = c(u4sur − u4).

Use Newton’s method coupled with a linear solver that uses SOR to solve this
nonlinear problem.

160 CHAPTER 4. NONLINEAR AND 3D MODELS

4.3 Nonlinear Heat Transfer in 2D

4.3.1 Introduction

Assume the temperature varies over a large range so that the thermal prop-
erties cannot be approximated by constants. In this section we will consider
the nonlinear 2D problem where the thermal conductivity is a function of the
temperature. The Picard nonlinear algorithm with a preconditioned conjugate
gradient method for each of the linear solves will be used.

4.3.2 Applied Area

Consider a cooling fin or plate, which is attached to a hot mass. Assume the
nonlinear thermal conductivity does have a least squares fit to the data to find
the three coefficients in a quadratic function for K(u). For example, if the
thermal conductivity is given by c0 = .001, c1 = .01, c2 = .00002 and

K(u) = c0(1.+ c1u+ c2u
2). (4.3.1)

Then at u = 100 K(100) = .001(1.+ 1.+ .2) is over double what it is at u = 0
where K(0) = .001.

4.3.3 Model

Consider a thin 2D plate whose edges have a given temperature. Suppose the
thermal conductivity K = K(u) is a quadratic function of the temperature.
The continuous model for the heat transfer is

−(K(u)ux)x− (K(u)uy)y = f and (4.3.2)

u = g on the boundary. (4.3.3)

If there is source or sink of heat on the surface of the plate, then f will be
nonzero. The temperature, g, on the boundary will be given and independent
of time. One could have more complicated boundary condition that involve
space derivatives of the temperature.
The finite difference approximation of K(u)ux requires approximations of

the thermal conductivity at the left and right sides of the rectangular region
∆x∆y. Here we will compute the average of K, and at the right side this is

Ki+1/2,j ≡ (K(ui+1,j) +K(uij))/2.

Then the approximation is

(K(u)ux)x ≈ [Ki+1/2,j(ui+1,j − uij)/∆x−
Ki−1/2,j(ui,j − ui−1,j)/∆x]/∆x.

4.3. NONLINEAR HEAT TRANSFER IN 2D 161

Repeat this for the y direction to get the discrete finite difference model

fij = −[Ki+1/2,j(ui+1,j − uij)/∆x−
Ki−1/2,j(ui,j − ui−1,j)/∆x]/∆x

−[Ki,j+1/2(ui,j+1 − uij)/∆y −
Ki,j−1/2(ui,j − ui,j−1)/∆y]/∆y. (4.3.4)

One can think of this in matrix form where the nonlinear parts of the prob-
lem come from the components of the coefficient matrix and the evaluation of
the thermal conductivity. The nonzero components, up to five nonzero com-
ponents in each row, in the matrix will have the same pattern as in the linear
problem, but the values of the components will change with the temperature.

Nonlinear Algebraic Problem.

A(u)u = f. (4.3.5)

This class of nonlinear problems could be solved using Newton’s method. How-
ever, the computation of the derivative or Jacobian matrix could be costly if
the n2 partial derivatives of the component functions are hard to compute.

4.3.4 Method

Picard’s method will be used. We simply make an initial guess, compute the
thermal conductivity at each point in space, evaluate the matrix A(u) and solve
for the next possible temperature. The solve step may be done by any method
we choose.

Picard’s Algorithm for (4.3.5).

choose initial u0

for m = 1,maxit
compute A(um)
solve A(um)um+1 = f
test for convergence

endloop.

One can think of this as a fixed point method where the problem (4.3.5) has
the form

u = A(u)−1f ≡ G(u). (4.3.6)

The iterative scheme then is

um+1 = G(um). (4.3.7)

The convergence of such schemes requires G(u) to be "contractive". We will
not try to verify this, but we will just try the Picard method and see if it works.

162 CHAPTER 4. NONLINEAR AND 3D MODELS

4.3.5 Implementation

The following is a MATLAB code, which executes the Picard method and does
the linear solve step by the preconditioned conjugate gradient method with
the SSOR preconditioner. An alternative to MATLAB is Fortran, which is a
compiled code, and therefore it will run faster than non compiled codes such
as MATLAB versions before release 13. The corresponding Fortran code is
picpcg.f90.
The picpcg.m code uses two MATLAB function files: cond.m for the nonlin-

ear thermal conductivity and pcgssor.m for the SSOR preconditioned conjugate
gradient linear solver. The main program is initialized in lines 1-19 where the
initial guess is zero. The for loop in line 21-46 executes the Picard algorithm.
The nonlinear coefficient matrix is not stored as a full matrix, but only the five
nonzero components per row are, in lines 22-31, computed as given in (4.3.4)
and stored in the arrays an, as, ae, aw and ac for the coefficients of ui,j+1,
ui,j−1, ui+1,j , ui−1,j and ui,j , respectively. The call to pcgssor is done in line
35, and here one should examine how the above arrays are used in this version
of the preconditioned conjugate gradient method. Also, note the pcgssor is an
iterative scheme, and so the linear solve is not done exactly and will depend of
the error tolerance within this subroutine, see lines 20 and 60 in pcgssor. In
line 37 of piccg.m the test for convergence of the Picard outer iteration is done.

MATLAB Codes picpcg.m, pcgssor.m and cond.m

1. clear;
2. % This progran solves -(K(u)ux)x - (K(u)uy)y = f.
3. % K(u) is defined in the function cond(u).
4. % The Picard nonlinear method is used.
5. % The solve step is done in the subroutine pcgssor.
6. % It uses the PCG method with SSOR preconditioner.
7. maxmpic = 50;
8. tol = .001;
9. n = 20;
10. up = zeros(n+1);
11. rhs = zeros(n+1);
12. up = zeros(n+1);
13. h = 1./n;
14. % Defines the right side of PDE.
15. for j = 2:n
16. for i = 2:n
17. rhs(i,j) = h*h*200.*sin(3.14*(i-1)*h)*sin(3.14*(j-1)*h);
18. end
19. end
20. % Start the Picard iteration.
21. for mpic=1:maxmpic
22. % Defines the five nonzero row components in the matrix.

4.3. NONLINEAR HEAT TRANSFER IN 2D 163

23. for j = 2:n
24. for i = 2:n
25. an(i,j) = -(cond(up(i,j))+cond(up(i,j+1)))*.5;
26. as(i,j) = -(cond(up(i,j))+cond(up(i,j-1)))*.5;
27. ae(i,j) = -(cond(up(i,j))+cond(up(i+1,j)))*.5;
28. aw(i,j) = -(cond(up(i,j))+cond(up(i-1,j)))*.5;
29. ac(i,j) = -(an(i,j)+as(i,j)+ae(i,j)+aw(i,j));
30. end
31. end
32. %
33. % The solve step is done by PCG with SSOR.
34. %
35. [u , mpcg] = pcgssor(an,as,aw,ae,ac,up,rhs,n);
36. %
37. errpic = max(max(abs(up(2:n,2:n)-u(2:n,2:n))));
38. fprintf(’Picard iteration = %6.0f\n’,mpic)
39. fprintf(’Number of PCG iterations = %6.0f\n’,mpcg)
40. fprintf(’Picard error = %6.4e\n’,errpic)
41. fprintf(’Max u = %6.4f\n’, max(max(u)))
42. up = u;
43. if (errpic<tol)
44. break;
45. end
46. end

1. % PCG subroutine with SSOR preconditioner
2. function [u , mpcg]= pcgssor(an,as,aw,ae,ac,up,rhs,n)
3. w = 1.5;
4. u = up;
5. r = zeros(n+1);
6. rhat = zeros(n+1);
7. q = zeros(n+1);
8. p = zeros(n+1);
9. % Use the previous Picard iterate as an initial guess for PCG.
10. for j = 2:n
11. for i = 2:n
12. r(i,j) = rhs(i,j)-(ac(i,j)*up(i,j) ...
13. +aw(i,j)*up(i-1,j)+ae(i,j)*up(i+1,j) ...
14. +as(i,j)*up(i,j-1)+an(i,j)*up(i,j+1));
15. end
16. end
17. error = 1. ;
18. m = 0;
19. rho = 0.0;
20. while ((error>.0001)&(m<200))

164 CHAPTER 4. NONLINEAR AND 3D MODELS

21. m = m+1;
22. oldrho = rho;
23. % Execute SSOR preconditioner.
24. for j= 2:n
25. for i = 2:n
26. rhat(i,j) = w*(r(i,j)-aw(i,j)*rhat(i-1,j) ...
27. -as(i,j)*rhat(i,j-1))/ac(i,j);
28. end
29. end
30. for j= 2:n
31. for i = 2:n
32. rhat(i,j) = ((2.-w)/w)*ac(i,j)*rhat(i,j);
33. end
34. end
35. for j= n:-1:2
36. for i = n:-1:2
37. rhat(i,j) = w*(rhat(i,j)-ae(i,j)*rhat(i+1,j) ...
38. -an(i,j)*rhat(i,j+1))/ac(i,j);
39. end
40. end
41. % Find conjugate direction.
42. rho = sum(sum(r(2:n,2:n).*rhat(2:n,2:n)));
43. if (m==1)
44. p = rhat;
45. else
46. p = rhat + (rho/oldrho)*p ;
47. end
48. % Execute matrix product q = Ap.
49. for j = 2:n
50. for i = 2:n
51. q(i,j)=ac(i,j)*p(i,j)+aw(i,j)*p(i-1,j) ...
52. +ae(i,j)*p(i+1,j)+as(i,j)*p(i,j-1) ...
53. +an(i,j)*p(i,j+1);
54. end
55. end
56. % Find steepest descent.
57. alpha = rho/sum(sum(p.*q));
58. u = u + alpha*p;
59. r = r - alpha*q;
60. error = max(max(abs(r(2:n,2:n))));
61. end
62. mpcg = m;

1. % Function for thermal conductivity
2. function cond = cond(x)

4.3. NONLINEAR HEAT TRANSFER IN 2D 165

3. c0 = 1.;
4. c1 = .10;
5. c2 = .02;
6. cond = c0*(1.+ c1*x + c2*x*x);

The nonlinear term is in the thermal conductivity whereK(u) = 1.(1.+.1u+
.02u2). If one considers the linear problem where the coefficients of u and u2 are
set equal to zero, then the solution is the first iterate in the Picard method where
the maximum value of the linear solution is 10.15. In our nonlinear problem
the maximum value of the solution is 6.37. This smaller value is attributed
to the larger thermal conductivity, and this allows for greater heat flow to the
boundary where the solution must be zero.
The Picard scheme converged in 7 iterations when the absolute error equaled

.001. The inner iterations in the PCG converge within 11 iterations when the
residual error equaled .0001. The initial guess for the PCG method was the
previous Picard iterate, and consequently, the number of PCG iterates required
for convergence decreased as the Picard iterates increased. The following is the
output at each stage of the Picard algorithm:

Picard iteration = 1
Number of PCG iterations = 10
Picard error = 10.1568
Max u = 10.1568

Picard iteration = 2
Number of PCG iterations = 11
Picard error = 4.68381
Max u = 5.47297

Picard iteration = 3
Number of PCG iterations = 11
Picard error = 1.13629
Max u = 6.60926

Picard iteration = 4
Number of PCG iterations = 9
Picard error = .276103
Max u = 6.33315

Picard iteration = 5
Number of PCG iterations = 7
Picard error = 5.238199E-02
Max u = 6.38553

Picard iteration = 6
Number of PCG iterations = 6
Picard error = 8.755684E-03
Max u = 6.37678

Picard iteration = 7
Number of PCG iterations = 2
Picard error = 9.822845E-04

166 CHAPTER 4. NONLINEAR AND 3D MODELS

Max u = 6.37776.

4.3.6 Assessment

For both Picard and Newton methods we must solve a sequence of linear prob-
lems. The matrix for the Picard’s method is somewhat easier to compute than
the matrix for Newton’s method. However, Newton’s method has, under some
assumptions on F (u), the two very important properties of local and quadratic
convergence.
If the right side of A(u)u = f depends on u so that f = f(u), then

one can still formulate a Picard iterative scheme by the following sequence
A(um)um+1 = f(um) of linear solves. Of course, all this depends on whether
or not A(um) are nonsingular and on the convergence of the Picard algorithm.

4.3.7 Exercises

1. Experiment with either the MATLAB picpcg.m or the Fortran picpcg.f90
codes. You may wish to print the output to a file so that MATLAB can graph
the solution.
(a). Vary the convergence parameters.
(b). Vary the nonlinear parameters.
(c). Vary the right side of the PDE.

2. Modify the code so that nonzero boundary conditions can be used. Pay
careful attention to the implementation of the linear solver.
3. Consider the linearized version of −uxx−uyy = c(u4sur−u4) = f(u) where
f(u) is replaced by the first order Taylor polynomial f(usur)+f 0(usur)(u−usur).
Compare the nonlinear and linearized solutions.
4. Consider a 2D cooling plate whose model is −(K(u)ux)x − (K(u)uy)y =
c(u4sur − u4). Use Picard’s method coupled with a linear solver of your choice.

4.4 Steady State 3D Heat Diffusion

4.4.1 Introduction

Consider the cooling fin where there is diffusion in all three directions. When
each direction is discretized, say with N unknowns in each direction, then there
will be N3 total unknowns. So, if the N is doubled, then the total number of
unknowns will increase by a factor of 8! Moreover, if one uses the full version of
Gaussian elimination, the number of floating point operations will be of order
(N3)3/3 so that a doubling of N will increase the floating point operations to
execute the Gaussian elimination algorithm by a factor of 64! This is known as
the curse of dimensionality, and it requires the use of faster computers and algo-
rithms. Alternatives to full Gaussian elimination are block versions of Gaussian
elimination as briefly described in chapter three and iterative methods such as

4.4. STEADY STATE 3D HEAT DIFFUSION 167

Figure 4.4.1: Heat Diffusion in 3D

SOR and conjugate gradient algorithms. In this section a 3D version of SOR
will be applied to a cooling fin with diffusion in all three directions.

4.4.2 Applied Area

Consider an electric transformer that is used on a power line. The electrical
current flowing through the wires inside the transformer generates heat. In or-
der to cool the transformer, fins that are not long or very thin in any direction
are attached to the transformer. Thus, there will be significant temperature
variations in each of the three directions, and consequently, there will be heat
diffusion in all three directions. The problem is to find the steady state heat
distribution in the 3D fin so that one can determine the fin’s cooling effective-
ness.

4.4.3 Model

In order to model the temperature, we will first assume temperature is given
along the 3D boundary of the volume (0, L) × (0,W) × (0, T). Consider a
small mass within the fin whose volume is ∆x∆y∆z. This volume will have
heat sources or sinks via the two ∆x∆z surfaces, two ∆y∆z surfaces, and two
∆x∆y surfaces as well as any internal heat source given by f(x, y, z) with units
of heat/(vol. time). This is depicted in Figure 4.4.1 where the heat flowing
through the right face ∆x∆z is given by the Fourier heat law (∆x∆z) ∆t
Kuy(x, y +∆y, z).

The Fourier heat law applied to each of the three directions will give the

168 CHAPTER 4. NONLINEAR AND 3D MODELS

heat flowing through these six surfaces. A steady state approximation is

0 ≈ f(x, y, z)(∆x∆y∆z)∆t

+∆x∆y∆t(Kuz(x, y, z +∆z/2)−Kuz(x, y, z −∆z/2))
+∆x∆z∆t(Kuy(x, y +∆y/2, z)−Kuy(x, y −∆y/2, z))
+∆y∆z∆t(Kux(x+∆x/2, y, z)−Kux(x−∆x/2, y, z)). (4.4.1)

This approximation gets more accurate as∆x, ∆y and∆z go to zero. So, divide
by (∆x∆y∆z)∆t and let ∆x, ∆y and ∆z go to zero. This gives the continuous
model for the steady state 3D heat diffusion

−(Kux)x − (Kuy)y − (Kuz)z = f (4.4.2)

u = g on the boundary. (4.4.3)

Let uijl be the approximation of u(i∆x, j∆y, l∆z) where ∆x = L/nx, ∆y =
W/ny and ∆z = T/nz. Approximate the second order derivatives by the
centered finite differences. There are n = (nx−1)(ny−1)(nz−1) equations for
n unknowns uijl. The discrete finite difference 3D model for 1 ≤ i ≤ nx − 1,
1 ≤ j ≤ ny − 1, 1 ≤ l ≤ nz − 1 is

−[K(ui+1,j,l − uijl)/∆x−K(uijl − ui−1,j,l)/∆x]/∆x
−[K(ui,j+1,l − uijl)/∆y −K(uijl − ui,j−1,l)/∆y]/∆y
−[K(ui,j,l+1 − uijl)/∆z −K(uijl − ui,j,l−1)/∆z]/∆z

= f(ih, jh, lh). (4.4.4)

In order to keep the notation as simple as possible, we assume that the number
of cells in each direction, nx, ny and nz, are such that ∆x = ∆y = ∆z = h and
let K = 1. This equation simplifies to

6uijl = f(ih, jh, lh)h2 + ui,j,l−1 + ui,j−1,l + ui−1,j,l
+ui,j,l+1 + ui,j+1,l + ui+1,j,l. (4.4.5)

4.4.4 Method

Equation (4.4.5) suggests the use of the SOR algorithm where there are three
nested loops within the SOR loop. The uijl are now stored in a 3D array,
and either f(ih, jh, lh) can be computed every SOR sweep, or f(ih, jh, lh) can
be computed once and stored in a 3D array. The classical order of ijl is to
start with l = 1 (the bottom grid plane) and then use the classical order for ij
starting with j = 1 (the bottom grid row in the grid plane l). This means the l
loop is the outer most, j-loop is in the middle and the i-loop is the inner most
loop.

Classical Order 3D SOR Algorithm for (4.4.5).

choose nx, ny, nz such that h = L/nx = H/ny = T/nz

4.4. STEADY STATE 3D HEAT DIFFUSION 169

for m = 1,maxit
for l = 1,nz

for j = 1,ny
for i = 1,nx

utemp = (f(ih, jh, lh) ∗ h ∗ h
+u(i− 1, j, l) + u(i+ 1, j, l)
+u(i, j − 1, l) + u(i, j + 1, l)
+u(i, j, l − 1) + u(i, j, l + 1))/6

u(i, j, l) = (1− w) ∗ u(i, j, l) + w ∗ utemp
endloop

endloop
endloop
test for convergence

endloop.

4.4.5 Implementation

The MATLAB code sor3d.m illustrates the 3D steady state cooling fin problem
with the finite difference discrete model given in (4.4.5) where f(x, y, z) = 0.0.
The following parameters were used: L = W = T = 1, nx = ny = nz = 20.
There were 193 = 6859 unknowns. In sor3d.m the initialization and boundary
conditions are defined in lines 1-13. The SOR loop is in lines 14-33, where the lji-
nested loop for all the interior nodes is executed in lines 16-29. The test for SOR
convergence is in lines 22-26 and lines 30-32. Line 34 lists the SOR iterations
needed for convergence, and line 35 has the MATLAB command slice(u, [5 10
15 20], 10, 10), which generates a color coded 3D plot of the temperatures within
the cooling fin.

MATLAB Code sor3d.m

1. clear;
2. % This is the SOR solution of a 3D problem.
3. % Assume steady state heat diffusion.
4. % Given temperature on the boundary.
5. w = 1.8;
6. eps = .001;
7. maxit = 200;
8. nx = 20;
9. ny = 20;
10. nz = 20;
11. nunk = (nx-1)*(ny-1)*(nz-1);
12. u = 70.*ones(nx+1,ny+1,nz+1); % initial guess
13. u(1,:,:) = 200.; % hot boundary at x = 0
14. for iter = 1:maxit; % begin SOR
15. numi = 0;
16. for l = 2:nz

170 CHAPTER 4. NONLINEAR AND 3D MODELS

17. for j = 2:ny
18. for i = 2:nx
19. temp = u(i-1,j,l) + u(i,j-1,l) + u(i,j,l-1);
20. temp = (temp + u(i+1,j,l) + u(i,j+1,l)

+ u(i,j,l+1))/6.;
21. temp = (1. - w)*u(i,j,l) + w*temp;
22. error = abs(temp - u(i,j,l));
23. u(i,j,l) = temp;
24. if error<eps
25. numi = numi + 1;
26. end
27. end
28. end
29. end
30. if numi==nunk
31. break
32. end
33. end
34. iter % iterations for convergence
35. slice(u, [5 10 15 20],10,10) % creates color coded 3D plot
36. colorbar

The SOR parameters w = 1.6, 1.7 and 1.8 were used with the convergence
criteria eps = 0.001, and this resulted in convergence after 77, 50 and 62 itera-
tions, respectively. In the Figure 4.4.2 the shades of gray indicate the varying
temperatures inside the cooling fin. The lighter the shade of gray the warmer
the temperature. So, this figure indicates the fin is very cool to the left, and so
the fin for a hot boundary temperature equal to 200 is a little too long in the
y direction.

4.4.6 Assessment

The output from the 3D code gives variable temperatures in all three directions.
This indicates that a 1D or a 2D model is not applicable for this particular fin.
A possible problem with the present 3D model is the given boundary condition
for the portion of the surface, which is between the fin and the surrounding
region. Here the alternative is a derivative boundary condition

K
du

dn
= c(usur − u) where n is the unit outward normal.

Both the surrounding temperature and the temperature of the transformer
could vary with time. Thus, this really is a time dependent problem, and
furthermore, one should consider the entire transformer and not just one fin.

4.5. TIME DEPENDENT 3D DIFFUSION 171

Figure 4.4.2: Temperatures Inside a 3D Fin

4.4.7 Exercises

1. Use the MATLAB code sor3d.m and experiment with the slice command.
2. Experiment with different numbers of unknowns nx, ny and nz, and de-
termine the best choices for the SOR parameter, w.
3. Modify sor3d.m so that the ∆x, ∆y and ∆z do not have to be equal.
4. Experiment with different L,W and T . Determine when a 1D or 2D
model would be acceptable. Why is this important?
5. Modify sor3d.m to include the derivative boundary condition. Experi-
ment with the coefficient c as it ranges from 0 to infinity. For what values of c
will the given boundary condition be acceptable?

4.5 Time Dependent 3D Diffusion

4.5.1 Introduction

We consider a time dependent 3D heat diffusion model of a passive solar energy
storage unit similar to a concrete slab. The implicit time discretization method
will be used so as to avoid the stability constraint on the time step. This
generates a sequence of problems that are similar to the steady state 3D heat
equation, and the preconditioned conjugate gradient (PCG) algorithm will be
used to approximate the solutions of this sequence. Because of the size of the
problem Fortran 90 will be used to generate the sequence of 3D arrays for the

172 CHAPTER 4. NONLINEAR AND 3D MODELS

Figure 4.5.1: Passive Solar Storage

temperatures, and then MATLAB commands slice and mesh will be used to
dynamically visualize all this data

4.5.2 Applied Area

Consider a passive solar storage unit, which collects energy by the day and
gives it back at night. A simple example is a thick concrete floor in front of
windows, which face the sun during the day. Figure 4.5.1 depicts a concrete
slab with dimensions (0, L)× (0,W)× (0, T) where top z = T and the vertical
sides and bottom have given temperature. Assume there is diffusion in all three
directions. Since the surrounding temperature will vary with time, the amount
of heat that diffuses in and out of the top will depend on time. The problem is
to determine the effectiveness of the passive unit as a function of its geometric
and thermal properties.

4.5.3 Model

The model has the form of a time and space dependent partial differential
equation. The empirical Fourier heat law again governs the diffusion. For the
non steady state problem we must consider the change in the amount of heat
energy that a mass can retain as a function of temperature. If the temperature
varies over a large range, or if there is a change in physical phase, then this
relationship is nonlinear. However, for small variations in the temperature the
change in heat for a small volume and small change in time is

ρcp(u(x, y, z, t+∆t)− u(x, y, z, t)) (volume)

where ρ is the density, cp is the specific heat and u is the temperature. When
this is coupled with an internal heat source f(x, y, z, t) and diffusion in three

4.5. TIME DEPENDENT 3D DIFFUSION 173

directions for the volume = ∆x∆y∆z, we get

change in heat = ρcp(u(x, y, z, t+∆t)− u(x, y, z, t))∆x∆y∆z

≈ f(x, y, z, t+∆t)(∆x∆y∆z)∆t

+(∆y∆z)∆t(Kux(x+∆x/2, y, z, t+∆t)

−Kux(x−∆x/2, y, z, t+∆t))
+(∆x∆z)∆t(Kuy(x, y +∆y/2, z, t+∆t)

−Kuy(x, y −∆y/2, z, t+∆t))
+(∆y∆x)∆t(Kuz(x, y, z +∆z/2, t+∆t)

−Kuz(x, y, z −∆z/2, t+∆t)). (4.5.1)

This approximation gets more accurate as ∆x, ∆y, ∆z and ∆t go to zero.
So, divide by (∆x∆y∆z)∆t and let ∆x, ∆y, ∆z and ∆t go to zero. Since
(u(x, y, z, t+∆t)−u(x, y, z, t))/∆t converges to the time derivative of u, ut, as
∆t goes to zero, (4.5.1) gives the partial differential equation in the 3D time
dependent heat diffusion model.

Time Dependent 3D Heat Diffusion.

ρcput = f(x, y, z, t) + (Kux(x, y, z, t))x +

(Kuy(x, y, z, t))y + (Kuz(x, y, z, t))z (4.5.2)

u = 60 for z = 0, x = 0, L, y = 0,W (4.5.3)

u = usur(t) = 60 + 30sin(πt/12) for z = T and (4.5.4)

u = 60 for t = 0. (4.5.5)

4.5.4 Method

The derivation of (4.5.1) suggests the implicit time discretization method. Let
k denote the time step with uk ≈ u(x, y, z, k∆t). From the derivation of (4.5.2)
one gets a sequence of steady state problems

ρcp(u
k+1 − uk)/∆t = fk+1 + (Kuk+1x)x +

(Kuk+1y)y + (Kuk+1x)y. (4.5.6)

The space variables can be discretized just as in the steady state heat diffusion
problem. Thus, for each time step we must solve a linear algebraic system where
the right side changes from one time step to the next and equals fk+1+ρcpuk/∆t
and the boundary condition (4.5.4) changes with time.

Implicit Time and Centered Finite Difference Algorithm.

u0 = u(x, y, z, 0) from (4.5.5)
for k = 1, maxk

approximate the solution (4.5.6) by the finite difference method

174 CHAPTER 4. NONLINEAR AND 3D MODELS

use the appropriate boundary conditions in (4.5.3) and (4.5.4)
solve the resulting algebraic system such as in (4.5.8)

endloop.

This can be written as seven point finite difference method, and here we let
h = ∆x = ∆y = ∆z and f(x, y, z, t) = 0 so as to keep the code short. Use the
notation uk+1ijl ≈ u(ih, jh, lh, (k + 1)∆t) so that (4.5.6) is approximated by

ρcp(u
k+1
ijl − ukijl)/∆t = K/h2(−6uk+1ijl

+uk+1i,j,l−1 + uk+1i,j−1,l + uk+1i−1,j,l
+uk+1i,j,l+1 + uk+1i,j+1,l + uk+1i+1,j,l). (4.5.7)

Let α = (ρcp/∆t)/(K/h2) so that (4.5.7) simplifies to

(α+ 6)uk+1ijl = αukijl + uk+1i,j,l−1 + uk+1i,j−1,l + uk+1i−1,j,l
+ uk+1i,j,l+1 + uk+1i,j+1,l + uk+1i+1,j,l. (4.5.8)

4.5.5 Implementation

The Fortran 90 code solar3d.f90 is for time dependent heat transfer in a 3D
volume. It uses the implicit time discretization as simplified in (4.5.8). The
solve steps are done by the PCG with the SSOR preconditioner. The reader
should note how the third dimension and the nonzero boundary temperatures
are inserted into the code. The output is to the console with some information
about the PCG iteration and temperatures inside the volume. Also, some of
the temperatures are output to a file so that MATLAB’s command slice can be
used to produce a color coded 3D graph.
In solar3d.f90 the initialization is done in lines 1-22 where a 24 hour simu-

lation is done in 48 time steps. The implicit time discretization is done in the
do loop given by lines 24-35. The function subroutine usur(t) in lines 38-43
is for the top boundary whose temperature changes with time. The subrou-
tine cgssor3d approximates the temperature at the next time step by using the
preconditioned conjugate gradient method with SSOR. The output is to the
console as well as to the file outsolar as indicated in lines 11 and 118-123. The
file outsolar is a 2D table where each row in the table corresponds to a partial
grid row of every third temperature. So every 121 × 11 segment in the table
corresponds to the 3D temperatures for a single time.
Some of the other MATLAB codes also have Fortran versions so that the

interested reader can gradually learn the rudiments of Fortran 90. These include
heatl.f90, sor2d.f90, por2d.f90, newton.f90 and picpcg.f90.

Fortran Code solar3d.f90

1. program solar3d
2. ! This program solves

density csp ut -(Kux)x-(Kuy)y-(Kuz)z = f.

4.5. TIME DEPENDENT 3D DIFFUSION 175

3. ! The thermal properties density, csp and K are constant.
4. ! The implicit time discretization is used.
5. ! The solve step is done in the subroutine cgssor3d.
6. ! It uses the PCG method with the SSOR preconditioner.
7. implicit none
8. real,dimension(0:30,0:30,0:30):: u,up
9. real :: dt,h,cond,density,csp,ac,time,ftime
10. integer :: i,j,n,l,m,mtime,mpcg
11. open(6,file=’c:\MATLAB6p5\work\outsolar’)
12. mtime = 48
13. ftime = 24.
14. ! Define the initial condition.
15. up = 60.0
16. n = 30
17. h = 1./n
18. cond = 0.81
19. density = 119.
20. csp = .21
21. dt = ftime/mtime
22. ac = density*csp*h*h/(cond*dt)
23. ! Start the time iteration.
24. do m=1,mtime
25. time = m*dt
26. !
27. ! The solve step is done by PCG with SSOR preconditioner.
28. !
29. call cgssor3d(ac,up,u,mpcg,n,time)
30. !
31. up =u
32. print*,"Time = ",time
33. print*," Number of PCG iterations = ",mpcg
34. print*," Max u = ", maxval(u)
35. end do
36. close(6)
37. end program

38. ! Heat source function for top.
39. function usur(t) result(fusur)
40. implicit none
41. real :: t,fusur
42. fusur = 60. + 30.*sin(t*3.14/12.)
43. end function

44. ! PCG subroutine.
45. subroutine cgssor3d(ac,up,u,mpcg,n,time)
46. implicit none

176 CHAPTER 4. NONLINEAR AND 3D MODELS

47. real,dimension(0:30,0:30,0:30):: p,q,r,rhat
48. real,dimension(0:30,0:30,0:30),intent(in):: up
49. real,dimension(0:30,0:30,0:30),intent(out):: u
50. real :: oldrho, rho,alpha,error,w,ra,usur
51. real ,intent(in):: ac,time
52. integer :: i,j,l,m
53. integer, intent(out):: mpcg
54. integer, intent(in):: n
55. w = 1.5
56. ra = 1./(6.+ac)
57. r = 0.0
58. rhat = 0.0
59. q = 0.0
60. p = 0.0
61. r = 0.0
62. ! Uses previous temperature as an initial guess.
63. u = up
64. ! Updates the boundary condition on the top.
65. do i = 0,n
66. do j = 0,n
67. u(i,j,n)=usur(time)
68. end do
69. end do
70. r(1:n-1,1:n-1,1:n-1)=ac*up(1:n-1,1:n-1,1:n-1) &
71. -(6.0+ac)*u(1:n-1,1:n-1,1:n-1) &
72. +u(0:n-2,1:n-1,1:n-1)+u(2:n,1:n-1,1:n-1) &
73. +u(1:n-1,0:n-2,1:n-1)+u(1:n-1,2:n,1:n-1) &
74. +u(1:n-1,1:n-1,0:n-2)+u(1:n-1,1:n-1,2:n)
75. error = 1.
76. m = 0
77. rho = 0.0
78. do while ((error>.0001).and.(m<200))
79. m = m+1
80. oldrho = rho
81. ! Execute SSOR preconditioner
82. do l = 1,n-1
83. do j= 1,n-1
84. do i = 1,n-1
85. rhat(i,j,l) = w*(r(i,j,l)+rhat(i-1,j,l)&
86. +rhat(i,j-1,l) +rhat(i,j,l-1))*ra
87. end do
88. end do
89. end do
90. rhat(1:n-1,1:n-1,1:n-1) = ((2.-w)/w)*(6.+ac)

*rhat(1:n-1,1:n-1,1:n-1)

4.5. TIME DEPENDENT 3D DIFFUSION 177

91. do l = n-1,1,-1
92. do j= n-1,1,-1
93. do i = n-1,1,-1
94. rhat(i,j,l) = w*(rhat(i,j,l)+rhat(i+1,j,l) &
95. +rhat(i,j+1,l)+rhat(i,j,l+1))*ra
96. end do
97. end do
98. end do
99. ! Find conjugate direction
100. rho = sum(r(1:n-1,1:n-1,1:n-1)*rhat(1:n-1,1:n-1,1:n-1))
101. if (m.eq.1) then
102. p = rhat
103. else
104. p = rhat + (rho/oldrho)*p
105. endif
106. ! Execute matrix product q = Ap
107. q(1:n-1,1:n-1,1:n-1)=(6.0+ac)*p(1:n-1,1:n-1,1:n-1) &
108. -p(0:n-2,1:n-1,1:n-1)-p(2:n,1:n-1,1:n-1) &
109. -p(1:n-1,0:n-2,1:n-1)-p(1:n-1,2:n,1:n-1) &
110. -p(1:n-1,1:n-1,0:n-2)-p(1:n-1,1:n-1,2:n)
111. ! Find steepest descent
112. alpha = rho/sum(p*q)
113. u = u + alpha*p
114. r = r - alpha*q
115. error = maxval(abs(r(1:n-1,1:n-1,1:n-1)))
116. end do
117. mpcg = m
118. print*, m ,error,u(15,15,15),u(15,15,28)
119. do l = 0,30,3
120. do j = 0,30,3
121. write(6,’(11f12.4)’) (u(i,j,l),i=0,30,3)
122. end do
123. end do
124. end subroutine

The MATLAB code movsolar3d is used to create a time sequence visual-
izations of the temperatures inside the slab. In line 1 the MATLAB command
load is used to import the table in the file outsolar, which was created by the
Fortran 90 code solar3d.m, into a MATLAB array also called outsolar. This 2D
array will have 48 segments of 121× 11, that is, outsolar is a 5808× 11 array.
The nested loops in lines 6-12 store each 121 × 11 segment of outsolar into a
3D 11 × 11 × 11 array A, whose components correspond to the temperatures
within the slab. The visualization is done in line 13 by the MATLAB command
slice, and this is illustrated in Figures 4.5.2 and 4.5.3. Also a cross section of the
temperatures can be viewed using the MATLAB command mesh as is indicated
in line 17.

178 CHAPTER 4. NONLINEAR AND 3D MODELS

Figure 4.5.2: Slab is Gaining Heat

MATLAB Code movsolar3d.m

1. load c:\MATLAB6p5\work\outsolar;
2. n = 11;
3. mtime = 48;
4. for k = 1:mtime
5. start = (k-1)*n*n;
6. for l = 1:n
7. for j = 1:n
8. for i =1:n
9. A(i,j,l) = outsolar(n*(l-1)+i+start,j);
10. end
11. end
12. end
13. slice(A,n,[10 6],[4])
14. colorbar;
15. section(:,:)=A(:,6,:);
16. pause;
17. % mesh(section);
18. % pause;
19. end

4.5. TIME DEPENDENT 3D DIFFUSION 179

Figure 4.5.3: Slab is Cooling

4.5.6 Assessment

The choice of step sizes in time or the space variables is of considerable impor-
tance. The question concerning convergence of discrete solution to continuous
solutions is nontrivial. If the numerical solution does not vary much as the step
sizes decrease and if the numerical solution seems "consistent" with the appli-
cation, then one may be willing to accept the current step size as generating a
"good" numerical model.

4.5.7 Exercises

1. Experiment with different step sizes and observe convergence.
2. Modify solar3d.f90 to include the cases where ∆x, ∆y and ∆z do not
have to be equal.
3. Experiment with the geometric parameters W,H and L.
4. Experiment with the thermal parameters. What types of materials should
be used and how does this effect the cost?
5. Consider the derivative boundary condition on the top

du

dz
= c(usur(t)− u) for z = T.

Modify the above code to include this boundary condition. Experiment with
the constant c.
6. Calculate the change in heat content relative to the initial constant tem-
perature of 60.

180 CHAPTER 4. NONLINEAR AND 3D MODELS

7. Replace the cgssor3d() subroutine with a SOR subroutine and compare
the computing times. Use (4.5.8) and be careful to distinguish between the
time step index k and the SOR index m.

8. Code the explicit method for the passive solar storage model, and observe
the stability constraint on the change in time. Compare the explicit and implicit
time discretizations for this problem.

4.6 High Performance Computations in 3D

4.6.1 Introduction

Many applications are not only 3D problems, but they often have more than one
physical quantity associated with them. Two examples are aircraft modeling
and weather prediction. In the case of an aircraft, the lift forces are determined
by the velocity with three components, the pressure and in many cases the tem-
peratures. So, there are at least five quantities, which all vary with 3D space
and time. Weather forecasting models are much more complicated because
there are more 3D quantities, often one does not precisely know the boundary
conditions and there are chemical and physical changes in system. Such prob-
lems require very complicated models, and the need for faster algorithms and
enhanced computing hardware are essential to give realistic numerical simula-
tions.
In this section reordering schemes such as coloring the nodes and domain

decomposition of the nodes will be introduced such that both direct and iterative
methods will have some independent calculation. This will allow the use of
high performance computers with vector pipelines and multiprocessors. The
implementation of these parallel methods can be challenging, and this will be
more carefully studied in the last four chapters.

4.6.2 Methods via Red-Black Reordering

One can reorder nodes so that the vector pipelines or multiprocessors can be
used to execute the SOR algorithm. First we do this for the 1D diffusion model
with the unknown equal to zero at the boundary and

−(Kux)x = f(x) (continuous model) (4.6.1)

K(−ui−1 + 2ui − ui+1) = h2f(ih) (discrete model). (4.6.2)

The SOR method requires input of ui−1 and ui+1 in order to compute the new
SOR value of ui. Thus, if i is even, then only the u with odd subscripts are
required as input. The vector version of each SOR iteration is to group all the
even nodes and all the odd nodes: (i) use a vector pipe to do SOR over all the
odd nodes, (ii) update all u for the odd nodes and (iii) use a vector pipe to do
SOR over all the even nodes. This is some times called red-blacḱ ordering.

4.6. HIGH PERFORMANCE COMPUTATIONS IN 3D 181

The matrix version also indicates that this could be useful for direct meth-
ods. Suppose there are seven unknowns so that the classical order is£

u1 u2 u3 u4 u5 u6 u7
¤T

.

The corresponding algebraic system is

2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2





u1
u2
u3
u4
u5
u6
u7


= h2



f1
f2
f3
f4
f5
f6
f7


.

The red-black order is£
u1 u3 u5 u7 u2 u4 u6

¤T
.

The reordered algebraic system is

2 0 0 0 −1 0 0
0 2 0 0 −1 −1 0
0 0 2 0 0 −1 −1
0 0 0 2 0 0 −1
−1 −1 0 0 2 0 0
0 −1 −1 0 0 2 0
0 0 −1 −1 0 0 2





u1
u3
u5
u7
u2
u4
u6


= h2



f1
f3
f5
f7
f2
f4
f6


.

The coefficient matrix for the red-black order is a block 2 × 2 matrix where
the block diagonal matrices are point-wise diagonal. Therefore, the solution by
block Gaussian elimination via the Schur complement, see Chapter 2.4, is easy
to implement and has concurrent calculations.
Fortunately, the diffusion models for 2D and 3D will also have these desirable

attributes. The simplified discrete models for 2D and 3D are, respectively,

K(−ui−1,j − ui,j−1 + 4uij − ui+1,j − ui,j+1) = h2f(ih, jh) and (4.6.3)

K(−ui−1,j,l − ui,j−1,l − ui,j,l−1 + 6uijl − ui+1,j,l − ui,j+1,l − ui,j,l+1)

= h2f(ih, jh, lh). (4.6.4)

In 2D diffusion the new values of uij are functions of ui+1,j , ui−1,j , ui,j+1 and
ui,j−1 and so the SOR algorithm must be computed in a “checker board” order.
In the first grid row start with the j = 1 and go in stride 2; for the second grid
row start with j = 2 and go in stride 2. Repeat this for all pairs of grid rows.
This will compute the newest uij for the same color, say, all the black nodes. In
order to do all the red nodes, repeat this, but now start with j = 2 in the first

182 CHAPTER 4. NONLINEAR AND 3D MODELS

grid row and then with j = 1 in the second grid row. Because the computation
of the newest uij requires input from the nodes of a different color, all the
calculations for the same color are independent. Therefore, the vector pipelines
or multiprocessors can be used.

Red-Black Order 2D SOR for (4.6.3).

choose nx, ny such that h = L/nx = W/ny
for m = 1,maxit

for j = 1,ny
index = mod(j,2)
for i = 2-index,nx,2

utemp = (f(i ∗ h, j ∗ h) ∗ h ∗ h
+u(i− 1, j) + u(i+ 1, j)
+u(i, j − 1) + u(i, j + 1)) ∗ .25

u(i, j) = (1− w) ∗ u(i, j) + w ∗ utemp
endloop

endloop
for j = 1,ny

index = mod(j,2)
for i = 1+index,nx,2

utemp = (f(i ∗ h, j ∗ h) ∗ h ∗ h
+u(i− 1, j) + u(i+ 1, j)
+u(i, j − 1) + u(i, j + 1)) ∗ .25

u(i, j) = (1− w) ∗ u(i, j) + w ∗ utemp
endloop

endloop
test for convergence

endloop.

For 3D diffusion the new values of uijl are functions of ui+1,j,l, ui−1,j,l,
ui,j+1,l, ui,j−1,l, ui,j,l+1and ui,j,l−1 and so the SOR algorithm must be com-
puted in a “3D checker board” order. The first grid plane should have a 2D
checker board order, and then the next grid plane should have the interchanged
color 2D checker board order. Because the computation of the newest uijl re-
quires input from the nodes of a different color, all the calculations for the same
color are independent. Therefore, the vector pipelines or multiprocessors can
be used.

4.6.3 Methods via Domain Decomposition Reordering

In order to introduce the domain decomposition order, again consider the 1D
problem in (4.6.2) and use seven unknowns. Here the domain decomposition
order is £

u1 u2 u3 u5 u6 u7 u4
¤T

where the center node, u4, is listed last and the left and right blocks are listed
first and second. The algebraic system with this order is

4.6. HIGH PERFORMANCE COMPUTATIONS IN 3D 183

Figure 4.6.1: Domain Decompostion in 3D



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 0 0 0 −1
0 0 0 2 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 −1 −1 0 0 2





u1
u2
u3
u5
u6
u7
u4


= h2



f1
f2
f3
f5
f6
f7
f4


.

Domain decomposition ordering can also be used in 2D and 3D applications.
Consider the 3D case as depicted in Figure 4.6.1 where the nodes are partitioned
into two large blocks and a smaller third block separating the two large blocks
of nodes. Thus, if ijl is in block 1 (or 2), then only input from block 1 (or 2)
and block 3 will be required to do the SOR computation. This suggests that
one can reorder the nodes so that disjoint blocks of nodes, which are separated
by a plane of nodes, can be computed concurrently in the SOR algorithm.

Domain Decomposition and 3D SOR Algorithm for (4.6.4).

define blocks 1, 2 and 3
for m = 1,maxit

concurrently do SOR on blocks 1 and 2
update u
do SOR on block 3
test for convergence

endloop.

Domain decomposition order can also be used to directly solve for the un-
knowns. This was initially described in Chapter 2.4 where the Schur comple-
ment was studied. If the interface block 3 for the Poisson problem is listed last,
then the algebraic system has the form

184 CHAPTER 4. NONLINEAR AND 3D MODELS

 A11 0 A13
0 A22 A23

A31 A32 A33

 U1
U2
U3

 =
 F1

F2
F3

 . (4.6.5)

In the Schur complement study in Chapter 2.4 B is the 2 × 2 block given
by A11 and A22, and C is A33. Therefore, all the solves with B can be done
concurrently, in this case with two processors. By partitioning the space domain
into more blocks one can take advantage of additional processors. In the 3D
case the big block solves will be smaller 3D subproblems and here one may need
to use iterative methods. Note the conjugate gradient algorithm has a number
of vector updates, dot products and matrix-vector products, and all these steps
have independent parts.
In order to be more precise about the above, write the above 3 × 3 block

matrix equation in block component form

A11U1 +A13U3 = F1, (4.6.6)

A22U2 +A23U3 = F2 and (4.6.7)

A31U1 +A32U2 +A33U3 = F3. (4.6.8)

Now solve (4.6.6) and (4.6.7) for U1 and U2, and note the computations for
A−111 A13, A

−1
11 F1, A

−1
22 A23, and A−122 F2 can be done concurrently. Put U1 and

U2 into (4.6.8) and solve for U3

bA33U3 = bF3 wherebA33 = A33 −A31A
−1
11 A13 −A32A

−1
22 A23 andbF3 = F3 −A31A

−1
11 F1 −A32A

−1
22 F2.

Then concurrently solve for U1 = A−111 F1 − A−111 A13U3 and U2 = A−122 F2 −
A−122 A23U3.

4.6.4 Implementation of Gaussian Elimination via Domain
Decomposition

Consider the 2D steady state heat diffusion problem. The MATLAB code
gedd.m is block Gaussian elimination where the B matrix, in the 2 × 2 block
matrix of the Schur complement formulation, is a block diagonal matrix with
four blocks on its diagonal. The C = A55 matrix is for the coefficients of the
three interface grid rows between the four big blocks

A11 0 0 0 A15
0 A22 0 0 A25
0 0 A33 0 A35
0 0 0 A44 A45

AT
15 AT

12 AT
13 AT

14 A55




U1
U2
U3
U4
U5

 =


F1
F2
F3
F4
F5

 . (4.6.9)

4.6. HIGH PERFORMANCE COMPUTATIONS IN 3D 185

In the MATLAB code gedd.m the first 53 lines define the coefficient matrix that
is associated with the 2D Poisson equation. The derivation of the steps for the
Schur complement calculations are similar to those with two big blocks. The
forward sweep to find the Schur complement matrix and right side is given in
lines 54-64 where parallel computations with four processors can be done. The
solution of the Schur complement reduced system is done in line 66-69. The
parallel computations for the other four blocks of unknowns is done in lines
70-74.

MATLAB Code gedd.m

1. clear;
2. % Solves a block tridiagonal SPD algebraic system.
3. % Uses domain-decomposition and Schur complement.
4. % Define the block 5x5 matrix AAA
5. n = 5;
6. A = zeros(n);
7. for i = 1:n
8. A(i,i) = 4;
9. if (i>1)
10. A(i,i-1)=-1;
11. end
12. if (i<n)
13. A(i,i+1)=-1;
14. end
15. end
16. I = eye(n);
17. AA= zeros(n*n);
18. for i =1:n
19. newi = (i-1)*n +1;
20. lasti = i*n;
21. AA(newi:lasti,newi:lasti) = A;
22. if (i>1)
23. AA(newi:lasti,newi-n:lasti-n) = -I;
24. end
25. if (i<n)
26. AA(newi:lasti,newi+n:lasti+n) = -I;
27. end
28. end
29. Z = zeros(n);
30. A0 = [A Z Z;Z A Z;Z Z A];
31. A1 = zeros(n^2,3*n);
32. A1(n^2-n+1:n^2,1:n)=-I;
33. A2 = zeros(n^2,3*n);
34. A2(1:n,1:n) = -I;
35. A2(n^2-n+1:n^2,n+1:2*n) = -I;

186 CHAPTER 4. NONLINEAR AND 3D MODELS

36. A3 = zeros(n^2,3*n);
37. A3(1:n,n+1:2*n) = -I;
38. A3(n^2-n+1:n^2,2*n+1:3*n) = -I;
39. A4 = zeros(n^2,3*n);
40. A4(1:n,2*n+1:3*n) = -I;
41. ZZ =zeros(n^2);
42. AAA = [AA ZZ ZZ ZZ A1;
43. ZZ AA ZZ ZZ A2;
44. ZZ ZZ AA ZZ A3;
45. ZZ ZZ ZZ AA A4;
46. A1’ A2’ A3’ A4’ A0];
47. % Define the right side
48. d1 =ones(n*n,1)*10*(1/(n+1)^2);
49. d2 =ones(n*n,1)*10*(1/(n+1)^2);
50. d3 =ones(n*n,1)*10*(1/(n+1)^2);
51. d4 =ones(n*n,1)*10*(1/(n+1)^2);
52. d0 =ones(3*n,1)*10*(1/(n+1)^2);
53. d = [d1’ d2’ d3’ d4’ d0’]’;
54. % Start the Schur complement method
55. % Parallel computation with four processors
56. Z1 = AA\[A1 d1];
57. Z2 = AA\[A2 d2];
58. Z3 = AA\[A3 d3];
59. Z4 = AA\[A4 d4];
60. % Parallel computation with four processors
61. W1 = A1’*Z1;
62. W2 = A2’*Z2;
63. W3 = A3’*Z3;
64. W4 = A4’*Z4;
65. % Define the Schur complement system.
66. Ahat = A0 -W1(1:3*n,1:3*n) - W2(1:3*n,1:3*n)

- W3(1:3*n,1:3*n) -W4(1:3*n,1:3*n);
67. dhat = d0 -W1(1:3*n,1+3*n) -W2(1:3*n,1+3*n)

-W3(1:3*n,1+3*n) -W4(1:3*n,1+3*n);
68. % Solve the Schur complement system.
69. x0 = Ahat\dhat;
70. % Parallel computation with four processors
71. x1 = AA\(d1 - A1*x0);
72. x2 = AA\(d2 - A2*x0);
73. x3 = AA\(d3 - A3*x0);
74. x4 = AA\(d4 - A4*x0);
75. % Compare with the full Gauss elimination method.
76. norm(AAA\d - [x1;x2;x3;x4;x0])

4.6. HIGH PERFORMANCE COMPUTATIONS IN 3D 187

Figure 4.6.2: Domain Decomposition Matrix

Figure 4.6.2 is the coefficient matrix with the domain decomposition order-
ing. It was generated by the MATLAB file gedd.m and using the command
contour(AAA).

4.6.5 Exercises

1. In (4.6.5)-(4.6.8) list the interface block first and not last. Find the
solution with this new order.
2. Discuss the benefits of listing the interface block first or last.
3. Consider the parallel solution of (4.6.9). Use the Schur complement as
in (4.6.5)-(4.6.8) to find the block matrix formula for the solution.
4. Use the results of the previous problem to justify the lines 54-74 in the
MATLAB code gedd.m.

188 CHAPTER 4. NONLINEAR AND 3D MODELS

Chapter 5

Epidemics, Images and
Money

This chapter contains nonlinear models of epidemics, image restoration and
value of option contracts. All three applications have diffusion like terms, and
so mathematically they are similar to the models in the previous chapters. In
the epidemic model the unknown concentrations of the infected populations
will depend on both time and space. A good reference is the second edition of
A. Okubo and S. A. Levin [15]. Image restoration has applications to satellite
imaging, signal processing and fish finders. The models are based on mini-
mization of suitable real valued functions whose gradients are similar to the
quasi-linear heat diffusion models. An excellent text with a number of MAT-
LAB codes has been written by C. R. Vogel [20]. The third application is to
value of option contracts, which are agreements to sell or to buy an item at a fu-
ture date and given price. The option contract can itself be sold and purchased,
and the value of the option contract can be modeled by a partial differential
equation that is similar to the heat equation. The text by P. Wilmott, S. Howi-
son and J. Dewynne [22] presents a complete derivation of this model as well as
a self contained discussion of the relevant mathematics, numerical algorithms
and related financial models.

5.1 Epidemics and Dispersion

5.1.1 Introduction

In this section we study a variation of an epidemic model, which is similar to
measles. The population can be partitioned into three disjoint groups of sus-
ceptible, infected and recovered. One would like to precisely determine what
parameters control or prevent the epidemic. The classical time dependent model
has three ordinary differential equations. The modified model where the pop-

189

190 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

ulations depends on both time and space will generate a system of nonlinear
equations that must be solved at each time step. In populations that move
in one direction such as along a river or a beach, Newton’s method can easily
be implemented and the linear subproblems will be solved by the MATLAB
command A\b. In the following section dispersion in two directions will be
considered. Here the linear subproblems in Newton’s method can be solved by
a sparse implementation of the preconditioned conjugate gradient method.

5.1.2 Application

Populations move in space for a number of reasons including search of food,
mating and herding instincts. So they may tend to disperse or to group to-
gether. Dispersion can have the form of a random walk. In this case, if the
population size and time duration are suitably large, then this can be modeled
by Fick’s motion law, which is similar to Fourier’s heat law. Let C = C(t, x)
be the concentration (amount per volume) of matter such as spores, pollutant,
molecules or a population.

Fick’s Motion Law. Consider the concentration C(t, x) as a function of space
in a single direction whose cross sectional area is A. The change in the matter
through A is given by
(a). moves from high concentrations to low concentrations
(b). change is proportional to the

change in time,
the cross section area and
the derivative of the concentration with respect to x.

Let D be the proportionality constant, which is called the dispersion, so
that the change in the amount via A at x+∆x/2 is

D∆tACx(x+∆x/2, t+∆t).

The dispersion from both the left and right of the volume A∆x gives the ap-
proximate change in the amount

(C(x, t+∆t)− C(x, t))A∆x ≈ D∆tACx(x+∆x/2, t+∆t)

−D∆tACx(x−∆x/2, t+∆t).

Divide by A∆x∆t and let ∆x and ∆t go to zero to get

Ct = (DCx)x. (5.1.1)

This is analogous to the heat equation where concentration is replaced by tem-
perature and dispersion is replaced by thermal conductivity divided by density
and specific heat. Because of this similarity the term diffusion is often associ-
ated with Fick’s motion law.

5.1. EPIDEMICS AND DISPERSION 191

5.1.3 Model

The SIR model is for the amounts or size of the populations as functions of just
time. Assume the population is a disjoint union of susceptible = S(t), infected
= I(t) and recovered = R(t). So, the total population = S(t) + I(t) + R(t).
Assume all infected eventually recover and all recovered are not susceptible.
Assume the increase in the infected is proportional to the change in time, the
number of infected and the number of susceptible. The change in the infected
population will increase from the susceptible group and will decrease into the
recovered group.

I(t+∆t)− I(t) = ∆t aS(t)I(t)−∆t bI(t) (5.1.2)

where a reflects how contagious or infectious the epidemic is and b reflects the
rate of recovery. Now divide by ∆t and let it go to zero to get the differential
equation for I, I 0 = aSI − bI. The differential equations for S and R are
obtained in a similar way.

SIR Epidemic Model.

S0 = −aSI with S(0) = S0, (5.1.3)

I 0 = aSI − bI with I(0) = I0 and (5.1.4)

R0 = bI with R(0) = R0. (5.1.5)

Note, (S + I + R)0 = S0 + I 0 + R0 = 0 so that S + I + R = constant and
S(0) + I(0) +R(0) = S0 + I0 +R0.
Note, I 0(0) = (aS(0)− b)I(0) > 0 if and only if aS(0)− b > 0 and I(0) > 0.

The epidemic cannot get started unless aS(0)−b > 0 so that the initial number
of susceptible must be suitably large.
The SIR model will be modified in two ways. First, assume the infected

do not recover but eventually die at a rate −bI. Second, assume the infected
population disperses in one direction according to Fick’s motion law, and the
susceptible population does not disperse. This might be the case for populations
that become infected with rabies. The unknown populations for the susceptible
and the infected now are functions of time and space, and S(x, t) and I(x, t)
are concentrations of the susceptible and the infected populations, respectively.

SI with Dispersion Epidemic Model.

St = −aSI with S(x, 0) = S0 and 0 ≤ x ≤ L, (5.1.6)

It = aSI − bI + DIxx with I(x, 0) = I0 and (5.1.7)

Ix(0, t) = 0 = Ix(L, t). (5.1.8)

In order to solve for the infected population, which has two space derivatives
in its differential equation, boundary conditions on the infected population must
be imposed. Here we have simply required that no inflected can move in or out
of the left and right boundaries, that is, Ix(0, t) = 0 = Ix(L, t).

192 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

5.1.4 Method

Discretize (5.1.6) and (5.1.7) implicitly with respect to the time variable to
obtain a sequence of ordinary differential equations

Sk+1 = Sk −∆t aSk+1Ik+1 (5.1.9)

Ik+1 = Ik +∆t aSk+1Ik+1 −∆t bIk+1 +∆t DIk+1xx . (5.1.10)

As in the heat equation with derivative boundary conditions, use half cells
at the boundaries and centered finite differences with h = ∆x = L/n so that
there are n + 1 unknowns for both S = Sk+1 and I = Ik+1. So, at each time
step one must solve a system of 2(n+1) nonlinear equations for Si and Ii given
S = Sk and I = Ik+1. Let F : R2(n+1) −→ R2(n+1) be the function of Si and
Ii where the (S, I) ∈ R2(n+1) are listed by all the Si and then all the Ii. Let
1 ≤ i ≤ n+ 1, α = D∆t/h2 , bi = i− (n+ 1) for i > n+ 1 and so that

1 ≤ i ≤ n+ 1 : Fi = Si − Si +∆t aSiIi

i = n+ 2 : Fi = Ibi − Ibi −∆t aSbiIbi+
∆t bIbi − α(−2Ibi + 2Ibi+1)

n+ 2 < i < 2(n+ 1) : Fi = Ibi − Ibi −∆t aSbiIbi+
∆t bIbi − α(Ibi−1 − 2Ibi + Ibi+1)

i = 2(n+ 1) : Fi = Ibi − Ibi −∆t aSbiIbi+
∆t bIbi − α(2Ibi−1 − 2Ibi).

Newton’s method will be used to solve F(S, I) = 0. The nonzero components
of the Jacobian 2(n+ 1)× 2(n+ 1) matrix F0 are
1 ≤ i ≤ n+ 1 : FiSi = 1 +∆t aIi and FiIi = ∆t aSi

i = n+ 2 : FiIbi = 1 + b∆t+ 2α−∆t aSbi,
FiIbi+1 = −2α and FiSbi = −∆t aIbi

n+ 2 < i < 2(n+ 1) : FiIbi = 1 + b∆t+ 2α−∆t aSbi,
FiIbi+1 = −α, FiIbi−1 = −α and FiSbi = −∆t aIbi

i = 2(n+ 1) : FiIbi = 1 + b∆t+ 2α−∆t aSbi,
FiIbi−1 = −2α and FiSbi = −∆t aIbi.

The matrix F0 can be written as a block 2× 2 matrix where the four blocks are
(n+ 1)× (n+ 1) matrices

F0 =
·
A EeF C

¸
. (5.1.11)

5.1. EPIDEMICS AND DISPERSION 193

A,E and eF are diagonal matrices whose components are FiSi , FiIi and FiSbi ,
respectively. The matrix C is a tridiagonal, and for n = 4 it is

C =


F6I1 −2α
−α F7I2 −α

−α F8I3 −α
−α F9I4 −α

−2α F10I5

 . (5.1.12)

Since F0 is relatively small, one can easily use a direct solver. Alternatively,
because of the simple structure of F0, the Schur complement could be used to
do this solve. In the model with dispersion in two directions C will be block
tridiagonal, and the solve step will be done using the Schur complement and
the sparse PCG method.

5.1.5 Implementation

The MATLAB code SIDiff1d.m solves the system (5.1.6)-(5.1.8) by the above
implicit time discretization with the centered finite difference discretization of
the space variable. The resulting nonlinear algebraic system is solved at each
time step by using Newton’s method. The initial guess for Newton’s method is
the previous time values for the susceptible and the infected. The initial data
is given in lines 1-28 with the parameters of the differential equation model
defined in lines 9-11 and initial populations defined in lines 23-28. The time
loop is in lines 29-83. Newton’s method for each time step is executed in lines
30-69 with the F and F0 computed in lines 32-61 and the linear solve step done
in line 62. The Newton update is done in line 63. The output of populations
versus space for each time step is given in lines 73-82, and populations versus
time is given in lines 85 and 86.

MATLAB Code SIDiff1d.m

1. clear;
2. % This code is for susceptible/infected population.
3. % The infected may disperse in 1D via Fick’s law.
4. % Newton’s method is used.
5. % The full Jacobian matrix is defined.
6. % The linear steps are solved by A\d.
7. sus0 = 50.;
8. inf0 = 0.;
9. a =20/50;
10. b = 1;
11. D = 10000;
12. n = 20;
13. nn = 2*n+2;
14. maxk = 80;
15. L = 900;

194 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

16. dx = L./n;
17. x = dx*(0:n);
18. T = 3;
19. dt = T/maxk;
20. alpha = D*dt/(dx*dx);
21. FP = zeros(nn);
22. F = zeros(nn,1);
23. sus = ones(n+1,1)*sus0; % define initial populations
24. sus(1:3) = 2;
25. susp = sus;
26. inf = ones(n+1,1)*inf0;
27. inf(1:3) = 48;
28. infp = inf;
29. for k = 1:maxk % begin time steps
30. u = [susp; infp]; % begin Newton iteratio
31. for m =1:20
32. for i = 1:nn %compute Jacobian matrix
33. if i>=1&i<=n
34. F(i) = sus(i) - susp(i) + dt*a*sus(i)*inf(i);
35. FP(i,i) = 1 + dt*a*inf(i);
36. FP(i,i+n+1) = dt*a*sus(i);
37. end
38. if i==n+2
39. F(i) = inf(1) - infp(1) + b*dt*inf(1) -...
40. alpha*2*(-inf(1) + inf(2)) -

a*dt*sus(1)*inf(1);
41. FP(i,i) = 1+b*dt + alpha*2 - a*dt*sus(1);
42. FP(i,i+1) = -2*alpha;
43. FP(i,1) = -a*dt*inf(1);
44. end
45. if i>n+2&i<nn
46. i_shift = i - (n+1);
47. F(i) = inf(i_shift) - infp(i_shift) +

b*dt*inf(i_shift) - ...
48. alpha*(inf(i_shift-1) - 2*inf(i_shift) +

inf(i_shift+1)) - ...
49. a*dt*sus(i_shift)*inf(i_shift);
50. FP(i,i) = 1+b*dt + alpha*2 - a*dt*sus(i_shift);
51. FP(i,i-1) = -alpha;
52. FP(i,i+1) = -alpha;
53. FP(i, i_shift) = - a*dt*inf(i_shift);
54. end
55. if i==nn
56. F(i) = inf(n+1) - infp(n+1) + b*dt*inf(n+1) - ...
57. alpha*2*(-inf(n+1) + inf(n)) -

5.1. EPIDEMICS AND DISPERSION 195

a*dt*sus(n+1)*inf(n+1);
58. FP(i,i) = 1+b*dt + alpha*2 - a*dt*sus(n+1);
59. FP(i,i-1) = -2*alpha;
60. FP(i,n+1) = -a*dt*inf(n+1);
61. end
62. du = FP\F; % solve linear system
63. u = u - du;
64. sus(1:n+1) = u(1:n+1);
65. inf(1:n+1) = u(n+2:nn);
66. error = norm(F);
67. if error<.00001
68. break;
69. end
70. end % newton iterations
71. time(k) = k*dt;
72. time(k)
73. m
74. error
75. susp = sus;
76. infp = inf;
77. sustime(:,k) = sus(:);
78. inftime(:,k) = inf(:);
79. axis([0 900 0 60]);
80. hold on;
81. plot(x,sus,x,inf)
82. pause
83. end %time step
84. hold off
85. figure(2);
86. plot(time,sustime(10,:),time,inftime(10,:))

In Figure 5.1.1 five time plots of infected and susceptible versus space are
given. As time increases the locations of the largest concentrations of infected
moves from left to right. The left side of the infected will decrease as time
increases because the concentration of the susceptible population decreases.
Eventually, the infected population will start to decrease for all locations in
space.

5.1.6 Assessment

Populations may or may not move in space according to Fick’s law, and they
may even move from regions of low concentration to high concentration! Pop-
ulations may be moved by the flow of air or water. If populations do disperse
according to Fick’s law, then one must be careful to estimate the dispersion
coefficient D and to understand the consequences of using this estimate. In the
epidemic model with dispersion in just one direction as given in (5.1.6)-(5.1.8)

196 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

Figure 5.1.1: Infected and Susceptible versus Space

the coefficient a and b must also to estimated. Also, the population can disperse
in more than one direction, and this will be studied in the next section.

5.1.7 Exercises

1. Duplicate the calculations in Figure 5.1.1. Examine the solution as time
increases.
2. Find a steady state solution of (5.1.6)-(5.1.8). Does the solution in prob-
lem one converge to it?
3. Experiment with the step sizes in the MATLAB code SIdiff.m: n =
10, 20, 40 and 80 and kmax = 40, 80, 160 and 320.
4. Experiment with the contagious coefficient in the MATLAB code SId-
iff.m: a = 1/10, 2/10, 4/10 and 8/10.
5. Experiment with the death coefficient in the MATLAB code SIdiff.m:
b = 1/2, 1, 2 and 4.
6. Experiment with the dispersion coefficient in the MATLAB code SIdiff.m:
D = 5000, 10000, 20000 and 40000.
7. Let an epidemic be dispersed by Fick’s law as well as by the flow of a
steam whose velocity is v > 0. Modify (5.1.7) to take this into account

It = aSI − bI + DIxx − vIx.

Formulate a numerical model and modify the MATLAB code SIdiff.m. Study
the effect of variable stream velocities.

5.2. EPIDEMIC DISPERSION IN 2D 197

5.2 Epidemic Dispersion in 2D

5.2.1 Introduction

Consider populations that will depend on time, two space variables and will
disperse according to Fick’s law. The numerical model will also follow from
an implicit time discretization and from centered finite difference in both space
directions. This will generate a sequence of nonlinear equations, which will also
be solved by Newton’s method. The linear solve step in Newton’s method will
be done by a sparse version of the conjugate gradient method.

5.2.2 Application

The dispersion of a population can have the form of a random walk. In this
case, if the population size and time duration are suitably large, then this can
be modeled by Fick’s motion law, which is similar to Fourier’s heat law. Let
C = C(x, y, t) be the concentration (amount per volume) of matter such as
a population. Consider the concentration C(x, y, t) as a function of space in
two directions whose volume is H∆x∆y where H is the small distance in the z
direction. The change in the matter through an area A is given by
(a). moves from high concentrations to low concentrations
(b). change is proportional to the

change in time,
the cross section area and
the derivative of the concentration normal to A.

Let D be the proportionality constant, which is called the dispersion. Next
consider dispersion from the left and right where A = H∆y, and the front and
back where A = H∆x.

(C(x, y, t+∆t)− C(x, y, t))H∆x∆y ≈ D∆tH∆yCx(x+∆x/2, y, t+∆t)

−D∆tH∆yCx(x−∆x/2, y, t+∆t)
+D∆tH∆xCy(x, y +∆y/2, t+∆t)

−D∆tH∆xCy(x, y −∆y/2, t+∆t).

Divide by H∆x∆y∆t and let ∆x,∆y and ∆t go to zero to get

Ct = (DCx)x + (DCy)y. (5.2.1)

This is analogous to the heat equation with diffusion of heat in two directions.

5.2.3 Model

The SIR model will be modified in two ways. First, assume the infected do not
recover but eventually die at a rate −bI. Second, assume the infected population
disperses in two directions according to Fick’s motion law, and the susceptible
population does not disperse. The unknown populations for the susceptible

198 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

and the infected will be functions of time and space in two directions, and the
S(x, y, t) and I(x, y, t) will now be concentrations of the susceptible and the
infected populations.

SI with Dispersion in 2D Epidemic Model.

St = −aSI with S(x, y, 0) = S0 and 0 ≤ x, y ≤ L, (5.2.2)

It = aSI − bI +DIxx +DIyy with I(x, y, 0) = I0, (5.2.3)

Ix(0, y, t) = 0 = Ix(L, y, t) and (5.2.4)

Iy(x, 0, t) = 0 = Iy(x,L, t). (5.2.5)

In order to solve for the infected population, which has two space derivatives
in its differential equation, boundary conditions on the infected population must
be imposed. Here we have simply required that no inflected can move in or out
of the left and right boundaries (5.2.4), and the front and back boundaries
(5.2.5).

5.2.4 Method

Discretize (5.2.2) and (5.2.3) implicitly with respect to the time variable to
obtain a sequence of partial differential equations with respect to x and y

Sk+1 = Sk −∆t aSk+1Ik+1 (5.2.6)

Ik+1 = Ik +∆t aSk+1Ik+1 −∆t bIk+1
+∆t DIk+1xx +∆t DIk+1yy . (5.2.7)

The space variables will be discretized by using centered differences, and the
space grid will be slightly different than using half cells at the boundary. Here
we will use ∆x = L/(n−1) = ∆y = h and not ∆x = L/n, and will use artificial
nodes outside the domain as indicated in Figure 5.2.1 where n = 4 with a total
of (n− 1)2 = 9 interior grid points and 4n = 16 artificial grid points.
At each time step we must solve (5.2.6) and (5.2.7). Let S = Sk+1 and

I = Ik+1 be approximated by Si,j and Ii,j where 1 ≤ i, j ≤ n+ 1 so that there
are (n+ 1)2 unknowns. The equations for the artificial nodes are derived from
the derivative boundary conditions (5.2.4) and (5.2.5):

I1,j = I2,j , In+1,j = In,j , Ii,1 = Ii,2 and Ii,n+1 = Ii,n. (5.2.8)

The equations for Si,j with 2 ≤ i, j ≤ n follows from (5.2.6):

0 = Gi,j ≡ Si,j − Si,j +∆t aSi,jIi,j . (5.2.9)

Equations for Ii,j with 2 ≤ i, j ≤ n follow from (5.2.7) with α = ∆tD/h2 :

0 = Hi,j ≡ Ii,j − Ii,j −∆t aSi,jIi,j +∆t bIi,j
−α(Ii−1,j + Ii,j−1 − 4Ii,j + Ii+1,j + Ii,j+1). (5.2.10)

5.2. EPIDEMIC DISPERSION IN 2D 199

Figure 5.2.1: Grid with Artificial Grid Points

Next use (5.2.8) to modify (5.2.10) for the nodes on the grid boundary. For
example, if i = j = 2, then

Hi,j ≡ Ii,j − Ii,j −∆t aSi,jIi,j +∆t bIi,j
−α(−2Ii,j + Ii+1,j + Ii,j+1). (5.2.11)

Do this for all four corners and four sides in the grid boundary to get the
final version of Hi,j . The nonlinear system of equations that must be solved at
each time step has the form F(S, I) = 0 where F : R2(n−1)2 −→ R2(n−1)2 and
F(S, I) = (G,H).

Newton’s method is used to solve for S and I. The Jacobian matrix is

F0 =
·
A EeF C

¸
=

·
GS GI

HS HI

¸
. (5.2.12)

GS =
∂G
∂S , GI =

∂G
∂I and HS =

∂H
∂S are a diagonal matrices whose components

are 1+∆t aIi,j , ∆t aSi,j and −∆t aIi,j , respectively. HI =
∂H
∂I is block tridiag-

onal with the off diagonal blocks being diagonal and the diagonal blocks being
tridiagonal. For example, for n = 4

HI =
∂H

∂I
=

 C11 C12 0
C21 C22 C23
0 C32 C33

 where (5.2.13)

C12 = C21 = C23 = C32 =

 −α 0 0
0 −α 0
0 0 −α

 ,
βi,j = 1−∆t aSi,j +∆t b,

200 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

C11 =

 β2,2 + α2 −α 0
−α β3,2 + α3 −α
0 −α β4,2 + α2

 ,
C22 =

 β2,3 + α3 −α 0
−α β3,3 + α4 −α
0 −α β4,3 + α3

 and
C33 =

 β2,4 + α2 −α 0
−α β3,4 + α3 −α
0 −α β4,4 + α2

 .
Newton’s method for this problem has the form, with m denoting the Newton
iteration and not the time step,·

Sm+1

Im+1

¸
=

·
Sm

Im

¸
−
·
∆S
∆I

¸
where (5.2.14)

·
GS GI

HS HI

¸ ·
∆S
∆I

¸
=

·
G(Sm, Im)
H(Sm, Im)

¸
. (5.2.15)

The solution of (5.2.15) can be easily found using the Schur complement
because GS , GI and HS are a diagonal matrices. Use an elementary block
matrix to zero the block (2,1) position in the 2 × 2 matrix in (5.2.15) so that
in the following I is an (n− 1)2 × (n− 1)2 identity matrix·

I 0
−HS(GS)

−1 I

¸ ·
GS GI

HS HI

¸ ·
∆S
∆I

¸
=

·
I 0

−HS(GS)
−1 I

¸ ·
G
H

¸
·
GS GI

0 HI −HS(GS)
−1GI

¸ ·
∆S
∆I

¸
=

·
G

H −HS(GS)
−1G

¸
.

The matrixHI−HS(GS)
−1GI is a pentadiagonal matrix with the same nonzero

pattern as associated with the Laplace operator. So, the solution for ∆I can
be done by a sparse conjugate gradient method

(HI −HS(GS)
−1GI)∆I = H −HS(GS)

−1G. (5.2.16)

Once ∆I is known, then solve for ∆S

(GS)∆S = G−GI∆I. (5.2.17)

5.2.5 Implementation

In the MATLAB code SIDiff2d.m (5.2.2)-(5.2.5) uses an implicit time discretiza-
tion and finite difference in the space variables. This results in a sequence of
nonlinear problems G(S, I) = 0 and H(S, I) = 0 as indicated in equations
(5.2.8)-(5.2.11). In the code lines 1-30 initialize the data. Line 7 indicates three
m-files that are used, but are not listed. Line 29 defines the initial infected
concentration to be 48 near the x = y = 0. The time loop is in lines 31-72.

5.2. EPIDEMIC DISPERSION IN 2D 201

Newton’s method is executed in lines 32-58. The Jacobian is computed in lines
33-48. The coefficient matrix, the Schur complement, in equation (5.2.16) is
computed in line 45, and the right side of equation (5.2.16) is computed in
line 46. The linear system is solved in line 49 by the preconditioned conjugate
gradient method, which is implemented in the pcgssor.m function file and was
used in Chapter 4.3. Equation (5.2.17) is solved in line 50. The solution is in
line 51 and extended to the artificial grid points using (5.2.8) and the MATLAB
code update_bc.m. Lines 52 and 53 are the Newton updates for the solution
at a fixed time step. The output is given in graphical form for each time step
in lines 62-71.

MATLAB Code SIDiff2d.m

1. clear;
2. % This code is for susceptible/infected population.
3. % The infected may disperse in 2D via Fick’s law.
4. % Newton’s method is used.
5. % The Schur complement is used on the Jacobian matrix.
6. % The linear solve steps use a sparse pcg.
7. % Uses m-files coeff_in_laplace.m, update_bc.m and pcgssor.m
8. sus0 = 50;
9. inf0 = 0;
10. a = 20/50;
11. b = 1;
12. D = 10000;
13. n = 21;
14. maxk = 80;
15. dx = 900./(n-1);
16. x =dx*(0:n);
17. dy = dx;
18. y = x;
19. T = 3;
20. dt = T/maxk;
21. alpha = D*dt/(dx*dx);
22. coeff_in_laplace; % define the coefficients in cs
23. G = zeros(n+1); % equation for sus (susceptible)
24. H = zeros(n+1); % equation for inf (infected)
25. sus = ones(n+1)*sus0; % define initial populations
26. sus(1:3,1:3) = 2;
27. susp = sus;
28. inf = ones(n+1)*inf0;
29. inf(1:3,1:3) = 48;
30. infp = inf;
31. for k = 1:maxk % begin time steps
32. for m =1:20 % begin Newton iteration
33. for j = 2:n % compute sparse Jacobian matrix

202 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

34. for i = 2:n
35. G(i,j) = sus(i,j) - susp(i,j) +

dt*a*sus(i,j)*inf(i,j);
36. H(i,j) = inf(i,j) - infp(i,j) + b*dt*inf(i,j) - ...
37. alpha*(cw(i,j)*inf(i-1,j)

+ce(i,j)* inf(i+1,j)+ ...
38. cs(i,j)*inf(i,j-1)+ cn(i,j)* inf(i,j+1)

-cc(i,j)*inf(i,j))- ...
39. a*dt*sus(i,j)*inf(i,j);
40. ac(i,j) = 1 + dt*b+alpha*cc(i,j)-dt*a*sus(i,j);
41. ae(i,j) = -alpha*ce(i,j);
42. aw(i,j) = -alpha*cw(i,j);
43. an(i,j) = -alpha*cn(i,j);
44. as(i,j) = -alpha*cs(i,j);
45. ac(i,j) = ac(i,j)-(dt*a*sus(i,j))*

(-dt*a*inf(i,j))/(1+dt*a*inf(i,j));
46. rhs(i,j) = H(i,j) - (-dt*a*inf(i,j))*G(i,j)/

(1+dt*a*inf(i,j));
47. end
48. end
49. [dinf , mpcg]= pcgssor(an,as,aw,ae,ac,inf,rhs,n);
50. dsus(2:n,2:n) = G(2:n,2:n)-

(dt*a*sus(2:n,2:n)).*dinf(2:n,2:n);
51. update_bc; % update the boundary values
52. sus = sus - dsus;
53. inf = inf - dinf;
54. error = norm(H(2:n,2:n));
55. if error<.0001
56. break;
57. end
58. end % newton iterations
59. susp = sus;
60. infp = inf;
61. time(k) = k*dt;
62. current_time = time(k)
63. mpcg
64. error
65. subplot(1,2,1)
66. mesh(x,y,inf)
67. title(’infected’)
68. subplot(1,2,2)
69. mesh(x,y,sus)
70. title(’susceptible’)
71. pause
72. end %time step

5.2. EPIDEMIC DISPERSION IN 2D 203

Figure 5.2.2: Infected and Susceptible at Time = 0.3

Figure 5.2.2 indicates the population versus space for time equal to 0.3. The
infected population had an initial concentration of 48 near x = y = 0. The left
graph is for the infected population, and the peak is moving in the positive x
and y directions. The concentration of the infected is decreasing for small values
of x and y, because the concentration of the susceptible population is nearly
zero, as indicated in the right graph. This is similar to the one dimensional
model of the previous section, see Figure 5.1.1.

5.2.6 Assessment

If populations do disperse according to Fick’s law, then one must be careful
to estimate the dispersion coefficient D and to understand the consequences of
using this estimate. This is also true for the coefficients a and b. Populations can
disperse in all three directions, and the above coefficients may not be constants.
Furthermore, dispersion can also be a result of the population being carried in
a fluid such as water or air, see problem seven.

5.2.7 Exercises

1. Duplicate the calculations in Figure 5.2.2. Examine the solution as time
increases.
2. Experiment with the step sizes in the MATLAB code SIDiff2d.m: n =
11, 21, 41 and 81 and kmax = 40, 80, 160 and 320.

204 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

3. Experiment with the contagious coefficient in the MATLAB code SID-
iff2d.m: a = 1/10, 2/10, 4/10 and 8/10.
4. Experiment with the death coefficient in the MATLAB code SIDiff2d.m:
b = 1/2, 1, 2 and 4.
5. Experiment with the dispersion coefficient in the MATLAB code SID-
iff2d.m: D = 5000, 10000, 20000 and 40000.
6. Let an epidemic be dispersed by Fick’s law as well as by a flow in a lake
whose velocity is v = (v1, v2). Modify (5.2.3) to take this into account

It = aSI − bI + DIxx + DIxx − v1Ix − v2Iy.

Formulate a numerical model and modify the MATLAB code SIDiff2d.m. Study
the effect of variable lake velocities.

5.3 Image Restoration

5.3.1 Introduction

In the next two sections images, which have been blurred and have noise, will be
reconstructed so as to reduce the effects of this type of distortion. Applications
may be from space exploration, security cameras, medical imaging and to fish
finders. There are a number of models for this, but one model reduces to the
solution of a quasilinear elliptic partial differential equation, which is similar to
the steady state heat conduction model that was considered in Chapter 4.3. In
both sections the Picard iterative scheme will also be used. The linear solves
for the 1D problems will be done directly, and for the 2D problem the conjugate
gradient method will be used.

5.3.2 Application

On a rainy night the images that are seen by a person driving a car or airplane
are distorted. One type of distortion is blurring where the lines of sight are
altered. Another distortion is from equipment noise where additional random
sources are introduced. Blurring can be modeled by a matrix product, and
noise can be represented by a random number generator. For uncomplicated
images the true image can be modeled by a one dimensional array so that the
distorted image will be a matrix times the true image plus a random column
vector

d ≡ Kftrue + η. (5.3.1)

The goal is to approximate the true image given the distorted image so that
the residual

r(f) = d−Kf (5.3.2)

is small and the approximate image given by f has a minimum number of
erroneous curves.

5.3. IMAGE RESTORATION 205

5.3.3 Model

The blurring of a point i from point j will be modeled by a Gaussian distribution
so that the blurring is

kijfj where kij = hC exp((−(i− j)h)2)/2γ2). (5.3.3)

Here h = ∆x is the step size and the number of points is suitably large. The
cumulative effect at point i from all other points is given by summing with
respect to j

[Kf]i =
X
j

kijfj . (5.3.4)

At first glance the goal is to solve

Kf = d = Kftrue + η. (5.3.5)

Since η is random with some bounded norm and K is often ill-conditioned,
any variations in the right side of (5.3.5) may result in large variations in the
solution of (5.3.5).
One possible resolution of this is to place an extra condition on the would

be solution so that unwanted oscillations in the restored image will not occur.
One measure of this is the total variation of a discrete image. Consider a one
dimensional image given by a column vector f whose components are function
evaluations with respect to a partition 0 = x0 < x1 · · · < xn = L of an interval
[0 L] with ∆x = xi − xi−1. For this partition the total variation is

TV (f) =
nX
j=1

¯̄̄̄
fj − fj−1
∆x

¯̄̄̄
∆x. (5.3.6)

As indicated in the following simple example the total variation can be viewed
as a measure of the vertical portion of the curve. The total variation does
depend on the choice of the partition, but for partitions with large n this can
be a realistic estimate.

Example. Consider the three images in Figure 6.3.1 given by n = 4, L = 4
and h = 1 and

f = [1 3 2 3 1]T

g = [1 3 4 3 1]T

h = [1 3 3 3 1]T .

Then the total variations are TV (f) = 6, TV (g) = 6 and TV (h) = 4 so that h,
which is "flatter" than f or g, has the smallest total variation..

The following model attempts to minimize both the residual (5.3.2) and the
total variation (5.3.6).

206 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

Figure 5.3.1: Three Curves with Jumps

Tikhonov-TV Model for Image Restoration.

Let r(f) be from (5.3.2), TV (f) be from (5.3.6) and α be a given positive
real number. Find f ∈ Rn+1 so that the following real valued function is a
minimum

T (f) =
1

2
r(f)T r(f) + αTV (f). (5.3.7)

The solution of this minimization problem can be attempted by setting all
the partial derivatives of T (f) with respect to fi equal to zero and solving the
resulting nonlinear system. However, the total variation term has an absolute
value function in the summation, and so it does not have a derivative! A "fix"
for this is to approximate the absolute value function by another function that
has a continuous derivative. An example of such a function is

|t| ≈ (t2 + β2)1/2.

So, an approximation of the total variation uses Ψ(t) = 2(t+ β2)1/2 and is

TV (f) ≈ Jβ(f) ≡ 1
2

nX
j=1

Ψ((
fj − fj−1
∆x

)2)∆x. (5.3.8)

The choice of the positive real numbers α and β can have significant impact on
the model.

Modified Tikhonov-TV Model for Image Restoration.

Let α and β be given positive real numbers. Find f ∈ Rn+1 so that the
following real valued function is a minimum

Tα,β(f) =
1

2
r(f)T r(f) + αJβ(f). (5.3.9)

5.3. IMAGE RESTORATION 207

5.3.4 Method

In order to find the minimum of Tα,β(f), set the partial derivatives with respect
to the components of fi equal to zero. In the one dimensional case assume at
the left and right boundary

f0 = f1 and fn = fn+1. (5.3.10)

Then there will be n unknowns and n nonlinear equations

∂

∂fi
Tα,β(f) = 0. (5.3.11)

Theorem 5.3.1 Let (5.3.10) hold and use the gradient notation grad(Tα,β(f))
is an n× 1 column vector whose i components are ∂

∂fi
Tα,β(f). Then

grad(Tα,β(f)) = −KT (d−Kf) + αL(f)f where (5.3.12)

L(f) ≡ DT diag(Ψ0 (Dif))D ∆x , i = 2, · · · , n
D ≡ (n− 1)× n with − 1/∆x on the diagonal

and 1/∆x on the superdiagonal

and zero else where and

Dif ≡ fi − fi−1
∆x

.

Proof. grad(Tα,β(f)) = grad(12 r(f)T r(f)) + αgrad(Jβ(f)).

First, we show grad(12 r(f)T r(f)) = −KT r(f).

∂

∂fi

1

2
r(f)T r(f) =

∂

∂fi

1

2

X
l

(dl −
X
j

kljfj)
2

=
X
l

(dl −
X
j

kljfj)
2−1 ∂

∂fi
(dl −

X
j

kljfj)

=
X
l

(dl −
X
j

kljfj)(0−
X
j

klj
∂

∂fi
fj)

=
X
l

(dl −
X
j

kljfj)(0− kli)

= −[KT r(f)]i.

208 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

Second, the identity grad(Jβ(f)) = L(f)f is established for n = 4.

∂

∂f1
Jβ(f) =

∂

∂f1

1

2

nX
j=1

Ψ(((fj − fj−1)/∆x)2)∆x

=
1

2
Ψ0((

f1 − f0
∆x

)2))
∂

∂f1
((
f1 − f0
∆x

)2)∆x+

1

2
Ψ0((

f2 − f1
∆x

)2))
∂

∂f1
((
f2 − f1
∆x

)2)∆x

= Ψ0((
f1 − f0
∆x

)2))(
f1 − f0
∆x

)
1

∆x
∆x+

Ψ0((
f2 − f1
∆x

)2))(
f2 − f1
∆x

)
−1
∆x
∆x

= 0 +Ψ0((D2f)
2))D2f

−1
∆x
∆x (5.3.13)

∂

∂f2
Jβ(f) =

∂

∂f2

1

2

nX
j=1

Ψ((
fj − fj−1
∆x

)2)∆x

=
1

2
Ψ0((

f2 − f2
∆x

)2))
∂

∂f2
((
f2 − f1
∆x

)2)∆x+

1

2
Ψ0((

f3 − f2
∆x

)2))
∂

∂f2
((
f3 − f2
∆x

)2)∆x

= Ψ0((D2f)
2))D2f

1

∆x
∆x+

Ψ0((D3f)
2))D3f

−1
∆x
∆x (5.3.14)

∂

∂f3
Jβ(f) = Ψ0((D3f)

2))D3f
1

∆x
∆x+

Ψ0((D4f)
2))D4f

−1
∆x
∆x (5.3.15)

∂

∂f4
Jβ(f) = Ψ

0((D4f)
2))D4f

1

∆x
∆x+ 0. (5.3.16)

5.3. IMAGE RESTORATION 209

The matrix form of the above four lines (5.2.13)-(5.3.16) with Ψ0i ≡ Ψ0((Dif)
2))

is

grad(Jβ(f)) =
1

∆x


Ψ02 −Ψ02
−Ψ02 Ψ02 +Ψ03 −Ψ03

−Ψ03 Ψ03 +Ψ04 −Ψ04
−Ψ04 Ψ04




f1
f2
f3
f4



= DT

 Ψ02 Ψ03
Ψ04

∆xD


f1
f2
f3
f4

 where (5.3.17)

D ≡
 −1/∆x 1/∆x

−1/∆x 1/∆x
−1/∆x 1/∆x

 .

The identity in (5.3.12) suggests the use of the Picard algorithm to solve

grad(Tα,β(f)) = −KT (d−Kf) + αL(f)f = 0. (5.3.18)

Simply evaluate L(f) at the previous approximation of f and solve for the next
approximation

−KT
¡
d−Kfm+1

¢
+ αL(fm)fm+1 = 0. (5.3.19)

(KTK + αL(fm))fm+1 = KT d

(KTK + αL(fm))(fm+1 − fm + fm) = KT d

(KTK + αL(fm))(∆f + fm) = KT d

(KTK + αL(fm))∆f = KT d− (KTK + αL(fm))fm.

Picard Algorithm for the Solution of -KT (d−Kf) + αL(f)f = 0.

Let f0 be the initial approximation of the solution
for m = 0 to max k

evaluate L(fm)
solve (KTK + αL(fm))∆f = KT d− (KTK + αL(fm))fm

fm+1 = ∆f + fm

test for convergence
endloop.

The solve step can be done directly if the algebraic system is not too large,
and this is what is done for the following implementation of the one space
dimension problem. Often the Picard’s method tends to "converge" very slowly.
Newton’s method is an alternative scheme, which has many advantages.

210 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

5.3.5 Implementation

The MATLAB code image 1d.m makes use of the MATLAB Setup1d.m and
function psi_prime.m files. Lines 14-26 initialize the Picard method. The call
to Setup1d.m in line 14 defines the true image and distorts it by blurring and
noise. The Picard method is executed in lines 27-43. The matrix H is defined
in line 30, and the right hand side g is defined in line 31. The solve step is done
in line 32 by H\g, and the Picard update is done in line 33. The output to the
second position in figure(1) is generated at each Picard step in lines 36-46.

MATLAB Codes image_1d.m and Setup1d.m

1. % Variation on MATLAB code written by Curt Vogel,
2. % Dept of Mathematical Sciences,
3. % Montana State University,
4. % for Chapter 8 of the SIAM Textbook,
5. % "Computational Methods for Inverse Problems".
6. %
7. % Use Picard fixed point iteration to solve
8. % grad(T(u)) = K’*(K*u-d) + alpha*L(u)*u = 0.
9. % At each iteration solve for newu = u+du
10. % (K’*K + alpha*L(u)) * newu = K’*d,
11. % where
12. % L(u) = grad(J(u)) =(D’*
13. % diag(psi’(|[D*u]_i|^2,beta) * D * dx
14. Setup1d % Defines true image and distorts it
15. alpha = .030 % Regularization parameter alpha
16. beta = .01 %TV smoothing parameter beta
17. fp_iter = 30; % Number of fixed point iterations
18. % Set up discretization of first derivative operator.
19. D = zeros(n-1,n);
20. for i =1:n-1
21. D(i,i) = -1./h;
22. D(i,i+1) = 1./h;
23. end;
24. % Initialization.
25. dx = 1 / n;
26. u_fp = zeros(n,1);
27. for k = 1:fp_iter
28. Du_sq = (D*u_fp).^2;
29. L = D’ * diag(psi_prime(Du_sq,beta)) * D * dx;
30. H = K’*K + alpha*L;
31. g = -H*u_fp + K’*d;
32. du = H \ g;
33. u_fp = u_fp + du;
34. du_norm = norm(du)

5.3. IMAGE RESTORATION 211

35. % Plot solution at each Picard step
36. figure(1)
37. subplot(1,2,2)
38. plot(x,u_fp,’-’)
39. xlabel(’x axis’)
40. title(’TV Regularized Solution (-)’)
41. pause;
42. drawnow
43. end % for fp_iter
44. plot(x,f_true,’—’, x,u_fp,’-’)
45. xlabel(’x axis’)
46. title(’TV Regularized Solution (-)’)

1. % MATLAB code Setup1d.m
2. % Variation on MATLAB code written by Curt Vogel,
3. % Dept of Mathematical Sciences,
4. % Montana State University,
5. % for Chapter 1 of the SIAM Textbook,
6. % "Computational Methods for Inverse Problems".
7. %
8. % Set up a discretization of a convolution
9. % integral operator K with a Gaussian kernel.
10. % Generate a true solution and convolve it with the
11. % kernel. Then add random error to the resulting data.
12. % Set up parameters.
13. clear;
14. n = 100; % nunber of grid points ;
15. sig = .05; % kernel width sigma
16. err_lev = 10; % input Percent error in data
17. % Set up grid.
18. h = 1/n;
19. x = [h/2:h:1-h/2]’;
20. % Compute matrix K corresponding to convolution

with Gaussian kernel.
21. C=1/sqrt(pi)/sig
22. for i = 1:n
23. for j = 1:n
24. K(i,j) = h*C* exp(-((i-j)*h)^2/(sig^2));
25. end
26. end
27. % Set up true solution f_true and data d = K*f_true + error.
28. f_true = .75*(.1<x&x<=.25) +.5*(.25<x&x<=.35)...

+0.7*(.35<x&x<=.45) + .10*(.45<x&x<=.6)...
+1.2*(.6<x&x<=.66)+1.6*(.66<x&x<=.70)
+1.2*(.70<x&x<=.80)...

212 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

+1.6*(.80<x&x<=.84)+1.2*(.84<x&x<=.90)...
+0.3*(.90<x&x<=1.0);

29. Kf = K*f_true;
30. % Define random error
31. randn(’state’,0);
32. eta = err_lev/100 * norm(Kf) * randn(n,1)/sqrt(n);
33. d = Kf + eta;
34. % Display the data.
35. figure(1)
36. subplot(1,2,1)
37. %plot(x,f_true,’-’, x,d,’o’,x,Kf,’—’)
38. plot(x,d,’o’)
39. xlabel(’x axis’)
40. title(’Noisy and Blurred Data’)
41. pause

1. function s = psi_prime(t,beta)
2. s = 1 ./ sqrt(t + beta^2);

Figure 5.3.2 has the output from image_1d.m. The left graph is generated
by Setup1d.m where the parameter in line 16 of Setup1d.m controls the noise
level. Line 28 in Setup1d.m defines the true image, which is depicted by the
dashed line in the right graph of Figure 5.3.2. The solid line in the right graph
is the restored image. The reader may find it interesting to experiment with
the choice of α, β and n so as to better approximate the true image.

5.3.6 Assessment

Even for the cases where we know the true image, the "best" choice for the
parameters in the modified Tikhonov-TV model is not clear. The convergence
criteria range from a judgmental visual inspection of the "restored" image to
monitoring the step error such as in line 34 of image_1d.m. The Picard scheme
converges slowly, and other alternatives include variations on Newton’s method.
The absolute value function in the total variation may be approximated in other
ways than using the square root function. Furthermore, total variation is not the
only way to eliminate unwanted effects in the "restored" image. The interested
reader should consult Curt Vogel’s book for a more complete discussion of these
topics.

5.3.7 Exercises

1. Duplicate the computations in Figure 5.3.2 and use different numbers of
Picard iterations.
2. Experiment with n = 20, 40, 60 and 80.
3. Experiment with β = 0.001, 0.010, 0.050 and 0.10.
4. Experiment with α = 0.01, 0.03, 0.08 and 0.80.

5.4. RESTORATION IN 2D 213

Figure 5.3.2: Restored 1D Image

5. Experiment with different noise levels as given in line 16 in Setup1d.m.
6. Experiment with different images as defined in line 28 in Setup1d.m.
7. Verify lines (5.3.15) and (5.3.16).

5.4 Restoration in 2D

5.4.1 Introduction

In the previous section images that were piecewise functions of a single variable
were represented by one dimensional arrays. If the image is more complicated
so that the curves with in the image are no longer a function of one variable,
then one must use two dimensional arrays. For example, if the image is solid
figure, let the array have values equal to 100 if the array indices are inside the
figure and value equal to zero if the array indices are outside the figure. Of
course images have a number of attributes at each point or pixel, but for the
purpose of this section we assume the arrays have nonnegative real values.

5.4.2 Application

The goal is to consider a distorted image, given by blurring and noise, and
to reconstruct the two dimensional array so as the minimized the distortion
and to preserve the essential attributes of the true image. The outline of the
procedure will follow the previous section. This will be possible once the two

214 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

dimensional array for the true image is converted to a single dimensional column
vector. This is done by stacking the columns of the two dimensional arrays. For
example, if the two dimensional image is a 3× 3 array f = [f1 f2 f3] where fj
are now 3× 1 column vectors, then let the bold version of f be a 9× 1 column
vector f = [fT1 fT2 fT3]

T .

Let ftrue be the n × n true image so that ftrue is a n2 × 1 column vector.
The the distorted image is a n2×n2 matrix times the true image plus a random
n2 × 1 column vector

d ≡ Kftrue + η. (5.4.1)

The goal is to approximate the true image given the distorted image so that
the residual

r(f) = d−Kf (5.4.2)

is small and the approximate image given by f has a minimum number erroneous
surface oscillations.

5.4.3 Model

In order to minimize surface oscillations, a two dimensional version of the total
variation is introduced. Consider a two dimensional image given by a matrix
vector f whose components are function evaluations with respect to a partition
of a square [0 L] × [0 L] 0 = x0 < x1 · · · < xn = L with yi = xi and h =
∆y = ∆x = xi − xi−1. For this partition the total variation is

TV (f) =
nX
i=1

nX
j=1

((
fi,j − fi−1,j

∆x
)2 + (

fi,j − fi,j−1
∆y

)2)1/2∆y∆x. (5.4.3)

The total variation does depend on the choice of the partition, but for large
partitions this can be a realistic estimate.
The total variation term has a square root function in the summation, and

so it does not have a derivative at zero! Again a "fix" for this is to approximate
the square root function by another function that has a continuous derivative
such as

t1/2 ≈ (t+ β2)1/2.

So an approximation of the total variation uses Ψ(t) = 2(t+ β2)1/2 and is

Jβ(f) ≡ 1
2

nX
i=1

nX
j=1

Ψ((
fi,j − fi−1,j

∆x
)2 + (

fi,j − fi,j−1
∆y

)2)∆y∆x. (5.4.4)

The choice of the positive real numbers α and β can have significant impact on
the model.

5.4. RESTORATION IN 2D 215

Modified Tikhonov-TV Model for Image Restoration.

Let α and β be given positive real numbers. Find f ∈ R(n+1)×(n+1) so that
the following real valued function is a minimum

Tα,β(f) =
1

2
r(f)T r(f) + αJβ(f). (5.4.5)

5.4.4 Method

In order to find the minimum of Tα,β(f), set the partial derivatives with respect
to the components of fi,j equal to zero. As in the one dimensional case assume
at the boundary for i, j = 1, · · · , n

f0,j = f1,j , fn,j = fn+1,j, fi,0 = fi,1 and fi,n+1 = fi,n. (5.4.6)

Then there will be n2 unknowns and n2 nonlinear equations

∂

∂fi,j
Tα,β(f) = 0. (5.4.7)

The proof of the following theorem is similar to the one dimension version
Theorem 5.3.1.

Theorem 5.4.1 Let (5.4.6) hold and use the gradient notation grad(Tα,β(f)
is a n2 × 1 column vector whose components are ∂

∂fi,j
Tα,β(f).

grad(Tα,β(f)) = −KT (d−Kf) + αL(f)f where (5.4.8)

L(f) ≡ (DxTdiag(Ψ0 (Dx
i f))D

x

+DyT diag(Ψ0
¡
Dy
j f
¢
)Dy) ∆x ∆y

Dx and Dy are (n− 1)2 × n2 matrices via

Dx
i f ≡ fi,j − fi−1,j

∆x
and Dy

j f ≡
fi,j − fi,j−1

∆y

i, j = 2, · · · , n.
Equations (5.4.7) and (5.4.8) require the solution for n2 unknowns and n2

nonlinear equations. As in the one dimensional case the Picard method is used.

Picard Algorithm for the Solution of −KT (d−Kf) + αL(f)f = 0.

Let f0 be the initial approximation of the solution
for m = 0 to max k

evaluate L(fm)
solve (KTK + αL(fm))∆f = KT d− (KTK + αL(fm))fm

fm+1 = ∆f + fm

test for convergence
endloop.

The solve step is attempted using the conjugate gradient iterative method.
In the following implementation this inner iteration does not converge, but the
outer iteration will still converge slowly!

216 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

5.4.5 Implementation

The following MATLAB code image_2d uses additional MATLAB files that
are not listed: Setup2d.m, cgcrv.m, integral_op.m and psi_prime.m. Lines
1-38 initialize the data, the blurring matrix, and the true and distorted images,
which are graphed in figure(1). The Picard iteration is done in lines 39-94,
and the relative error is computed in line 95. The conjugate gradient method
is used in lines 54 and 55 where an enhanced output of the "convergence" is
given in figure(2), see lines 66-82. The Picard update is done in lines 56 and 57.
Lines 83-89 completes figure(1) where the restored images are now graphed, see
Figure 5.4.1. Lines 91-93 generate figure(4), which is a one dimensional plot of
a cross section.

MATLAB Code image_2d.m

1. % Variation on MATLAB code written by Curt Vogel,
2. % Dept of Mathematical Sciences,
3. % Montana State University,
4. % for Chapter 8 of the SIAM Textbook,
5. % "Computational Methods for Inverse Problems".
6. %
7. % Use Picard fixed point iteration to solve
8. % grad(T(u)) = K’*(K*u-d) + alpha*L(u)*u = 0.
9. % At each iteration solve for newu = u+du
10. % (K’*K + alpha*L(u)) * newu = K’*d where
11. % L(u) =(D’* diag(psi’(|[D*u]_i|^2,beta) * D * dx
12. Setup2d % Defines true2d image and distorts it
13. max_fp_iter = input(’ Max. no. of fixed point iterations = ’);
14. max_cg_iter = input(’ Max. no. of CG iterations = ’);
15. cg_steptol = 1e-5;
16. cg_residtol = 1e-5;
17. cg_out_flag = 0; % If flag = 1, output CG convergence info.
18. reset_flag = input(’ Enter 1 to reset; else enter 0: ’);
19. if exist(’f_alpha’,’var’)
20. e_fp = [];
21. end
22. alpha = input(’ Regularization parameter alpha = ’);
23. beta = input(’ TV smoothing parameter beta = ’);
24. % Set up discretization of first derivative operators.
25. n = nfx;
26. nsq = n^2;
27. Delta_x = 1 / n;
28. Delta_y = Delta_x;
29. D = spdiags([-ones(n-1,1) ones(n-1,1)], [0 1], n-1,n) / Delta_x;
30. I_trunc1 = spdiags(ones(n-1,1), 0, n-1,n);
31. Dx1 = kron(D,I_trunc1); % Forward differencing in x

5.4. RESTORATION IN 2D 217

32. Dy1 = kron(I_trunc1,D); % Forward differencing in y
33. % Initialization.
34. k_hat_sq = abs(k_hat).^2;
35. Kstar_d = integral_op(dat,conj(k_hat),n,n); % Compute K’*dat.
36. f_fp = zeros(n,n);
37. fp_gradnorm = [];
38. snorm_vec = [];
39. for fp_iter = 1:max_fp_iter
40. % Set up regularization operator L.
41. fvec = f_fp(:);
42. psi_prime1 = psi_prime((Dx1*fvec).^2

+ (Dy1*fvec).^2, beta);
43. Dpsi_prime1 = spdiags(psi_prime1, 0, (n-1)^2,(n-1)^2);
44. L1 = Dx1’ * Dpsi_prime1 * Dx1

+ Dy1’ * Dpsi_prime1 * Dy1;
45. L = L1 * Delta_x * Delta_y;
46. KstarKf = integral_op(f_fp,k_hat_sq,n,n);
47. Matf_fp =KstarKf(:)+ alpha*(L*f_fp(:));
48. G = Matf_fp - Kstar_d(:);
49. gradnorm = norm(G);
50. fp_gradnorm = [fp_gradnorm; gradnorm];
51. % Use CG iteration to solve linear system
52. % (K’*K + alpha*L)*Delta_f = r
53. fprintf(’ ... solving linear system using cg iteration ... \n’);
54. [Delf,residnormvec,stepnormvec,cgiter] = ...
55. cgcrv(k_hat_sq,L,alpha,-G,max_cg_iter,

cg_steptol,cg_residtol);
56. Delta_f = reshape(Delf,n,n);
57. f_fp = f_fp + Delta_f % Update Picard iteration
58. snorm = norm(Delf);
59. snorm_vec = [snorm_vec; snorm];
60. if exist(’f_alpha’,’var’)
61. e_fp = [e_fp; norm(f_fp - f_alpha,’fro’)

/norm(f_alpha,’fro’)];
62. end
63. % Output fixed point convergence information.
64. fprintf(’ FP iter=%3.0f, ||grad||=%6.4e,

||step||=%6.4e, nCG=%3.0f\n’, ...
65. fp_iter, gradnorm, snorm, cgiter);
66. figure(2)
67. subplot(221)
68. semilogy(residnormvec/residnormvec(1),’o’)
69. xlabel(’CG iteration’)
70. title(’CG Relative Residual Norm’)
71. subplot(222)

218 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

72. semilogy(stepnormvec,’o’)
73. xlabel(’CG iteration’)
74. title(’CG Relative Step Norm’)
75. subplot(223)
76. semilogy([1:fp_iter],fp_gradnorm,’o-’)
77. xlabel(’Fixed Point Iteration’)
78. title(’Norm of FP Gradient’)
79. subplot(224)
80. semilogy([1:fp_iter],snorm_vec,’o-’)
81. xlabel(’Fixed Point Iteration’)
82. title(’Norm of FP Step’)
83. figure(1)
84. subplot(223)
85. imagesc(f_fp), colorbar
86. title(’Restoration’)
87. subplot(224)
88. mesh(f_fp), colorbar
89. title(’Restoration’)
90. figure(4)
91. plot([1:nfx]’,f_fp(ceil(nfx/2),:), [1:nfx]’,

f_true(ceil(nfx/2),:))
92. title(’Cross Section of Reconstruction’)
93. drawnow
94. end %for fp
95. rel_soln_error = norm(f_fp(:)-f_true(:))/norm(f_true(:))

Figure 5.4.1 has the output from figure(1) in the above code. The upper left
graph is the true image, and the upper right is the distorted image. The lower
left is the restored image after 30 Picard iterations with 10 inner iterations of
conjugate gradient; n = 100, α = 1.0 and β = 0.1 were used. The graph in the
lower right is a three dimensional mesh plot of the restored image.

5.4.6 Assessment

Like the one dimensional case (i) the "best" choice for the parameters in the
modified Tikhonov-TV model is not clear, (ii) the convergence criteria range
from a judgmental visual inspection of the "restored" image to monitoring the
step error, (iii) the Picard scheme converges slowly and (iv) the total variation
is not the only way to eliminate unwanted effects in the "restored" image. In
the two dimensional case the conjugate gradient method was used because of
the increased size the of algebraic system. In the above calculations this did
not appear to converge, and here one should be using some preconditioner to
accelerate convergence. The interested reader should consult Curt Vogel’s book
[20] for a more complete discussion of these topics. Also, other methods for
image restoration are discussed in M. Bertero and P. Boccacci [2].

5.5. OPTION CONTRACT MODELS 219

Figure 5.4.1: Restored 2D Image

5.4.7 Exercises

1. Duplicate the computations in Figure 5.4.1. Use different numbers of
Picard and conjugate gradient iterations.
2. Experiment with n = 20, 60, 100 and 120.
3. Experiment with β = 0.05, 0.10, 0.50 and 5.00.
4. Experiment with α = 0.1, 1.0, 5.0 and 10.0.
5. Experiment with different noise levels as given in Setup2d.m.
6. For the special case n = 4 prove the identity (5.4.8) in Theorem 5.4.1.
It might be helpful to execute image_2d with n = 4, and then to examine the
matrices Theorem 5.4.1.

5.5 Option Contract Models

5.5.1 Introduction

Option contracts are agreements between two parties to buy or sell an underly-
ing asset at a particular price on or before a given date. The underlying asset
may be physical quantities or stocks or bonds or shares in a company. The
value of the underlying asset may change with time. For example, if a farmer
owns 100 tons of corn, and a food producer agrees to purchase this for a given
price within six months, then the given price remains fixed but the price of corn
in the open market may change during this six months! If the market price of
corn goes down, then the option contract for the farmer has more value. If the

220 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

market price of corn goes up, then the value of the option contract for the food
producer goes up. Option contracts can also be sold and purchased, and here
the overall goal is to estimate the value of an option contract.

5.5.2 Application

We will focus on a particular option contract called an American put option.
This option contract obligates the writer of the contract to buy an underlying
asset from the holder of the contract at a particular price, called the exercise
or strike price, E. This must be done within a given time, called an expiration
date, T . The holder of the option contract may or may not sell the underlying
asset whose market value, S, will vary with time. The value of the American
put option contract to the holder will vary with time, t, and S. If S gets large
or if t gets close to T , then the value of the American put option contract,
P (S, t), will decrease. On the other hand, if S gets small, then the value of the
American put option contract will increase towards the exercise price, that is,
P (S, t) will approach E as S goes to zero. If time exceeds expiration date, then
the American put option will be worthless, that is, P (S, t) = 0 for t > T.

The objective is to determine the value of the American put option contract
as a function of S, t and the other parameters E, T , r (the interest rate) and σ
(the market volatility), which will be described later. In particular, the holder
of the contract would like to know when is the "best" time to exercise the
American put option contract. If the market value of the underlying contract
is well above the exercise price, then the holder may want to sell on the open
market and not to the writer of the American put option contract. If the market
price of the underlying asset continues to fall below the exercise price, then at
some "point" the holder will want to sell to the writer of the contract for the
larger exercise price. Since the exercise price is fixed, the holder will sell as
soon as this "point" is reached so that the money can be used for additional
investment. This "point" refers to a particular market value S = Sf (t), which
is also unknown and is called the optimal exercise price.
The writers and the holders of American put option contracts are motivated

to enter into such contracts by speculation of the future value of the underlying
asset and by the need to minimize risk to a portfolio of investments. If an
investor feels a particular asset has an under-valued market price, then entering
into American put option contracts has a possible value if the speculation is
the market value of the underlying asset may increase. On the other hand,
if an investor feels the underlying asset has an over-priced market value, then
the investor may speculate that the underlying asset will decrease in value and
so the investor may be tempted to become holder of an American put option
contract.
The need to minimize risk in a portfolio is also very important. For example,

suppose a portfolio has a number of investments in one sector of the economy.
If this sector continues to expand, then this will be good for this investor. If
this sector contracts, then this could cause some significant lose in value of the

5.5. OPTION CONTRACT MODELS 221

portfolio. If the investor becomes a holder of American put option contracts
with some of the portfolio’s assets as underlying assets, then as the market
values of the assets decrease, the value of the America put option will increase.
A proper distribution of underlying investments and option contracts can help
to minimize risk to a portfolio.

5.5.3 Model

The value of the payoff from exercising the American put option is either the
exercise price minus the market value of the underlying asset, or zero, that is,
the payoff is max(E − S, 0). The value of the America put option must almost
always be greater than or equal to the payoff. This follows from the following
risk free scheme: buy the underlying asset for S, buy the American put option
contract for P (S, t) < max(E−S, 0), and then immediately exercise this option
contract for E, which would result in a profit E−P −S > 0. As this scheme is
very attractive to investors, it does not exist for a very long time, and so one
simply requires P (S, t) ≥ max(E − S, 0). In summary, the following conditions
are placed on the value of the American put option contract for t ≤ T . The
boundary conditions and condition at time equal to T are

P (0, t) = E (5.5.1)

P (L, t) = 0 for L >> E (5.5.2)

P (S, T) = max(E − S, 0). (5.5.3)

The inequality constraints are

P (S, t) ≥ max(E − S, 0) (5.5.4)

Pt(S, t) ≤ 0 and Pt(Sf+, t) = 0 (5.5.5)

P (Sf (t), t) = E − Sf (t) (5.5.6)

P (S, t) = E − S for S < Sf (t) (5.5.7)
d

dt
Sf (t) > 0 exists. (5.5.8)

The graph of P (S, t) for fixed time should have the form given in Figure 5.5.1.
The partial derivative of P (S, t) with respect to S needs to be continuous

at Sf so that the left and right derivatives must both be equal to -1. This
needs some justification. From (5.5.7) PS(Sf−, t) = −1 so we need to show
PS(Sf+, t) = −1. Since P (Sf (t), t) = E − Sf (t),

d

dt
P (Sf (t), t) = 0− d

dt
Sf (t)

PS(Sf+, t)
d

dt
Sf (t) + Pt(Sf+, t) = − d

dt
Sf (t)

Pt(Sf+, t) = −(1 + PS(Sf+, t))
d

dt
Sf (t)

222 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

Figure 5.5.1: Value of American Put Option

Since Pt(Sf+, t) = 0 and d
dtSf (t) > 0, 1 + PS(Sf+, t) = 0.

In the region in Figure 5.5.1 where P (S, t) > max(E − S, 0), the value of
the option contract must satisfy the celebrated Black-Scholes partial differential
equation where r is the interest rate and σ is the volatility of the market for a
particular underlying asset

Pt +
σ2

2
S2PSS + rSPS − rP = 0. (5.5.9)

The derivation of this equation is beyond the scope of this brief introduction to
option contracts. The Back-Scholes equation differs from the partial differential
equation for heat diffusion in three very important ways. First, it has variable
coefficients. Second, it is a backward time problem where P (S, t) is given at a
future time t = T as P (S, T) = max(E − S, 0). Third, the left boundary where
S = Sf (t) is unknown and varies with time.

Black-Scholes Model for the American Put Option Contract.

P (S, T) = max(E − S, 0) (5.5.10)

P (0, t) = E (5.5.11)

P (L, t) = 0 for L >> E (5.5.12)

P (Sf (t), t) = E − Sf (t) (5.5.13)

PS(Sf±, t) = −1 (5.5.14)

P (S, t) ≥ max(E − S, 0) (5.5.15)

P = E − S for S ≤ Sf (t) (5.5.16)

Pt +
σ2

2
S2PSS + rSPS − rP = 0 for S > Sf (t). (5.5.17)

The volatility σ is an important parameter that can change with time and
can be difficult to approximate. If the volatility is high, then there is more

5.5. OPTION CONTRACT MODELS 223

uncertainty in the market and the value of an American put option contract
should increase. Generally, the market value of an asset will increase with time
according to

d

dt
S = µS.

The parameter µ can be approximated by using past data for Sk = S(k∆t)

Sk+1 − Sk
∆t

= µkSk.

The approximation for µ is given by an average of all the µk

µ =
1

K

K−1X
k=0

µk =
1

K∆t

K−1X
k=0

Sk+1 − Sk
Sk

. (5.5.18)

The volatility is the square root of the unbiased variance of the above data

σ2 =
1

(K − 1)∆t
K−1X
k=0

µ
Sk+1 − Sk

Sk
− µ∆t

¶2
. (5.5.19)

Thus, if σ2 is large, then one may expect in the future large variations in the
market values of the underlying asset. Volatilities often range from near 0.05
for government bonds to near 0.40 for venture stocks.

5.5.4 Method

The numerical approximation to the Black-Scholes model in (5.5.10)-(5.5.17)
is similar to the explicit method for heat diffusion in one space variable. Here
we replace the space variable by the value of the underlying asset and the
temperature by the value of the American put option contract. In order to
obtain an initial condition, we replace the time variable by

τ ≡ T − t. (5.5.20)

Now abuse notation a little and write P (S, τ) in place of P (S, t) = P (S, T − τ)
so that −Pτ replaces Pt in (5.5.17). Then the condition at the exercise date in
(5.5.10) becomes the initial condition. With the boundary conditions in (5.5.11)
and (5.5.12) one may apply the explicit finite difference method as used for the
heat diffusion model to obtain P k+1

i approximations for P (i∆S, (k + 1)∆τ).
But, the condition in (5.5.15) presents an obstacle to the value of the option.
Here we simply choose the P k+1

i = max(E − Si, 0) if P
k+1
i < max(E − Si, 0).

224 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

Explicit Method with Projection for (5.5.10)-(5.5.17).

Let α ≡ (∆τ/(∆S)2)(σ2/2).
P k+1
i = P k

i + αS2i (P
k
i−1 − 2P k

i + P k
i+1)

+ (∆τ/∆S) rSi(P
k
i+1 − P k

i)−∆τ rP k
i

= αS2i P
k
i−1 + (1− 2αS2i − (∆τ/∆S) rSi −∆τ r)P k

i

+(αS2i + (∆τ/∆S) rSi)P
k
i+1

P k+1
i = max(P k+1

i ,max(E − Si, 0)).

The conditions (5.5.13) and (5.5.14) at S = Sf do not have to be explicitly
implemented provided the time step ∆τ is suitably small. This is a another
version of a stability condition.

Stability Condition.

α ≡ (∆τ/(∆S)2)(σ2/2)
1− 2αS2i − (∆τ/∆S) rSi −∆τ r > 0.

5.5.5 Implementation

The MATLAB code bs1d.m is an implementation of the explicit method for the
American put option contract model. In the code the array x corresponds to
the value of the underlying asset, and the array u corresponds to the value of
the American put option contract. The time step, dt, is for the backward time
step with initial condition corresponding to the exercise payoff of the option.
Lines 1-14 define the parameters of the model with exercise price E = 1.0. The
payoff obstacle is defined in lines 15-20, and the boundary conditions are given
in lines 21 and 22. Lines 23 -37 are the implementation of the explicit scheme
with projection to payoff obstacle given in lines 30-32. The approximate times
when a market prices correspond to the optimal exercise times are recorded in
lines 33-35. These are the approximate points in asset space and time when
(5.5.13) and (5.5.14) hold, and the output for time versus asset space is given
in figure(1) by lines 38 and 39. Figure(2) generates the value of the American
put option contract for four different times.

MATLAB Code bs1d.m

1. % Black-Scholes Equation
2. % One underlying asset
3. % Explicit time with projection
4. sig = .4
5. r = .08;
6. n = 100 ;
7. maxk = 1000;
8. f = 0.0;
9. T = .5;
10. dt = T/maxk;

5.5. OPTION CONTRACT MODELS 225

11. L = 2.;
12. dx = L/n;
13. alpha =.5*sig*sig*dt/(dx*dx);
14. sur = zeros(maxk+1,1);
15. % Define the payoff obstacle
16. for i = 1:n+1
17. x(i) = dx*(i-1);
18. u(i,1) = max(1.0 - x(i),0.0);
19. suro(i) = u(i,1);
20. end
21. u(1,1:maxk+1) = 1.0; % left BC
22. u(n+1,1:maxk+1) = 0.0; % right BC
23. % Use the explicit discretization
24. for k = 1:maxk
25. for i = 2:n
26. u(i,k+1) = dt*f+...
27. x(i)*x(i)*alpha*(u(i-1,k)+ u(i+1,k)-2.*u(i,k))...
28. + u(i,k)*(1 -r*dt) ...
29. -r*x(i)*dt/dx*(u(i,k)-u(i+1,k));
30. if (u(i,k+1)<suro(i)) % projection step
31. u(i,k+1) = suro(i);
32. end
33. if ((u(i,k+1)>suro(i)) & (u(i,k)==suro(i)))
34. sur(i) = (k+.5)*dt;
35. end
36. end
37. end
38. figure(1)
39. plot(20*dx:dx:60*dx,sur(20:60))
40. figure(2)
41. %mesh(u)
42. plot(x,u(:,201),x,u(:,401),x,u(:,601),x,u(:,maxk+1))
43. xlabel(’underlying asset’)
44. ylabel(’value of option’)
45. title(’American Put Option’)

Figure 5.5.2 contains the output for the above code where the curves for the
values of the American put option contracts are increasing with respect to τ (
decreasing with respect to time t). Careful inspection of the curves will verify
that the conditions at Sf in (5.5.13) and (5.5.14) are approximately satisfied.
Figure 5.5.3 has the curves for the value of the American put option contracts

at time t = 0.5 and variable volatilities σ = 0.4, 0.3, 0.2 and 0.1. Note as the
volatility decreases, the value of the option contract decreases towards the payoff
value. This monotonicity property can be used to imply volatility parameters
based on past market data.

226 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

Figure 5.5.2: P(S,T-t) for Variable Times

Figure 5.5.3: Option Values for Variable Volatilities

5.5. OPTION CONTRACT MODELS 227

Figure 5.5.4: Optimal Exercise of an American Put

Figure 5.5.4 was generated in part by figure(1) in bs1d.m where the smooth
curve represents the time when S equals the optimal exercise of the American
put option contract. The vertical axis is τ = T − t, and the horizontal axis
is the value of the underlying asset. The non smooth curve is a simulation of
the daily market values of the underlying asset. As long as the market values
are above Sf (t), the value of the American put option contract will be worth
more than the value of the payoff, max(E − S, 0), of the American put option
contract. As soon as the market value is equal to Sf (t), then the American
put option contract should be exercised This will generate revenue E = 1.0
where the t is about 0.06 before the expiration date and the market value
is about Sf (t) = 0.86. Since the holder of the American put option contract
will give up the underlying asset, the value of the payoff at this time is about
max(E − S, 0) = max(1.0− 0.86, 0) = 0.14.

5.5.6 Assessment

As usual the parameters in the Black-Scholes model may depend on time and
may be difficult to estimate. The precise assumptions under which the Black-
Scholes equation models option contracts should be carefully studied. There are
a number of other option contracts, which are different from the American put
option contract. Furthermore, there may be more than one underlying asset,
and this is analogous to heat diffusion in more than one direction.
The question of convergence of the discrete model to the continuous model

needs to be examined. These concepts are closely related to a well studied

228 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

applied area on "free boundary value" problems, which have models in the
form of variational inequalities and linear complementarity problems. Other
applications include mechanical obstacle problems, heat transfer with a change
in phase and fluid flow in earthen dams.

5.5.7 Exercises

1. Experiment with variable time and asset space steps.
2. Duplicate the calculations in Figures 5.5.2 and 5.5.3.
3. Experiment with variable interest rates r.
4. Experiment with variable exercise values E.
5. Experiment with variable expiration time T, and examine figure(1) gen-
erated by bs1d.m.

5.6 Black-Scholes Model for Two Assets

5.6.1 Introduction

A portfolio of investments can have a number of assets as well as a variety of
option contracts. Option contracts can have more than one underlying asset
and different types of payoff functions such as illustrated in Figures 5.6.1-5.6.3.
The Black-Scholes two assets model is similar to the heat diffusion model in
two space variables, and the explicit time discretization will also be used to
approximate the solution.

5.6.2 Application

Consider an American put option contract with two underlying assets and a
payoff function max(E − S1 − S2, 0) where E is the exercise price and S1 and
S2 are the values of the underlying assets. This is depicted in Figure 5.6.1
where the tilted plane is the positive part of the payoff function. The value of
the put contract must be above or equal to the payoff function. The dotted
curve indicates where the put value separates from the payoff function; this
is analogous to the Sf (t) in the one asset case. The dotted line will change
with time so that as time approaches the expiration date the dotted line will
move toward the line E − S1 − S2 = 0 = P . If the market values for the two
underlying assets at a particular time are on the dotted line for this time, then
the option should be exercised so as to optimize any profits.

5.6.3 Model

Along the two axes where one of the assets is zero, the model is just the
Black-Scholes one asset model. So the boundary conditions for the two as-
set model must come from the solution of the one asset Black-Scholes model.

5.6. BLACK-SCHOLES MODEL FOR TWO ASSETS 229

Figure 5.6.1: American Put with Two Assets

Let P (S1, S2, t) be the value of the American put option contract. For positive
values of the underlying assets the Black-Scholes equation is

Pt+
σ21
2
S21PS1S1+σ1σ1ρ12S1S2PS1S2+

σ22
2
S22PS2S2+rS1PS1+rS2PS2−rP = 0.

(5.6.1)
The following initial and boundary conditions are required:

P (S1, S2, T) = max(E − S1 − S2, 0) (5.6.2)

P (0, 0, t) = E (5.6.3)

P (L,S2, t) = 0 for L >> E (5.6.4)

P (S1, L, t) = 0 (5.6.5)

P (S1, 0, t) = from the one asset model (5.6.6)

P (0, S2, t) = from the one asset model. (5.6.7)

The put contract value must be at least the value of the payoff function

P (S1, S2, t) ≥ max(E − S1 − S2, 0). (5.6.8)

Other payoff functions can be used, and these will result in more complicated
boundary conditions. For example, if the payoff function is max(E1−S1, 0.0)+
max(E2 − S2, 0.0), then P (L, S2, t) and P (S1, L, t) will be nonzero solutions of
two additional one asset models.

Black Scholes Model of an American Put with Two Assets.

Let the payoff function be max(E − S1 − S2, 0).
Require the inequality in (5.6.8) to hold.
The initial and boundary condition are in equations (5.6.2)-(5.6.7).
Either P (S1, S2, t) = E − S1 − S2 or P (S1, S2, t) satisfies (5.6.1).

230 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

5.6.4 Method

The explicit time discretization with projection to the payoff obstacle will be
used. Again replace the time variable by τ ≡ T − t. Now abuse notation a
little and write P (S1, S2, τ) in place of P (S1, S2, t) = P (S1, S2, T − τ) so that
−Pτ replaces Pt. With the initial and boundary conditions given one may
apply the explicit finite difference method as used for the heat diffusion in two
directions to obtain P k+1

i,j approximations for P (i∆S1, j∆S2, (k + 1)∆τ). For
the inequality condition simply choose the P k+1

i,j = max(E − i∆S1 − j∆S2, 0)

if P k+1
i,j < max(E − i∆S1 − j∆S2, 0).

Explicit Method with Projection for (5.6.1)-(5.6.8).

Let α1 ≡ (∆τ/(∆S1)2)(σ21/2),
α2 ≡ (∆τ/(∆S2)2)(σ22/2),
α12 ≡ (∆τ/(2∆S12∆S2))ρ12(σ1σ2/2)
S1i ≡ i∆S1 and S2j ≡ j∆S2

P k+1
i,j = P k

i,j + α1S
2
1i(P

k
i−1,j − 2P k

i,j + P k
i+1,j)

+2S1iS2jα12((Pi+1,j+1 − Pi−1,j+1)− (Pi+1,j−1 − Pi−1,j−1))
+α2S

2
2j(P

k
i,j−1 − 2P k

i,j + P k
i,j+1)

+ (∆τ/∆S1) rS1i(P
k
i+1,j − P k

i,j)

+ (∆τ/∆S2) rS2j(P
k
i,j+1 − P k

i,j)

−∆τ rP k
i,j

P k+1
ij = max(P k+1

ij ,max(E − i∆S1 − j∆S2, 0)).

5.6.5 Implementation

The two underlying asset model contains four one dimensional models along
the boundary of the two underlying asset domain. In the interior of the domain
the two dimensional Black-Scholes equation must be solved. In the MATLAB
code bs2d.m the input is given in lines 1-35, and two possible payoff functions
are defined in lines 26-35. The time loop is done in lines 36-124. The one
dimensional Black-Scholes equations solves along the boundaries are in lines
44-57 for y = 0, 58-72 for y = L, 73-87 for x = 0 and 88-102 for x = L. For
y = 0 the projection to the payoff obstacle is done in lines 50-52, and the times
when the put value separates from the payoff obstacle is found in lines 53-56.
The two dimensional Black-Scholes equation is solved for the interior nodes in
line 103-123. Lines 124-137 generate four graphs depicting the value of the put
contract and the optimal exercise times, see Figures 5.6.2 and 5.6.3.

MATLAB Code bs2d.m

1. % Program bs2d
2. % Black-Scholes Equation
3. % Two underlying assets

5.6. BLACK-SCHOLES MODEL FOR TWO ASSETS 231

4. % Explicit time with projection
5. clear;
6. n = 40;
7. maxk = 1000;
8. f = .00;
9. T=.5;
10. dt = T/maxk;
11. L=4;
12. dx = L/n;
13. dy = L/n;
14. sig1 = .4;
15. sig2 = .4;
16. rho12 = .3;
17. E1 = 1;
18. E2 = 1.5;
19. total = E1 + E2;
20. alpha1 = .5*sig1^2*dt/(dx*dx);
21. alpha2 = .5*sig2^2*dt/(dy*dy);
22. alpha12 = .5*sig1*sig2*rho12*dt/(2*dx*2*dy);
23. r = .12;
24. sur = zeros(n+1);
25. % Insert Initial Condition
26. for j = 1:n+1
27. y(j) = dy*(j-1);
28. for i = 1:n+1
29. x(i) = dx*(i-1);
30. %Define the payoff function
31. u(i,j,1) = max(E1-x(i),0.0) + max(E2-y(j),0.0);
32. % u(i,j,1) = max(total -(x(i) + y(j)),0.0);
33. suro(i,j) = u(i,j,1);
34. end;
35. end;
36. % Begin Time Steps
37. for k = 1:maxk
38. % Insert Boundary Conditions
39. u(n+1,1,k+1) = E2;
40. u(n+1,n+1,k+1) = 0.0;
41. u(1,n+1,k+1) = E1 ;
42. u(1,1,k+1) = total;
43. % Do y = 0.
44. j=1;
45. for i = 2:n
46. u(i,j,k+1) = dt*f+x(i)*x(i)*alpha1*...
47. (u(i-1,j,k) + u(i+1,j,k)-2.*u(i,j,k)) ...
48. +u(i,j,k)*(1 -r*dt)- ...

232 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

49. r*x(i)*dt/dx*(u(i,j,k)-u(i+1,j,k));
50. if (u(i,j,k+1)<suro(i,j))
51. u(i,j,k+1) = suro(i,j);
52. end
53. if ((u(i,j,k+1)>suro(i,j))&...
54. (u(i,j,k)==suro(i,j)))
55. sur(i,j)= k+.5;
56. end
57. end
58. % Do y = L.
59. j=n+1;
60. for i = 2:n
61. u(i,j,k+1) = dt*f+x(i)*x(i)*alpha1*...
62. (u(i-1,j,k) + u(i+1,j,k)-2.*u(i,j,k)) ...
63. +u(i,j,k)*(1 -r*dt)- ...
64. r*x(i)*dt/dx*(u(i,j,k)-u(i+1,j,k));
65. if (u(i,j,k+1)<suro(i,j))
66. u(i,j,k+1) = suro(i,j);
67. end
68. if ((u(i,j,k+1)>suro(i,j))&...
69. (u(i,j,k)==suro(i,j)))
70. sur(i,j)= k+.5;
71. end
72. end
73. % Do x = 0.
74. i=1;
75. for j = 2:n
76. u(i,j,k+1) = dt*f+y(j)*y(j)*alpha2*...
77. (u(i,j-1,k) + u(i,j+1,k)-2.*u(i,j,k))...
78. +u(i,j,k)*(1 -r*dt)-...
79. r*y(j)*dt/dy*(u(i,j,k)-u(i,j+1,k));
80. if (u(i,j,k+1)<suro(i,j))
81. u(i,j,k+1) = suro(i,j);
82. end
83. if ((u(i,j,k+1)>suro(i,j)) &...
84. (u(i,j,k)==suro(i,j)))
85. sur(i,j)= k+.5;
86. end
87. end
88. % Do x = L.
89. i=n+1;
90. for j = 2:n
91. u(i,j,k+1) = dt*f+y(j)*y(j)*alpha2*...
92. (u(i,j-1,k) + u(i,j+1,k)-2.*u(i,j,k))...
93. +u(i,j,k)*(1 -r*dt)-...

5.6. BLACK-SCHOLES MODEL FOR TWO ASSETS 233

94. r*y(j)*dt/dy*(u(i,j,k)-u(i,j+1,k));
95. if (u(i,j,k+1)<suro(i,j))
96. u(i,j,k+1) = suro(i,j);
97. end
98. if ((u(i,j,k+1)>suro(i,j))&...
99. (u(i,j,k)==suro(i,j)))
100. sur(i,j)= k+.5;
101. end
102. end
103. % Solve for Interior Nodes
104. for j= 2:n
105. for i = 2:n
106. u(i,j,k+1) = dt*f+x(i)*x(i)*alpha1*...
107. (u(i-1,j,k) + u(i+1,j,k)-2.*u(i,j,k))...
108. +u(i,j,k)*(1 -r*dt)...
109. -r*x(i)*dt/dx*(u(i,j,k)-u(i+1,j,k))...
110. +y(j)*y(j)*alpha2*...
111. (u(i,j-1,k) + u(i,j+1,k)-2.*u(i,j,k)) ...
112. -r*y(j)*dt/dy*(u(i,j,k)-u(i,j+1,k)) ...
113. +2.0*x(i)*y(j)*alpha12*...
114. (u(i+1,j+1,k)-u(i-1,j+1,k)

-u(i+1,j-1,k)+u(i-1,j-1,k));
115. if (u(i,j,k+1)<suro(i,j))
116. u(i,j,k+1) = suro(i,j);
117. end
118. if ((u(i,j,k+1)>suro(i,j)) &...
119. (u(i,j,k)==suro(i,j)))
120. sur(i,j)= k+.5;
121. end
122. end
123. end
124. end
125. figure(1)
126. subplot(2,2,1)
127. mesh(x,y,suro’)
128. title(’Payoff Value’)
129. subplot(2,2,2)
130. mesh(x,y,u(:,:,maxk+1)’)
131. title(’Put Value’)
132. subplot(2,2,3)
133. mesh(x,y,u(:,:,maxk+1)’-suro’)
134. title(’Put Minus Payoff’)
135. subplot(2,2,4)
136. mesh(x,y,sur’*dt)
137. title(’Optimal Exercise Times’)

234 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

Figure 5.6.2: max(E1 +E2 − S1 − S2, 0)

Figure 5.6.2 is for the lumped payoff max(E1 + E2 − S1 − S2, 0) with two
assets with different volatilities σ1 = 0.4 and σ2 = 0.1. All four graphs have
the underlying asset values on the x and y axes. The upper left graph is for
the payoff function, and the upper right graph is for the value of the American
put option contract at time equal to 0.5 before the expiration date, T . Note
the difference in the graphs along the axes, which can be attributed to the
larger volatility for the first underlying asset. The lower left graph depicts the
difference in the put value at time equal to 0.5 and the value of the payoff.
The lower right graph depicts time of optimal exercise versus the two underling
assets. Here the vertical axis has τ = T − t, and the interface for the optimal
exercise of the put moves towards the vertical axis as τ increases.
Figure 5.6.3 is for the distributed payoff max(E1 − S1, 0)+max(E2 −S2, 0)

with two assets and with equal volatilities σ1 = 0.4 and σ2 = 0.4. and with
different exercise values E1 = 1.0 and E2 = 1.5. All four graphs have the
underlying asset values on the x and y axes. The upper left graph is for the
payoff function, and the upper right graph is for the value of the American
put option contract at time equal to 0.5 before the expiration date. Note the
difference in the graphs along the axes, which can be attributed to the different
exercise values. The lower left graph depicts the difference in the put value at
time equal to 0.5 and the value of the payoff. The lower right graph has time
of optimal exercise versus the two underling assets. Here the vertical axis has
τ = T − t where T is the expiration date. There are three interface curves for
possible optimal exercise times. One is inside the underlying asset region [0
E1]× [0 E2] and moves towards the z axis as τ increases. The other two are in

5.6. BLACK-SCHOLES MODEL FOR TWO ASSETS 235

Figure 5.6.3: max(E1 − S1, 0) +max(E2 − S2, 0)

the regions [E1 4]× [0 E2] and [0 E1]× [E2 4] and move towards the vertical
lines containing the points (4, 0, 0) and (0, 4, 0), respectively.

5.6.6 Assessment

The parameters in the Black-Scholes model may depend on time and may be
difficult to estimate. The precise assumptions under which the Black-Scholes
equation models option contracts should be carefully studied. The question of
convergence of the discrete model to the continuous model needs to be exam-
ined.
The jump from one to multiple asset models presents some interesting dif-

ferences from heat and mass transfer problems. The boundary conditions are
implied from the solution of the one asset Black-Scholes equation. When going
from one to two assets, there may be a variety of payoff or obstacle functions
that will result in multiple interfaces for the possible optimal exercise opportu-
nities. There may be many assets as contrasted to only three space directions
for heat and mass transfer.

5.6.7 Exercises

1. Experiment with variable time and asset space steps.
2. Duplicate the calculations in Figures 5.6.2 and 5.6.3.
3. Experiment with other payoff functions.
4. Experiment with variable interest rates r.

236 CHAPTER 5. EPIDEMICS, IMAGES AND MONEY

5. Experiment with variable exercise values E.
6. Experiment with variable expiration time T.
7. Experiment with variable volatility σ.

Chapter 6

High Performance
Computing

Because many applications are very complicated such as weather prediction,
there will be large number of unknowns. For heat diffusion in one direction the
long thin wire was broken into n smaller cells and the temperature was approx-
imated for all the time steps in each segment. Typical values for n could range
from 50 to 100. If one needs to model temperature in a tropical storm, then
there will be diffusion in three directions. So, if there are n = 100 segments
in each direction, then there will be n3 = 1003 = 106 cells each with un-
known temperatures, velocities components and pressures. Three dimensional
problems present strong challenges of the memory, computational units and to
storage of data. The first three sections are a very brief description of serial,
vector and multiprocessing computer architectures. The last three sections il-
lustrate the use of the IBM/SP, MPI for the parallel computation of matrix
products and the two and three space variable models of heat diffusion and
pollutant transfer. Chapter 7 contains a more detailed description of MPI and
the essential subroutines for communication among the processors. Additional
introductory materials on parallel computations can be found in P. S. Pacheco
[17] and more advanced topics in Dongarra, Duff, Sorensen and van der Vorst
[5].

6.1 Vector Computers and Matrix Products

6.1.1 Introduction

In this section we consider the components of a computer and the various ways
they are connected. In particular, the idea behind a vector pipeline is in-
troduced, and a model for speedup is presented. Applications to matrix-vector
products and to heat and mass transfer in two directions will be presented. The

237

238 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Figure 6.1.1: von Neumann Computer

sizes of matrix models substantially increase when the heat and mass transfer
in two or three directions are modeled. This is the reason for considering vector
and multiprocessing computers.
The von Neumann definition of a computer contains three parts: main

memory, input-output device and central processing unit (CPU). The CPU
has three components: the arithmetic logic unit, the control unit and the local
memory. The arithmetic logic unit does the floating point calculations while
the control unit governs the instructions and data. Figure 6.1.1 illustrates a
von Neumann computer with the three basic components. The local memory
is small compared to the main memory, but moving data within the CPU is
usually very fast. Hence, it is important to move data from the main memory to
the local memory and do as much computation with this data as possible before
moving it back to the main memory. Algorithms that have been optimized for
a particular computer will take these facts into careful consideration.
Another way of describing a computer is the hierarchical classification of

its components. There are three levels: the processor level with wide band
communication paths, the register level with several bytes (8 bits per byte)
pathways and the gate or logic level with several bits in its pathways. Figure
6.1.2 is a processor level depiction of a multiprocessing computer with four
CPUs. The CPUs communicate with each other via the shared memory. The
switch controls access to the shared memory, and here there is a potential for a
bottleneck. The purpose of multiprocessors is to do more computation in less
time. This is critical in many applications such as weather prediction.
Within the CPU is the arithmetic logic unit with many floating point adders.

These are as a register level devices. A floating point add can be described in
four distinct steps each requiring a distinct hardware segment. For example,
use four digits to do a floating point add 100.1 + (-3.6):

CE: compare expressions .1001 · 103 and −.36 · 101
AE: mantissa alignment .1001 · 103 and −.0036 · 103
AD: mantissa add 1001− 0036 = 0965
NR: normalization .9650 · 102.

This is depicted by the Figure 6.1.3 where the lines indicate communication
pathways with several bytes of data. The data moves from left to right in time
intervals equal to the clock cycle time of the particular computer. If each step

6.1. VECTOR COMPUTERS AND MATRIX PRODUCTS 239

Figure 6.1.2: Shared Memory Multiprocessor

Figure 6.1.3: Floating Point Add

takes one clock cycle and the clock cycle time is 6 nanoseconds, then a floating
point add will take 24 nanoseconds (10−9 sec.).
Within a floating point adder there are many devices that add integers.

These devices typically deal with just a few bits of information and are examples
of gate or logic level devices. Here the integer adds can be done by base two
numbers. These devices are combinations of a small number of transistors
designed to simulate truth tables that reflect basic binary operations. Table
6.1.1 indicates how one digit of a base two number with 64 digits (or bits) can
be added. In Figure 6.1.4 the input is x, y and c1 (the carry from the previous
digit) and the output is z and c0 (the carry to the next digit).

Table 6.1.1: Truth Table for Bit Adder
x y c1 z c0
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

240 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Figure 6.1.4: Bit Adder

6.1.2 Applied Area

Vector pipelines were introduced so as to make greater use of the register level
hardware. We will focus on the operation of floating point addition, which
requires four distinct steps for each addition. The segments of the device that
execute these steps are only busy for one fourth of the time to perform a floating
point add. The objective is to design computer hardware so that all of the
segments will be busy most of the time. In the case of the four segment floating
point adder this could give a speedup possibly close to four.
A vector pipeline is a register level device, which is usually in either the

control unit or the arithmetic logic unit. It has a collection of distinct hardware
modules or segments that (i) execute the steps of an operation and (ii) each
segment is busy once the pipeline is full. Figure 6.1.5 depicts a four segment
vector floating point adder in the arithmetic logic unit. The first pair of floating
point numbers is denoted by D1, and this pair enters the pipeline in the upper
left in the figure. Segment CE on D1 is done during the first clock cycle. During
the second clock cycle D1 moves to segment AE, and the second pair of floating
point numbers D2 enters segment CE. Continue this process so that after three
clock cycles the pipeline is full and a floating point add is produced every clock
cycle. So, for large number of floating point adds with four segments the ideal
speedup is four.

6.1.3 Model

A discrete model for the speedup of a particular pipeline is as follows. Such
models are often used in the design phase of computers. Also they are used to
determine how to best utilize vector pipelines on a selection of applications.

Vector Pipeline Timing Model.

Let K = time for one clock cycle,
N = number of items of data,
L = number of segments,

6.1. VECTOR COMPUTERS AND MATRIX PRODUCTS 241

Figure 6.1.5: Vector Pipeline for Floating Point Add

Sv = startup time for the vector pipeline operation and
Ss = startup time for a serial operation.

Tserial = serial time = Ss + (LK)N .
Tvector = vector time = [Sv + (L− 1)K] +KN .
Speedup = Tserial/Tvector.

The vector startup time is usually much larger than the serial startup time.
So, for small amounts of data (small N), the serial time may be smaller than
the vector time! The vector pipeline does not start to become effective until
it is full, and this takes Sv + (L − 1)K clock cycles. Note that the speedup
approaches the number of segments L as N increases.
Another important consideration in the use of vector pipelines is the orderly

and timely input of data. An example is matrix-vector multiplication and the
Fortran programming language. Fortran stores arrays by listing the columns
from left to right. So, if one wants to input data from the rows of a matrix,
then this will be in stride equal to the length of the columns. On the other
hand, if one inputs data from columns, then this will be in stride equal to one.
For this reason, when vector pipelines are used to do matrix-vector products,
the ji version performs much better than the ij version. This can have a very
significant impact on the effective use of vector computers.

6.1.4 Implementation

In order to illustrate the benefits of vector pipelines, consider the basic matrix-
vector product. The ij method uses products of rows times the column vector,
and the ji method uses linear combinations of the columns. The advantage of
the two methods is that it often allows one to make use of particular properties
of a computer such as communication speeds and local versus main memory
size. We shall use the following notation:

242 CHAPTER 6. HIGH PERFORMANCE COMPUTING

x = [xj] is a column vector where j = 1, ..., n and
A = [ai,j] is a matrix where i = 1, ...,m are the row numbers

and j = 1, ..., n are the column numbers.

Matrix-vector Product (ij version) Ax = d.

for i = 1,m
di = 0
for j = 1, n

di = di + ai,jxj
endloop

endloop.

An alternate way to do matrix-vector products is based on the following
reordering of the arithmetic operations. Consider the case where n = m = 3
and

a1,1x1 + a1,2x2 + a1,3x3 = d1

a2,1x1 + a2,2x2 + a2,3x3 = d2

a3,1x1 + a3,2x2 + a3,3x3 = d3.

This can be written in vector form as a1,1
a2,1
a3,1

x1 +
 a1,2

a2,2
a3,2

x2 +
 a1,3

a2,3
a3,3

x3 =
 d1

d2
d3

 .
In other words the product is a linear combination of the columns of the matrix.
This amounts to reversing the order of the nested loop in the above algorithm.
The matrix-matrix products are similar, but they will have three nested loops.
Here there are 6 different orderings of the loops, and so, the analysis is a little
more complicated.

Matrix-vector Product (ji version) Ax = d.

d = 0
for j = 1, n

for i = 1,m
di = di + ai,jxj

endloop
endloop.

The calculations in Table 6.1.2 were done on the Cray T916 at the North
Carolina Supercomputing Center. All calculations were for a matrix-vector
product where the matrix was 500 × 500 for 2(500)2 = 5 · 105 floating point
operations. In the ji Fortran code the inner loop was vectorized or not vectorized
by using the Cray directives !dir$ vector and !dir$ novector just before the loop
30 in the following code segment:

6.1. VECTOR COMPUTERS AND MATRIX PRODUCTS 243

Table 6.1.2: Matrix-vector Computation Times
Method Time x 10−4 sec.

ji (vec. on, -O1) 008.86
ji (vec. off, -O1) 253.79
ij (vec. on, -O1) 029.89
ij (vec. off, -O1) 183.73
matmul (-O2) 033.45
ji (vec. on, -O2) 003.33

do 20 j = 1,n
!dir$ vector

do 30 i = 1,n
prod(i) = prod(i) + a(i,j)*x(j)

30 continue
20 continue.

The first two calculations indicate a speedup of over 28 for the ji method. The
next two calculations illustrate that the ij method is slower than the ji method.
This is because Fortran stores numbers of a two dimensional array by columns.
Since the ij method gets rows of the array, the input into the vector pipe will
be in stride equal to n. The fifth calculation used the f90 intrinsic matmul
for matrix-vector products. The last computation used full optimization, -O2.
The loops 20 and 30 were recognized to be a matrix-vector product and an
optimized BLAS2 subroutine was used. BLAS2 is a collection of basic lin-
ear algebra subroutines with order n2 operations, see http://www.netlib.org or
http://www.netlib.org/blas/sgemv.f. This gave an additional speedup over 2 for
an overall speedup equal to about 76. The floating point operations per second
for this last computation was (5 105)/ (3.33 10−4) or about 1,500 megaflops.

6.1.5 Assessment

Vector pipes can be used to do a number of operations or combination of oper-
ations. The potential speedup depends on the number of segments in the pipe.
If the computations are more complicated, then the speedups will decrease or
the code may not be vectorized. There must be an orderly input of data into
the pipe. Often there is a special memory called a register, which is used to
input data into the pipe. Here it is important to make optimal use of the size
and speed these registers. This can be time consuming effort, but many of the
BLAS subroutines have been optimized for certain computers.
Not all computations have independent parts. For example, consider the

following calculations a(2) = c + a(1) and a(3) = c + a(2). The order of the
two computations will give different results! This is called a data dependency.

244 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Compilers will try to detect these, but they may or may not find them. Basic
iterative methods such as Euler or Newton methods have data dependencies.
Some calculations can be reordered so that they have independent parts. For
example, consider the traditional sum of four numbers ((a(1)+a(2))+a(3)))+
a(4). This can be reordered into partial sums (a(1) + a(2)) + (a(3) + a(4)) so
that two processor can be used.

6.1.6 Exercises

1. Write a Fortran or C or MATLAB code for the ij and ji matrix vector
products.
2. Write a Fortran or C or MATLAB code so that the BLAS subroutine
sgemv() is used.
3. On your computing environment do calculations for a matrix-vector prod-
uct similar to those in Table 6.1.2 that were done on the Cray T916. Compare
the computing times.
4. Consider the explicit finite difference methods in Chapter 1.2-1.5.
(a). Are the calculations in the outer time loops independent, vectoriz-

able and why?
(b). Are the calculations in the inner space loops independent, vectoriz-

able and why?

6.2 Vector Computations for Heat Diffusion

6.2.1 Introduction

Consider heat conduction in a thin plate, which is thermally insulated on its
surface. The model of the temperature will have the form uk+1 = Auk + b
for the time dependent case and u = Au + b for the steady state case. In
general, the matrix A can be extremely large, but it will also have a special
structure with many more zeros than nonzero components. Here we will use
vector pipelines to execute this computation, and we will also extend the model
to heat diffusion in three directions.

6.2.2 Applied Area

Previously we considered the model of heat diffusion in a long thin wire and in
a thin cooling fin. The temperature was a function of one or two space variables
and time. A more realistic model of temperature requires it to be a function of
three space variables and time. Consider a cooling fin that has diffusion in all
three space directions as discussed in Chapter 4.4. The initial temperature of
the fin will be given and one hot surface will be specified as well as the other
five cooler surfaces. The objective is predict the temperature in the interior of
the fin so as to be able to determine the effectiveness of the cooling fin.

6.2. VECTOR COMPUTATIONS FOR HEAT DIFFUSION 245

6.2.3 Model

The models can be formulated as either a continuous model or as a discrete
model. For appropriate choices of time and space steps the solutions should
be close. In order to generate a 3D time dependent model for heat transfer
diffusion, the Fourier heat law must be applied to the x, y and z directions.
The continuous and discrete 3D models are very similar to the 2D versions.
In the continuous 3D model the temperature u will depend on four variables,
u(x, y, z, t). In (6.2.1) −(Kuz)z models the diffusion in the z direction where
the heat is entering and leaving the top and bottom of the volume ∆x∆y∆z.

Continuous 3D Model for u = u(x, y, z, t).

ρcut − (Kux)x − (Kuy)y − (Kuz)z = f (6.2.1)

u(x, y, z, 0) = given and (6.2.2)

u(x, y, z, t) = given on the boundary. (6.2.3)

Explicit Finite Difference 3D Model for uki,j,l ≈ u(i∆x, j∆y, l∆z, k∆t).

uk+1i,j,l = (∆t/ρc)fki,j,l + (1− α)uki,j,l

+∆t/∆x2(uki+1,j,l + uki−1,j,l)

+∆t/∆y2(uki,j+1,l + uki,j−1,l)

+∆t/∆z2(uki,j,l+1 + uki,j,l−1) (6.2.4)

α = (K/ρc)∆t(2/∆x2 + 2/∆y2 + 2/∆z2),

i, j, l = 1, .., n− 1 and k = 0, ..,maxk − 1,
u0i,j,l = given, i, j, l = 1, .., n− 1 and (6.2.5)

uki,j,l = given, k = 1, ...,maxk, i, j, l on the boundary grid. (6.2.6)

Stability Condition.

1− ((K/ρc)∆t(2/∆x2 + 2/∆y2 + 2/∆z2)) > 0.

6.2.4 Method

The computation of the above explicit model does not require the solution of a
linear algebraic system at each time step, but it does require the time step to be
suitably small so that the stability condition holds. Since there are three space
directions, there are three indices associated with these directions. Therefore,
there will be four nested loops with the time loop being the outer loop. The
inner three loops can be in any order because the calculations for uk+1i,j,l are
independent with respect to the space indices. This means one could use vector
or multiprocessing computers to do the inner loops.

246 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Table 6.2.1: Heat Diffusion Vector Times
Loop Length Serial Time Vector Time Speedup
30 (Alliant) 04.07 2.60 1.57
62 (Alliant) 06.21 2.88 2.16
126 (Alliant) 11.00 4.04 2.72
254 (Alliant) 20.70 6.21 3.33
256(Cray) 1.36 .0661 20.57
512(Cray) 2.73 .1184 23.06

6.2.5 Implementation

The following code segment for 2D diffusion was run on the Cray T916 com-
puter. In code the Cray directive !dir$ vector before the beginning of loop 30
instructs the compiler to use the vector pipeline on loop 30. Note the index for
loop 30 is i, and this is a row number in the array u. This ensures that the
vector pipe can sequentially access the data in u.

do 20 k = 1,maxit
!dir$ vector

do 30 i = 2,n
u(i,k+1) = dt*f + alpha*(u(i-1,k) + u(i+1,k))

+ (1 - 2*alpha)*u(i,k)
30 continue
20 continue

Table 6.2.1 contains vector calculations for an older computer called the
Alliant FX/40 and for the Cray T916. It indicates increased speedup as the
length of loop 30 increases. This is because the startup time relative to the
execution time is decreasing. The Alliant FX/40 has a vector pipe with four
segments and has a limit of four for the speedup. The Cray T916 has more
segments in its vector pipeline with speedups of about 20. Here the speedup
for the Cray T916 is about 20 because the computations inside loop 30 are a
little more involved than those in the matrix-vector product example.

The MATLAB code heat3d.m is for heat diffusion in a 3D cooling fin, which
has initial temperature equal to 70., and with temperature at the boundary x =
0. equal to 370. for the first 50 time steps and then set equal to 70 after 50 time
steps. The other temperatures on the boundary are always equal to 70. The
code in heat3d.m generates a 4D array whose entries are the temperatures for
3D space and time. The input data is given in lines 1-28, the finite difference
method is executed in the four nested loops in lines 37-47, and some of the
output is graphed in the 3D plot, using the MATLAB command slice in line 50.
The commands slice and pause allow the user to view the heat moving from the
hot mass towards the cooler sides of the fin. This is much more interesting than

6.2. VECTOR COMPUTATIONS FOR HEAT DIFFUSION 247

the single grayscale plot in Figure 6.2.1 at time 60. The coefficient, 1-alpha, in
line 41 must be positive so that the stability condition holds.

MATLAB Code heat3d.m

1. % Heat 3D Diffusion.
2. % Uses the explicit method.
3. % Given boundary conditions on all sides.
4. clear;
5. L = 2.0;
6. W = 1.0;
7. T = 1.0;
8. Tend = 100.;
9. maxk = 200;
10. dt = Tend/maxk;
11. nx = 10.;
12. ny = 10;
13. nz = 10;
14. u(1:nx+1,1:ny+1,1:nz+1,1:maxk+1) = 70.; % Initial temperature.
15. dx = L/nx;
16. dy = W/ny;
17. dz = T/nz;
18. rdx2 = 1./(dx*dx);
19. rdy2 = 1./(dy*dy);
20. rdz2 = 1./(dz*dz);
21. cond = .001;
22. spheat = 1.0;
23. rho = 1.;
24. a = cond/(spheat*rho);
25. alpha = dt*a*2*(rdx2+rdy2+rdz2);
26. x = dx*(0:nx);
27. y = dy*(0:ny);
28. z = dz*(0:nz);
29. for k=1:maxk+1 % Hot side of fin.
30. time(k) = (k-1)*dt;
31. for l=1:nz+1
32. for i=1:nx+1
33. u(i,1,l,k) =300.*(time(k)<50)+ 70.;
34. end
35. end
36. end
37. for k=1:maxk % Explicit method.
38. for l=2:nz
39. for j = 2:ny
40. for i = 2:nx
41. u(i,j,l,k+1) =(1-alpha)*u(i,j,l,k) ...

248 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Figure 6.2.1: Temperature in Fin at t = 60.

42. +dt*a*(rdx2*(u(i-1,j,l,k)+u(i+1,j,l,k))...
43. +rdy2*(u(i,j-1,l,k)+u(i,j+1,l,k))...
44. +rdz2*(u(i,j,l-1,k)+u(i,j,l+1,k)));
45. end
46. end
47. end
48. v=u(:,:,:,k);
49. time(k)
50. slice(x,y,z,v,.75,[.4 .9],.1)
51. colorbar
52. pause
53. end

6.2.6 Assessment

The explicit time discretization is an example of a method that is ideally vector-
izable. The computations in the inner space loops are independent so that the
inner loops can be executed using a vector or multiprocessing computer. How-
ever, the stability condition on the step sizes can still be a serious constraint. An
alternative is to use an implicit time discretization, but as indicated in Chapter
4.5 this generates a sequence of linear systems, which require some additional
computations at each time step.

6.3. MULTIPROCESSORS AND MASS TRANSFER 249

6.2.7 Exercises

1. Duplicate the calculations in heat3d.m. Experiment with the slice para-
meters in the MATLAB command slice.
2. In heat3d.m experiment with different time mesh sizes, maxk = 150, 300
and 450. Be sure to consider the stability constraint.
3. In heat3d.m experiment with different space mesh sizes, nx or ny or
nz = 10, 20 and 40. Be sure to consider the stability constraint.
4. In heat3d.m experiment with different thermal conductivitiesK = cond =
.01, .02 and .04. Be sure to make any adjustments to the time step so that the
stability condition holds.
5. Suppose heat is being generated at a rate of 3 units of heat per unit
volume per unit time.
(a). Modify heat3d.m to implement this source of heat.
(b). Experiment with different values for this heat source f = 0, 1, 2, 3.

6.3 Multiprocessors and Mass Transfer

6.3.1 Introduction

Since computations for 3D heat diffusion require four nested loops, the compu-
tational demands increase. In such cases the use of vector or multiprocessing
computers could be very effective. Another similar application is the concentra-
tion of a pollutant as it is dispersed within a deep lake. Here the concentration
is a function of time and three space variables. This problem, like heat diffusion
in 3D, will also require more computing power. In this section we will describe
and use a multiprocessing computer.
A multiprocessing computer is a computer with more than one "tightly"

coupled CPU. Here "tightly" means that there is relatively fast communication
among the CPUs; this is in contrast with a "network" of computers. There
are several classification schemes that are commonly used to describe various
multiprocessors: memory, communication connections and data streams.
Two examples of the memory classification are shared and distributed. The

shared memory multiprocessors communicate via the global shared memory,
and Figure 6.1.2 is a depiction of a four processor shared memory multiproces-
sor. Shared memory multiprocessors often have in code directives that indicate
the code segments to be executed concurrently. The distributed memory mul-
tiprocessors communicate by explicit message passing, which must be part of
the computer code. Figures 6.3.1 and 6.3.2 illustrate three types of distributed
memory computers. In these depictions each node could have a several CPUs,
for example one for computation and one for communication. Another illus-
tration is each node could be a shared memory computer, and the IBM/SP is
particular example of this.
Figure 6.3.1 contains the two extreme communication connections. The

ring multiprocessor will have two communication links for each node, and the

250 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Figure 6.3.1: Ring and Complete Multiprocessrs

Figure 6.3.2: Hypercube Multiprocessor

complete multiprocessor will have p−1 communications links per node where p
is the number of nodes. If p is large, then the complete multiprocessor has a very
complicated physical layout. Interconnection schemes are important because of
certain types of applications. For example in a closed loop hydraulic system a
ring interconnection might be the best. Or, if a problem requires a great deal of
communication between processors, then the complete interconnection scheme
might be appropriate. The hypercube depicted in Figure 6.3.2 is an attempt to
work in between the extremes given by the ring and complete schemes. The
hypercube has p = 2d nodes, and each node has d = log2(p) communication
links.

Classification by data streams has two main categories: SIMD and MIMD.
The first represents single instruction and multiple data, and an example is a
vector pipeline. The second is multiple instruction and multiple data. The Cray
Y-MP and the IBM/SP are a examples of an MIMD. One can send different
data and different code to the various processors. However, MIMD computers
are often programmed as SIMD computers, that is, the same code is executed,
but different data is input to the various CPUs.

6.3. MULTIPROCESSORS AND MASS TRANSFER 251

6.3.2 Applied Area

Multiprocessing computers have been introduced to obtain more rapid compu-
tations. Basically, there are two ways to do this: either use faster computers
or use faster algorithms. There are natural limits on the speed of computers.
Signals cannot travel any faster than the speed of light where it takes about
one nanosecond to travel one foot. In order to reduce communication times,
the devices must be moved closer. Eventually, the devices will be so small that
either uncertainty principles will become dominant or the fabrication of chips
will become too expensive.
An alternative is to use more than one processor on those problems that

have a number of independent calculations. One class of problems that have
many matrix products, which are independent calculations, is to the area of
visualization where the use of multiprocessors is very common. But, not all
computations have a large number of independent calculations. Here it is im-
portant to understand the relationship between the number of processors and
the number of independent parts in a calculation. Below we will present a
timing model of this, as well as a model to 3D pollutant transfer in a deep lake.

6.3.3 Model

An important consideration is the number of processors to be used. In order
to be able to effectively use p processors, one must have p independent tasks to
be performed. Vary rarely is this exactly the case; parts of the code may have
no independent parts, two independent parts and so forth. In order to model
the effectiveness of a multiprocessor with p processors, Amdahl’s timing model
has been widely used. It makes the assumption that α is the fraction of the
computations with p independent parts and the rest of the calculation 1 − α
has one independent part.

Amdahl’s Timing Model.

Let p = the number of processors,
α = the fraction with p independent parts,
1− α = the fraction with one independent part,
T1 = serial execution time,
(1− α)T1 = execution time for the 1 independent part and
αT1/p = execution time for the p independent parts.

Speedup = Sp(α) =
T1

(1− α)T1 + αT1/p
=

1

1− α+ α/p
. (6.3.1)

Example. Consider a dot product of two vectors of dimension n = 100. There
are 100 scalar products and 99 additions, and we may measure execution time
in terms of operations so that T1 = 199. If p = 4 and the dot product is broken
into four smaller dot products of dimension 25, then the parallel part will have
4(49) operations and the serial part will require 3 operations to add the smaller

252 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Table 6.3.1: Speedup and Efficiency
Processor Speedup Efficiency

2 1.8 .90
4 3.1 .78
8 4.7 .59
16 6.4 .40

dot products. Thus, α = 196/199 and S4 = 199/52. If the dimension increases
to n = 1000, then α and S4 will increases to α = 1996/1999 and S4 = 1999/502.
If α = 1, then the speedup is p, the ideal case. If α = 0, then the speedup

is 1! Another parameter is the efficiency, and this is defined to be the speedup
divided by the number of processors. Thus, for a fixed code the α will be fixed,
and the efficiency will decrease as the number of processors increases. Another
way to view this is in Table 6.3.1 where α = .9 and p varies from 2 to 16.
If the problem size remains the same, then the decreasing efficiencies in this
table are not optimistic. However, the trend is have larger problem sizes, and
so as in the dot product example one can expect the α to increase so that the
efficiency may not decrease for larger problem sizes. Other important factors in-
clude communication and startup times, which are not part of Amdahl’s timing
model.

Finally, we are ready to present the model for the dispersion of a pollutant
in a deep lake. Let u(x, y, z, t) be the concentration of a pollutant. Suppose
it is decaying at a rate equal to dec units per time, and it is being dispersed
to other parts of the lake by a known fluid constant velocity vector equal to
(v1, v2, v3). Following the derivations in Chapter 1.4, but now consider all three
directions, we obtain the continuous and discrete models. Assume the velocity
components are nonnegative so that the concentration levels on the "upstream"
side (west, south and bottom) sides must be given. In the partial differential
equation in the continuous 3D model the term −v3uz models the amount of
the pollutant entering and leaving the top and bottom of the volume ∆x∆y∆z.
Also, assume the pollutant is also being transported by Fickian dispersion (dif-
fusion) as modeled in Chapter 5.1 and 5.2 where D is the dispersion constant.
In order to keep the details a simple as possible, assume the lake is a 3D box.

Continuous 3D Pollutant Model for u(x, y, z, t).

ut = D(uxx + uyy + uzz)

−v1ux − v2uy − v3uz − dec u, (6.3.2)

u(x, y, z, 0) given and (6.3.3)

u(x, y, z, t) given on the upwind boundary. (6.3.4)

6.3. MULTIPROCESSORS AND MASS TRANSFER 253

Explicit Finite Difference 3D Pollutant Model
for uki,j,l ≈ u(i∆x, j∆y, l∆z, k∆t).

uk+1i,j,l = ∆tD/∆x2(uki−1,j,l + uki+1,j,l)

+∆tD/∆y2(uki,j−1,l + uki,j+1,l)

+∆tD/∆z2(uki,j,l−1 + uki,j,l+1)

+v1(∆t/∆x)u
k
i−1,j,l + v2(∆t/∆y)u

k
i,j−1,l + v3(∆t/∆z)u

k
i,j,l−1

+(1− α− v1(∆t/∆x)− v2(∆t/∆y)− v3(∆t/∆z)−∆t dec)uki,j,l
(6.3.5)

α ≡ ∆tD
¡
2/∆x2 + 2/∆y2 + 2/∆z2

¢
u0i,j,l given and (6.3.6)

uk0,j,l, u
k
i,0,l, u

k
i,j,0 given. (6.3.7)

Stability Condition.

1− α− v1(∆t/∆x)− v2(∆t/∆y)− v3(∆t/∆z)−∆t dec > 0.

6.3.4 Method

In order to illustrate the use of multiprocessors, consider the 2D heat diffusion
model as described in the previous section. The following makes use of High
Performance Fortran (HPF), and for more details about HPF do a search on
HPF at http://www.mcs.anl.gov. In the last three sections of this chapter and
the next chapter we will more carefully describe the Message Passing Interface
(MPI) as an alternative to HPF for parallel computations.
The following calculations where done on the Cray T3E at the North Car-

olina Supercomputing Center. The directives (!hpf$) in lines 7-10 are for
HPF. These directives disperse groups of columns in the arrays u, unew and
uold to the various processors. The parallel computation is done in lines 24-28
using the forall "loop" where all the computations are independent with re-
spect to the i and j indices. Also the array equalities in lines 19-21, 29 and 30
are intrinsic parallel operations.

HPF Code heat2d.hpf

1. program heat
2. implicit none
3. real, dimension(601,601,10):: u
4. real, dimension(601,601):: unew,uold
5. real :: f,cond,dt,dx,alpha,t0, timef,tend
6. integer :: n,maxit,k,i,j
7. !hpf$ processors num_proc(number_of_processors)
8. !hpf$ distribute unew(*,block) onto num_proc

254 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Table 6.3.2: HPF for 2D Diffusion
Processors Times (sec .)

1 1.095
2 0.558
4 0.315

9. !hpf$ distribute uold(*,block) onto num_proc
10. !hpf$ distribute u(*,block,*) onto num_proc
11. print*, ’n = ?’
12. read*, n
13. maxit = 09
14. f = 1.0
15. cond = .001
16. dt = 2
17. dx = .1
18. alpha = cond*dt/(dx*dx)
19. u =0.0
20. uold = 0.0
21. unew = 0.0
22. t0 = timef
23. do k =1,maxit
24. forall (i=2:n,j=2:n)
25. unew(i,j) = dt*f + alpha*(uold(i-1,j)+uold(i+1,j)
26. $ + uold(i,j-1) + uold(i,j+1))
27. $ + (1 - 4*alpha)*uold(i,j)
28. end forall
29. uold = unew
30. u(:,:,k+1)=unew(:,:)
31. end do
32. tend =timef
33. print*, ’time =’, tend
34. end

The computations given in Table 6.3.2 were for the 2D heat diffusion code.
Reasonable speedups for 1, 2 and 4 processors were attained because most of
the computation is independent. If the problem size is too small or if there are
many users on the computer, then the timings can be uncertain or the speedups
will decrease.

6.3.5 Implementation

The MATLAB code flow3d.m simulates a large spill of a pollutant, which has
been buried in the bottom of a deep lake. The source of the spill is defined in

6.3. MULTIPROCESSORS AND MASS TRANSFER 255

lines 28-35. The MATLAB code flow3d generates the 3D array of the concen-
trations as a function of the x, y , z and time grid. The input data is given in
lines 1-35, the finite difference method is executed in the four nested loops in
lines 37-50, and the output is given in line 53 where the MATLAB command
slice is used. The slice and pause commands allows one to see the pollutant
move through the lake, and this is much more interesting in color than in a
single grayscale graph as in Figure 6.3.3. In experimenting with the parameters
in flow3d one should be careful to choose the time step to be small enough so
that the stability condition holds, that is, coeff in line 36 must be positive.

MATLAB Code flow3d.m

1. % Flow with Fickian Dispersion in 3D
2. % Uses the explicit method.
3. % Given boundary conditions on all sides.
4. clear;
5. L = 4.0;
6. W = 1.0;
7. T = 1.0;
8. Tend = 20.;
9. maxk = 100;
10. dt = Tend/maxk;
11. nx = 10.;
12. ny = 10;
13. nz = 10;
14. u(1:nx+1,1:ny+1,1:nz+1,1:maxk+1) = 0.;
15. dx = L/nx;
16. dy = W/ny;
17. dz = T/nz;
18. rdx2 = 1./(dx*dx);
19. rdy2 = 1./(dy*dy);
20. rdz2 = 1./(dz*dz);
21. disp = .001;
22. vel = [.05 .1 .05]; % Velocity of fluid.
23. dec = .001; % Decay rate of pollutant.
24. alpha = dt*disp*2*(rdx2+rdy2+rdz2);
25. x = dx*(0:nx);
26. y = dy*(0:ny);
27. z = dz*(0:nz);
28. for k=1:maxk+1 % Source of pollutant.
29. time(k) = (k-1)*dt;
30. for l=1:nz+1
31. for i=1:nx+1
32. u(i,1,2,k) =10.*(time(k)<15);
33. end
34. end

256 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Figure 6.3.3: Concentration at t = 17

35. end
36. coeff =1-alpha-vel(1)*dt/dx-vel(2)*dt/dy-vel(3)*dt/dz-dt*dec
37. for k=1:maxk % Explicit method.
38. for l=2:nz
39. for j = 2:ny
40. for i = 2:nx
41. u(i,j,l,k+1)=coeff*u(i,j,l,k) ...
42. +dt*disp*(rdx2*(u(i-1,j,l,k)+u(i+1,j,l,k))...
43. +rdy2*(u(i,j-1,l,k)+u(i,j+1,l,k))...
44. +rdz2*(u(i,j,l-1,k)+u(i,j,l+1,k)))...
45. +vel(1)*dt/dx*u(i-1,j,l,k)...
46. +vel(2)*dt/dy*u(i,j-1,l,k)...
47. +vel(3)*dt/dz*u(i,j,l-1,k);
48. end
49. end
50. end
51. v=u(:,:,:,k);
52. time(k)
53. slice(x,y,z,v,3.9,[.2 .9],.1)
54. colorbar
55. pause
56. end

6.3. MULTIPROCESSORS AND MASS TRANSFER 257

6.3.6 Assessment

The effective use of vector pipelines and multiprocessing computers will depend
on the particular code being executed. There must exist independent calcula-
tions within the code. Some computer codes have a large number of independent
parts and some have almost none. The use of timing models can give insight
to possible performance of codes. Also, some codes can be restructured to have
more independent parts.
In order for concurrent computation to occur in HPF, the arrays must be

distributed and the code must be executed by either intrinsic array operation
or by forall "loops" or by independent loops. There are number of provisions
in HPF for distribution of the arrays among the processors, and this seems to
be the more challenging step.
Even though explicit finite difference methods have many independent cal-

culations, they do have a stability condition on the time step. Many computer
simulations range over periods of years, and in such cases these restrictions on
the time step may be too severe. The implicit time discretization is an alter-
native method, but as indicated in Chapter 4.5 an algebraic system must be
solved at each time step.

6.3.7 Exercises

1. Consider the dot product example of Amdahl’s timing model. Repeat
the calculations of the alphas, speedups and efficiencies for n = 200 and 400.
Why does the efficiency increase?
2. Duplicate the calculations in flow3d.m. Use mesh and contour to view
the temperatures at different times.
3. In flow3d.m experiment with different time mesh sizes, maxk = 100, 200,
and 400. Be sure to consider the stability constraint.
4. In flow3d.m experiment with different space mesh sizes, nx or ny or
nz = 5, 10 and 20. Be sure to consider the stability constraint.
5. In flow3d.m experiment with different decay rates dec = .01, .02 and .04.
Be sure to make any adjustments to the time step so that the stability condition
holds.
6. Experiment with the fluid velocity in the MATLAB code flow3d.m.
(a). Adjust the magnitudes of the velocity components and observe sta-

bility as a function of fluid velocity.
(b). Modify the MATLAB code flow3d.m to account for fluid velocity

with negative components.
7. Suppose pollutant is being generated at a rate of 3 units of heat per unit
volume per unit time.
(a). How are the models for the 3D problem modified to account for

this?
(b). Modify flow3d.m to implement this source of pollution.
(c). Experiment with different values for the heat source f = 0, 1, 2, 3.

258 CHAPTER 6. HIGH PERFORMANCE COMPUTING

6.4 MPI and IBM/SP

6.4.1 Introduction

In this section we give a very brief description of the IBM/SP multiprocessing
computer that has been located at the North Carolina Supercomputing Center
(http://www.ncsc.org/). One can program this computer by using MPI, and
this will also be very briefly described. In this section we give an example of
a Fortran code for numerical integration that uses MPI. In subsequent sections
there will be MPI codes for matrix products and for heat and mass transfer.

6.4.2 IBM/SP Computer

The following material was taken, in part, from the NCSC USER GUIDE,
see [14, chapter 10]. The IBM/SP located at NCSC during early 2003 had 180
nodes. Each node contained four 375 MHz POWER3 processors, a two gigabyte
of memory, a high-speed switch network interface, a low-speed ethernet network
interface, and local disk storage. Each node runs a standalone version of AIX,
IBM’s UNIX based operating system. The POWER3 processor can perform
two floating-point multiply-add operations each clock cycle. For the 375 MHz
processors this gives a peak floating-point performance of 1500 MFLOPS. The
IBM/SP can be viewed as a distributed memory computer with respect to the
nodes, and each node as a shared memory computer. Each node had four cpus,
and there are upgrades to 8 and 16 cpus per node.
Various parallel programming models are supported on the SP system.

Within a node either message passing or shared memory parallel programming
models can be used. Between nodes only message passing programming mod-
els are supported. A hybrid model is to use message passing (MPI) between
nodes and shared memory (OpenMP) within nodes. The latency and band-
width performance of MPI is superior to that achieved using PVM. MPI has
been optimized for the SP system with continuing development by IBM.
Shared memory parallelization is only available within a node. The C and

FORTRAN compilers provide an option (-qsmp) to automatically parallelize a
code using shared memory parallelization. Significant programmer intervention
is generally required to produce efficient parallel programs. IBM, as well as
most other computer vendors, have developed a set of compiler directives for
shared memory parallelization. While the compilers continue to recognize these
directives, they have largely been superseded by the OpenMP standard.
Jobs are scheduled for execution on the SP by submitting them to the Load

Leveler system. Job limits are determined by user resource specifications and
by the job class specification. Job limits affect the wall clock time the job can
execute and the number of nodes available to the job. Additionally, the user
can specify the number of tasks for the job to execute per node as well as other
limits such as file size and memory limits. Load Leveler jobs are defined using
a command file. Load Leveler is the recommended method for running message

6.4. MPI AND IBM/SP 259

passing jobs. If the requested resources (wall clock time or nodes) exceed those
available for the specified class, then Load Leveler will reject the job. The
command file is submitted to Load Leveler with the llsubmit command. The
status of the job in the queue can be monitored with the llq command.

6.4.3 Basic MPI

The MPI homepage can be found at http://www-unix.mcs.anl.gov/mpi/index.html.
There is a very nice tutorial called “MPI User Guide in Fortran” by Pacheco and
Ming, which can be found at the above homepage as well as a number of other
references including the text by P. S. Pacheco [17]. Here we will not present a
tutorial, but we will give some very simple examples of MPI code that can be
run on the IBM/SP. The essential lines in MPI are "calls" to mpif.h, mpi_init,
mpi_comm_rank, mpi_comm_size, mpi_send, mpi_recv, mpi_barrier and
mpi_finalize, and additional information about MPI’s subroutines can be found
in chapter seven. The following MPI/Fortran code, trapmpi.f, is a slightly mod-
ified version of one given by Pacheco and Ming. This code is an implementation
of the trapezoid rule for numerical approximation of an integral, which approx-
imates the integral by a summation of areas of trapezoids.
The line 7 include ‘mpif.h’ makes the mpi subroutines available. The data

defined in line 13 will be "hard wired" into any processors that will be used. The
lines 16-18 mpi_init, mpi_comm_rank and mpi_comm_size start mpi, get a
processor rank (a number from 0 to p-1), and find out how many processors
(p) there are available for this program. All processors will be able to execute
the code in lines 22-40. The work (numerical integration) is done in lines 29-40
by grouping the trapezoids; loc_n, loc_a and loc_b depend on the processor
whose identifier is my_rank. Each processor will have its own copy of loc_a,
loc_b, and integral. In the i-loop in lines 31-34 the calculations are done by each
processor but with different data. The partial integrations are communicated
and summed in line 39-40. Line 41 creates a barrier to any further computation
until all previous work is done. The call in line 55 to mpi_finalize terminates
the mpi segment of the Fortan code.

MPI/Fortran Code trapmpi.f

1. program trapezoid
2.! This illustrates how the basic mpi commands
3.! can be used to do parallel numerical integration
4.! by partitioning the summation.
5. implicit none
6.! Includes the mpi Fortran library.
7. include ’mpif.h’
8. real:: a,b,h,loc_a,loc_b,integral,total,t1,t2,x
9. real:: timef
10. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
11. integer:: i,status(mpi_status_size)

260 CHAPTER 6. HIGH PERFORMANCE COMPUTING

12.! Every processor gets values for a,b and n.
13. data a,b,n,dest,tag/0.0,100.0,1024000,0,50/
14.! Initializes mpi, gets the rank of the processor, my_rank,
15.! and number of processors, p.
16. call mpi_init(ierr)
17. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
18. call mpi_comm_size(mpi_comm_world,p,ierr)
19. if (my_rank.eq.0) then
20. t1 = timef()
21. end if
22. h = (b-a)/n
23.! Each processor has unique value of loc_n, loc_a and loc_b.
24. loc_n = n/p
25. loc_a = a+my_rank*loc_n*h
26. loc_b = loc_a + loc_n*h
27.! Each processor does part of the integration.
28.! The trapezoid rule is used.
29. integral = (f(loc_a) + f(loc_b))*.5
30. x = loc_a
31. do i = 1,loc_n-1
32. x=x+h
33. integral = integral + f(x)
34. end do
35. integral = integral*h
36.! The mpi subroutine mpi_reduce() is used to communicate
37.! the partial integrations, integral, and then sum
38.! these to get the total numerical approximation, total.
39. call mpi_reduce(integral,total,1,mpi_real,mpi_sum,0&
40. ,mpi_comm_world,ierr)
41. call mpi_barrier(mpi_comm_world,ierr)
42. if (my_rank.eq.0) then
43. t2 = timef()
44. end if
45.! Processor 0 prints the n,a,b,total
46.! and time for computation and communication.
47. if (my_rank.eq.0) then
48. print*,n
49. print*,a
50. print*,b
51. print*,total
52. print*,t2
53. end if
54.! mpi is terminated.
55. call mpi_finalize(ierr)
56. contains

6.4. MPI AND IBM/SP 261

57.! This is the function to be integrated.
58. real function f(x)
59. implicit none
60. real x
61. f = x*x
62. end function
63. end program trapezoid

The communication command in line 39-40 mpi_reduce() sends all the par-
tial integrals to processor 0, processor 0 receives them, and sums them. This
command is an efficient concatenation of following sequence of mpi_send() and
mpi_recv() commands:

if (my_rank .eq. 0) then
total = integral
do source = 1, p-1

call mpi_recv(integral, 1, mpi_real, source, tag,
mpi_comm_world, status, ierr)

total = total + integral
enddo

else
call mpi_send(integral, 1, mpi_real, dest,

tag, mpi_comm_world, ierr)
endif.

If there are a large number of processors, then the sequential source loop may
take some significant time. In the mpi_reduce subroutine a “tree” or “fan-in”
scheme allows for the use of any available processors to do the communication.
One "tree" scheme of communication is depicted in Figure 6.4.1. By going
backward in time processor 0 can receive the partial integrals in 3 = log2(8)
time steps. Also, by going forward in time processor 0 can send information
to all the other processors in 3 times steps. In the following sections three
additional collective communication subroutines (mpi_bcast, mpi_scatter and
mpi_gather) that utilize "fan-out" or "fan-in" schemes, see Figure 7.2.1, will
be illustrated,
The code can be compiled and executed on the IBM/SP by the following

commands:
mpxlf90 —O3 trapmpi.f
poe ./a.out —procs 2 —hfile cpus.

The mpxlf90 is a multiprocessing version of a Fortran 90 compiler. Here we
have used a third level of optimization given by —O3. The execution of the
a.out file, which was generated by the compiler, is done by the parallel operating
environment command, poe. The —procs 2 indicates the number of processors
to be used, and the —hfile cpus indicates that the processors in the file cpus are
to be used.
A better alternative is to use load leveler given by the llsubmit command.

In the following we simply used the command:

262 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Figure 6.4.1: Fan-out Communication

Table 6.4.1: MPI Times for trapempi.f
p Times(Sp) n = 102400 Times(Sp) n = 1024000
1 6.22(1.00) 61.59(1.00)
2 3.13(1.99) 30.87(1.99)
4 1.61(3.86) 15.48(3.98)
8 0.95(6.56) 7.89(7.81)
16 0.54(11.54) 4.24(14.54)

llsubmit envrmpi8.
This ran the compiled code with 2 nodes and 4 processors per node for a total
of 8 processors. The output will be sent to the file mpijob2.out. One can check
on the status of the job by using the command:

llq.
The code trapmpi.f generated Table 6.4.1 by using llsubmit with different

numbers of cpus. The efficiencies (Sp/p) decrease as the number of processors
increase. The amount of independent parallel computation increases as the
number of trapezoids, n, increases, and so, one expects the better speedups
in the third column than in the second column. If one decreases n to 10240,
then the speedups for 8 and 16 processor will be very poor. This is because
the communication times are very large relative to the computation times. The
execution times will vary with the choice of optimization (see man xlf90) and
with the number of other users (see who and llq). The reader will find it
very interesting to experiment with these parameters as well as the number of
trapezoids in trapmpi.f.

6.5. MPI AND MATRIX PRODUCTS 263

6.4.4 Exercises

1. Browse the www pages for the NCSC and MPI.
2. Experiment with different levels of optimization in the compiler mpxlf90.
3. Repeat the calculations in Table 6.4.1. Use additional p and n.
4. Experiment with the alternative to the mpi_reduce, which uses a loop
with mpi_send and mpi_recv.
5. In trapmpi.f replace the trapezoid rule with Simpson’s rule and repeat
the calculations in Table 6.4.1.

6.5 MPI and Matrix Products

6.5.1 Introduction

In this section we will give examples of MPI/Fortran codes for matrix-vector
and matrix-matrix products. Here we will take advantage of the column order
of the arrays in Fortran. MPI communication subroutines mpi_reduce() and
mpi_gather(), and optimized BLAS (basic linear algebra subroutines) sgemv()
and sgemm() will be illustrated.

6.5.2 Matrix-vector Products

The ij method uses products of rows in the m × n matrix times the column
vector, and the ji method uses linear combinations of the columns in the m×n
matrix. In Fortran m× n arrays are stored by columns, and so, the ji method
is best because it retrieves components of the array in stride equal to one.

Matrix-Vector Product (ji version) d+= d+Ax.

for j = 1, n
for i = 1,m

di = di + ai,jxj
endloop

endloop.

A parallel version of this will group the columns of the matrix, that is, the
j-loop will be partitioned so that the column sums are done by a particular
processor. Let bn and en be the beginning and end of a subset of this partition,
which is to be assigned to some processor. In parallel we will compute the
following partial matrix-vector products

A(1 : m, bn : en)x(bn : en).

Upon completion of all the partial products, they will be communicated to some
processor, usually the root processor 0, and then summed.
In the MPI/Fortran code matvecmpi.f the arrays in lines 13-15 are initialized

before MPI is initialized in lines 16-18, and therefore, each processor will have

264 CHAPTER 6. HIGH PERFORMANCE COMPUTING

a copy of the array. Thus, there is no need to send data via mpi_bcast in lines
26-28; note the mpi_bcast subroutines are commented out, and they would
only send the required data to the appropriate processors. The matrix-vector
product is done by computing a linear combination of the columns of the matrix.
The linear combination is partitioned to obtain the parallel computation. Here
these calculations are done on each processor by either the BLAS2 subroutine
sgemv (see http://www.netlib.org /blas/sgemv.f) in line 29, or by the ji-loops
in lines 30-34. Then mpi_reduce in line 36 is used to send n real numbers
(a column vector) to processor 0, received by processor 0 and summed to the
product vector. The mflops (million floating point operations per second) are
computed in line 42 where the timings are in milliseconds and there are 1000
repetitions of the matrix-vector product.

MPI/Fortran Code matvecmpi.f

1. program matvec
2. implicit none
3. include ’mpif.h’
4. real,dimension(1:1024,1:4096):: a
5. real,dimension(1:1024)::prod,prodt
6. real,dimension(1:4096)::x
7. real:: t1,t2,mflops
8. real:: timef
9. integer:: my_rank,p,n,source,dest,tag,ierr,loc_m
10. integer:: i,status(mpi_status_size),bn,en,j,it,m
11. data n,dest,tag/1024,0,50/
12. m = 4*n
13. a = 1.0
14. prod = 0.0
15. x = 3.0
16. call mpi_init(ierr)
17. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
18. call mpi_comm_size(mpi_comm_world,p,ierr)
19. loc_m = m/p
20. bn = 1+(my_rank)*loc_m
21. en = bn + loc_m - 1
22. if (my_rank.eq.0) then
23. t1 = timef()
24. end if
25. do it = 1,1000
26. ! call mpi_bcast(a(1,bn),n*(en-bn+1),mpi_real,0,

mpi_comm_world,ierr)
27. ! call mpi_bcast(prod(1),n,mpi_real,0,

mpi_comm_world,ierr)
28. ! call mpi_bcast(x(bn),(en-bn+1),mpi_real,0,

mpi_comm_world,ierr)

6.5. MPI AND MATRIX PRODUCTS 265

Table 6.5.1: Matrix-vector Product mflops
p sgemv, m = 2048 sgemv, m = 4096 ji-loops, m = 4096
1 430 395 328
2 890 843 683
4 1628 1668 1391
8 2421 2803 2522
16 3288 4508 3946

29. ! call sgemv(’N’,n,loc_m,1.0,a(1,bn),n,x(bn),1,1.0,prod,1)
30. do j = bn,en
31. do i = 1,n
32. prod(i) = prod(i) + a(i,j)*x(j)
33. end do
34. end do
35. call mpi_barrier(mpi_comm_world,ierr)
36. call mpi_reduce(prod(1),prodt(1),n,mpi_real,mpi_sum,0,

mpi_comm_world,ierr)
37. end do
38. if (my_rank.eq.0) then
39. t2 = timef()
40. end if
41. if (my_rank.eq.0) then
42. mflops =float(2*n*m)*1./t2
43. print*,prodt(n/3)
44. print*,prodt(n/2)
45. print*,prodt(n/4)
46. print*,t2,mflops
47. end if
48. call mpi_finalize(ierr)
49. end program

Table 6.5.1 records the mflops for 1000 repetitions of a matrix-vector product
where the matrix is n ×m with n = 1048 and variable m. Columns two and
three use the BLAS2 subroutine sgemv with m = 2048 and 4096. The mflops
are greater for larger m. The fourth column uses the ji-loops in place of the
optimized sgemv, and smaller mflops are recorded.

6.5.3 Matrix-matrix Products

Matrix-matrix products have three nested loops, and therefore, there are 6 pos-
sible ways to compute these products. The traditional order is the ijk method
or dotproduct method, which computes row i times column j. The jki method

266 CHAPTER 6. HIGH PERFORMANCE COMPUTING

computes column j of A by multiplying B times column j of C, which is done
by linear combinations of the columns of B.

Matrix-matrix Product (jki version) A+= A+BC.

for j = 1, n
for k = 1, n

for i = 1,m
ai,j = ai,j + bi,kck,j

endloop
endloop

endloop.

This is used in the following MPI/Fortran implementation of the matrix-
matrix product. Here the outer j-loop can be partitioned and the smaller
matrix-matrix products can be done concurrently. Let bn and en be the begin-
ing and end of a subset of the partition. Then the following smaller matrix-
matrix products can be done in parallel

B(1 : m, 1 : n)C(1 : n, bn : en).

Then the smaller products are gathered into the larger product matrix. The
center k-loop can also be partitioned, and this could be done by any vector
pipelines or by the cpus within a node.
The arrays are initialized in lines 12-13 before MPI is initialized in lines

15-17, and therefore, each processor will have a copy of the array. The matrix-
matrix products on the submatrices can be done by either a call to the optimized
BLAS3 subroutine sgemm (see http://www.netlib.org /blas/sgemm.f) in line
26, or by the jki-loops in lines 27-33. The mpi_gather subroutine is used
in line 34, and here nm real numbers are sent to processor 0, received by
processor 0 and stored in the product matrix. The mflops (million floating
point operations per second) are computed in line 41 where we have used the
timings in milliseconds, and ten repetitions of the matrix-matrix product with
nm dotproducts of vectors with n components.

MPI/Fortran Code mmmpi.f

1. program mm
2. implicit none
3. include ’mpif.h’
4. real,dimension(1:1024,1:512):: a,b,prodt
5. real,dimension(1:512,1:512):: c
6. real:: t1,t2
7. real:: timef,mflops
8. integer:: l, my_rank,p,n,source,dest,tag,ierr,loc_n
9. integer:: i,status(mpi_status_size),bn,en,j,k,it,m
10. data n,dest,tag/512,0,50/
11. m = 2*n

6.5. MPI AND MATRIX PRODUCTS 267

12. a = 0.0
13. b = 2.0
14. c = 3.0
15. call mpi_init(ierr)
16. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
17. call mpi_comm_size(mpi_comm_world,p,ierr)
18. loc_n = n/p
19. bn = 1+(my_rank)*loc_n
20. en = bn + loc_n - 1
21. call mpi_barrier(mpi_comm_world,ierr)
22. if (my_rank.eq.0) then
23. t1 = timef()
24. end if
25. do it = 1,10
26. call sgemm(’N’,’N’,m,loc_n,n,1.0,b(1,1),m,c(1,bn) &

,n,1.0,a(1,bn),m)
27. ! do j = bn,en
28. ! do k = 1,n
29. ! do i = 1,m
30. ! a(i,j) = a(i,j) + b(i,k)*c(k,j)
31. ! end do
32. ! end do
33. ! end do
34. call mpi_barrier(mpi_comm_world,ierr)
35. call mpi_gather(a(1,bn),m*loc_n,mpi_real,prodt, &

m*loc_n, mpi_real,0,mpi_comm_world,ierr)
36. end do
37. if (my_rank.eq.0) then
38. t2= timef()
39. end if
40. if (my_rank.eq.0) then
41. mflops = 2*n*n*m*0.01/t2
42. print*,t2,mflops
43. end if
44. call mpi_finalize(ierr)
45. end program

In Table 6.5.2 the calculations were for A with m = 2n rows and n columns.
The second and third columns use the jki-loops with n = 256 and 512, and the
speedup is generally better for the larger n. Column four uses the sgemm to
do the matrix-matrix products, and noticeable improvement in the mflops is
recorded.

268 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Table 6.5.2: Matrix-matrix Products mflops
p jki-loops, n = 256 jki-loops, n = 512 sgemm, n = 512
1 384 381 1337
2 754 757 2521
4 1419 1474 4375
8 2403 2785 7572
16 4102 5038 10429

6.5.4 Exercise

1. Browse the www for MPI sites.
2. In matvecmpi.f experiment with different n and compare mflops.
3. In matvecmpi.f experiment with the ij-loop method and compare mflops.
4. In matvecmpi.f use sgemv to compute the matrix-vector product. You
may need to use a special compiler option for sgemv, for example, on the
IBM/SP use -lessl to gain access to the engineering and scientific subroutine
library.
5. In mmmpi.f experiment with different n and compare mflops.
6. In mmmpi.f experiment with other variations of the jki-loop method and
compare mflops.
7. In mmmpi.f use sgemm and to compute the matrix-matrix product. You
may need to use a special compiler option for sgemm, for example, on the
IBM/SP use -lessl to gain access to the engineering and scientific subroutine
library.

6.6 MPI and 2D Models

6.6.1 Introduction

In this section we will give examples of a MPI/Fortran code for heat diffusion
and pollutant transfer in two directions. Both the discrete models generate 2D
arrays for the temperature, or pollutant concentration, as a function of discrete
space for each time step. These models could be viewed as a special case of the
matrix-vector products where the matrix is sparse and the column vectors are
represented as a 2D space grid array.

6.6.2 Heat Diffusion in Two Directions

The basic model for heat diffusion in two directions was formulated in Chapter
1.5.

6.6. MPI AND 2D MODELS 269

Figure 6.6.1: Space Grid with Four Subblocks

Explicit Finite Difference 2D Model: uki,j ≈ u(ih, jh, k∆t).

uk+1i,j = (∆t/ρc)f + α(uki+1,j + uki−1,j + uki,j+1 + uki,j−1)

+(1− 4α)uki,j , (6.6.1)

α = (K/ρc)(∆t/h2), i, j = 1, .., n− 1 and k = 0, ..,maxk − 1,
u0i,j = given, i, j = 1, .., n− 1 and (6.6.2)

uki,j = given, k = 1, ...,maxk, and i, j on the boundary grid. (6.6.3)

The execution of (6.6.1) requires at least a 2D array u(i,j) and three nested
loops where the time loop (k-loop) must be on the outside. The two inner loops
are over the space grid for x (i-loop) and y (j-loop). In order to distribute the
work, we will partition the space grid into horizontal blocks by partitioning
the j-loop. Then each processor will do the computations in (6.6.1) for some
partition of the j-loop and all the i-loop, that is, over some horizontal block of
the space grid. Because the calculations for each ij require inputs from the four
adjacent space nodes, some communication must be done so that the bottom
and top rows of the partitioned space can be computed. See Figure 6.6.1 where
there are four horizontal subblocks in the space grid, and three pairs of grid
rows must be communicated.
The communication at each time step is done by a sequence of mpi_send()

and mpi_recv() subroutines. Here one must be careful to avoid "deadlocked"
communications, which can occur if two processors try to send data to each
other at the same time. One needs to make sure that mpi_send() and mpi_recv()
are coupled with respect to time. Figure 6.6.2 depicts one way of pairing the
communications for eight processors associated with eight horizontal subblocks
in the space grid. Each vector indicates a pair of mpi_send and mpi_recv where
the processor at the beginning of the vector is sending data and the processor
at end with the arrow is receiving data. For example, at times 1, 2, 3 and 4

270 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Figure 6.6.2: Send and Recieve for Processors

processor 1 will send to processor 2, receive from processor 2, send to processor
0, receive from processor 0, respectively.
In the heat2dmpi.f code lines 1-17 are the global initialization of the vari-

ables. Lines 18-20 start the multiprocessing, and lines 28-55 execute the explicit
finite difference method where only the current temperatures are recorded. In
lines 29-34 the computations for the processor my_rank are done for the hor-
izontal subblock of the space grid associated with this processor. Note, the
grid rows are associated with the columns in the array uold and unew. The
communications between the processors, as outlined in Figure 6.6.2 for p = 8
processors, is executed in lines 35-54. In particular, processor 1 communications
are done in lines 39—44 when my_rank = 1. After the last time step in line 55,
lines 56-63 gather the computations from all the processors onto processor 0;
this could have been done by the subroutine mpi_gather.

MPI/Fortran Code heat2dmpi.f

1. program heat
2. implicit none
3. include ’mpif.h’
4. real, dimension(2050,2050):: unew,uold
5. real :: f,cond,dt,dx,alpha,t0, timef,tend
6. integer :: my_rank,p,n,source,dest,tag,ierr,loc_n
7. integer :: status(mpi_status_size),bn,en,j,k
8. integer :: maxk,i,sbn
9. n = 2049
10. maxk = 1000
11. f = 1000.0
12. cond = .01
13. dt = .01
14. dx = 100.0/(n+1)
15. alpha = cond*dt/(dx*dx)

6.6. MPI AND 2D MODELS 271

16. uold = 0.0
17. unew = 0.0
18. call mpi_init(ierr)
19. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
20. call mpi_comm_size(mpi_comm_world,p,ierr)
21. loc_n = (n-1)/p
22. bn = 2+(my_rank)*loc_n
23. en = bn + loc_n -1
24. call mpi_barrier(mpi_comm_world,ierr)
25. if (my_rank.eq.0) then
26. t0 = timef()
27. end if
28. do k =1,maxk
29. do j = bn,en
30. do i= 2,n
31. unew(i,j) = dt*f + alpha*(uold(i-1,j)+uold(i+1,j)&

+ uold(i,j-1) + uold(i,j+1))&
+ (1- 4*alpha)*uold(i,j)

32. end do
33. end do
34. uold(2:n,bn:en)= unew(2:n,bn:en)
35. if (my_rank.eq.0) then
36. call mpi_recv(uold(1,en+1),(n+1),mpi_real, &

my_rank+1,50, mpi_comm_world,status,ierr)
37. call mpi_send(uold(1,en),(n+1),mpi_real, &

my_rank+1,50, mpi_comm_world,ierr)
38. end if
39. if ((my_rank.gt.0).and.(my_rank.lt.p-1) &

.and.(mod(my_rank,2).eq.1)) then
40. call mpi_send(uold(1,en),(n+1),mpi_real, &

my_rank+1,50, mpi_comm_world,ierr)
41. call mpi_recv(uold(1,en+1),(n+1),mpi_real, &

my_rank+1,50, mpi_comm_world,status,ierr)
42. call mpi_send(uold(1,bn),(n+1),mpi_real, &

my_rank-1,50, mpi_comm_world,ierr)
43. call mpi_recv(uold(1,bn-1),(n+1),mpi_real, &

my_rank-1,50,mpi_comm_world,status,ierr)
44. end if
45. if ((my_rank.gt.0).and.(my_rank.lt.p-1) &

.and.(mod(my_rank,2).eq.0)) then
46. call mpi_recv(uold(1,bn-1),(n+1),mpi_real, &

my_rank-1,50, mpi_comm_world,status,ierr)
47. call mpi_send(uold(1,bn),(n+1),mpi_real, &

my_rank-1,50, mpi_comm_world,ierr)
48. call mpi_recv(uold(1,en+1),(n+1),mpi_real, &

272 CHAPTER 6. HIGH PERFORMANCE COMPUTING

Table 6.6.1: Processor Times for Diffusion
p Times Speedups
2 87.2 1.0
4 41.2 2.1
8 21.5 4.1
16 11.1 7.9
32 06.3 13.8

my_rank+1,50, mpi_comm_world,status,ierr)
49. call mpi_send(uold(1,en),(n+1),mpi_real, &

my_rank+1,50, mpi_comm_world,ierr)
50. end if
51. if (my_rank.eq.p-1) then
52. call mpi_send(uold(1,bn),(n+1),mpi_real, &

my_rank-1,50, mpi_comm_world,ierr)
53. call mpi_recv(uold(1,bn-1),(n+1),mpi_real, &

my_rank-1,50, mpi_comm_world,status,ierr)
54. end if
55. end do
56. if (my_rank.eq.0) then
57. do source = 1,p-1
58. sbn = 2+(source)*loc_n
59. call mpi_recv(uold(1,sbn),(n+1)*loc_n,mpi_real, &

source,50, mpi_comm_world,status,ierr)
60. end do
61. else
62. call mpi_send(uold(1,bn),(n+1)*loc_n,mpi_real, &

0,50, mpi_comm_world,ierr)
63. end if
64. if (my_rank.eq.0) then
65. tend = timef()
66. print*, ’time =’, tend
67. print*, uold(2,2),uold(3,3),uold(4,4),uold(500,500)
68. end if
69. call mpi_finalize(ierr)
70. end

The code can be compiled and executed on the IBM/SP by the following:
mpxlf90 —O4 heat2dmpi.f where mpxlf90 is the compiler, and using the load
leveler llsubmit envrmpi2 where envmpi2 contains the job parameters such as
time and number of processors. Table 6.6.1 contains the times in seconds to
execute the above file with different numbers of processor p = 2, 4, 8, 16 and 32.
Good speedups relative to the execution time using two processors are recorded.

6.6. MPI AND 2D MODELS 273

Table 6.6.2: Processor Times for Pollutant
p Times Speedups
2 62.9 1.0
4 28.9 2.2
8 15.0 4.2
16 07.9 8.0
32 04.6 13.7

6.6.3 Pollutant Transfer in Two Directions

A simple model for pollutant transfer in a shallow lake was formulated in Chap-
ter 1.5.

Explicit Finite Difference 2D Pollutant Model: uki,j ≈ u(i∆x, j∆y, k∆t).

uk+1i,j = v1(∆t/∆x)u
k
i−1,j + v2(∆t/∆y)u

k
i,j−1 + (6.6.4)

(1− v1(∆t/∆x)− v2(∆t/∆y)−∆t dec)uki,j
u0i,j = given and (6.6.5)

uk0,j and uki,0 = given. (6.6.6)

The MPI/Fortran code poll2dmpi.f is only a slight modification of the above
code for heat diffusion. We have kept the same communication scheme. This is
not completely necessary because the wind is from the southwest, and therefore,
the new concentration will depend only on two of the adjacent space nodes, the
south and the west nodes. The initialization is similar, and the execution on
the processors for (6.6.4) is

do j = bn,en
do i= 2,n

unew(i,j) = dt*f + dt*velx/dx*uold(i-1,j)&
+ dt*vely/dy*uold(i,j-1) &
+ (1- dt*velx/dx - dt*vely/dy &
- dt*dec)*uold(i,j)

end do
end do.

The calculations that are recorded in Table 6.6.2 are for the number of procesors
= 2, 4, 8, 16, 32 and have good speedups relative to the two processors time.

6.6.4 Exercises

1. In heat2dmpi.f carefully study the communication scheme, and verify the
communications for the case of eight processors as depicted in Figure 6.6.2.

274 CHAPTER 6. HIGH PERFORMANCE COMPUTING

2. In poll2dm.f study the communication scheme and delete any unused
mpi_send and mpi_recv subroutines. Also, try to use any of the mpi collective
subroutines such a mpi_gather().
3. In heat2dmpi.f and in poll2dmpi.f explain why the codes fails if only one
processor is used.
4. In poll2dm.f consider the case where the wind comes from the northwest.
Modify the discrete model and the code.
5. Duplicate the computations in Table 6.6.1. Experiment with different n
and compare speedups.
6. Duplicate the computations in Table 6.6.2. Experiment with different n
and compare speedups.

Chapter 7

Message Passing Interface

In the last three sections in chapter six several MPI codes were illustrated. In
this chapter a more detailed discussion of MPI will be undertaken. The basic
eight MPI commands and the four collective communication subroutines bcast,
reduce, gather and scatter will be studied in the first three sections. These
twelve commands/subroutines form a basis for all MPI programming, but there
are many additional MPI subroutines. Section four describes three methods
for grouping data so as to minimize the number of calls to communication
subroutines, which can have significant startup times. Section five describes
other possible communicators, which are just subsets of the processors that are
allowed to have communications. These topics are applied to matrix-matrix
products via Fox’s algorithm. Each section has several short demonstration
MPI codes, and these should be helpful to the first time user of MPI. This
chapter is a brief introduction to MPI, and the reader should also consult other
texts on MPI such as P. S. Pacheco [17] and W. Gropp, E. Lusk, A. Skjellum
and R. Thahur [6].

7.1 Basic MPI Subroutines

7.1.1 Introduction

MPI programming can be done in either C or Fortran by using a library of
MPI subroutines. Here we have used Fortran 9x and the MPI library is called
mpif.h. The following is the basic structure for MPI codes:

include ’mpif.h’
...
call mpi_init(ierr)
call mpi_comm_rank(mpi_comm_world, my_rank, ierr)
call mpi_comm_size(mpi_comm_world, p, ierr)
...

275

276 CHAPTER 7. MESSAGE PASSING INTERFACE

do parallel work
...
call mpi_barrier(mpi_comm_world, ierr)
...
do communications via mpi_send() and mpi_recv()
...
call mpi_finalize(ierr).

The parameters my_rank, ierr, and p are integers where p is the number
of processors, which are listed from 0 to p-1. Each processor is identified by
my_rank ranging from 0 to p-1. Any error status is indicated by ierr. The para-
meter mpi_comm_world is a special MPI type, called a communicator, that is
used to identify subsets of processors having communication patterns. Here the
generic communicator, mpi_comm_world, is the set of all p processors and all
processors are allowed to communicate with each other. Once the three calls to
mpi_init(), mpi_comm_rank() and mpi_comm_size() have been made, each
processor will execute the code before the call to mpi_finalize(), which termi-
nates the parallel computations. Since each processor has a unique value for
my_rank, the code or the input data may be different for each processor. The
call to mpi_barrier() is used to insure that each processor has completed its
computations. Any communications between processors may be done by calls
to mpi_send() and mpi _recv().

7.1.2 Syntax for mpi_send() and mpi_recv()

MPI has many different subroutines that can be used to do communications be-
tween processors. The communication subroutines mpi_send() and mpi_recv()
are the most elementary, and they must be called in pairs. That is, if processor
0 wants to send data to processor 1, then a mpi_send() from processor 0 must
be called as well as a mpi_recv() from processor 1 must be called.

mpi_send(senddata, count, mpi_datatype, dest, tag, mpi_comm, ierr)
senddata array(*)
count integer
mpi_datatype integer
dest integer
tag integer
mpi_comm integer
ierr integer

There a number of mpi_datatypes, and some of these are mpi_real, mpi_int,
and mpi_char. The integer dest indicates the processor that data is to be sent.
The parameter tag is used to clear up any confusion concerning multiple calls
to mpi_send(). The syntax for mpi_recv() is similar, but it does have one
additional parameter, mpi_status for the status of the communication.

7.1. BASIC MPI SUBROUTINES 277

mpi_rev(recvdata, count, mpi_datatype, source, tag
, mpi_comm, status, ierr)

recvdata array(*)
count integer
mpi_datatype integer
source integer
tag integer
mpi_comm integer
status(mpi_status_size) integer
ierr integer

Suppose processor 0 needs to communicate the real number, a, and the
integer, n, to the other p-1 processors. Then there must be 2(p-1) pairs of
calls to mpi_send() and mpi_recv(), and one must be sure to use different tags
associated with a and n. The following if-else-endif will do this where the first
part of the if-else-endif is for only processor 0 and the second part has p-1 copies
with one for each of the other processors from 1 to p-1:

if (my_rank.eq.0) then
do dest = 1,p-1

taga = 0
call mpi_send(a, 1, mpi_real, dest, taga

, mpi_comm_world, ierr)
tagn = 1
call mpi_send(n, 1, mpi_int, dest, tagn

, mpi_comm_world, ierr)
end do

else
taga = 0
call mpi_recv(a, 1, mpi_real, 0, taga

, mpi_comm_world, status, ierr)
tagn = 1
call mpi_recv(n, 1, mpi_int, 0, tagn

, mpi_comm_world, status, ierr)
end if..

7.1.3 First MPI Code

This first MPI code simply partitions an interval from a to b into p equal
parts. The data in line 11 will be "hardwired" into all the processors because it
precedes the initialization of MPI in lines 14-15. Each processor will execute the
print commands in lines 17-19. Since my_rank will vary with each processor,
each processor will have unique values of loc_a and loc_b. The if_else_endif
in lines 31-40 communicates all the loc_a to processor 0 and stores them in the
array a_list. The print commands in lines 26-28 and lines 43-47 verify this.
The outputs for the print commands may not appear in sequential order that

278 CHAPTER 7. MESSAGE PASSING INTERFACE

is indicated following the code listing. This output verifies the communications
for p = 4 processors.

MPI/Fortran 9x Code basicmpi.f

1. program basicmpi
2.! Illustrates the basic eight mpi commands.
3. implicit none
4.! Includes the mpi Fortran library.
5. include ’mpif.h’
6. real:: a,b,h,loc_a,loc_b,total
7. real, dimension(0:31):: a_list
8. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
9. integer:: i,status(mpi_status_size)
10.! Every processor gets values for a,b and n.
11. data a,b,n,dest,tag/0.0,100.0,1024,0,50/
12.! Initializes mpi, gets the rank of the processor, my_rank,
13.! and number of processors, p.
14. call mpi_init(ierr)
15. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
16. call mpi_comm_size(mpi_comm_world,p,ierr)
17. print*,’my_rank =’,my_rank, ’a = ’,a
18. print*,’my_rank =’,my_rank, ’b = ’,b
19. print*,’my_rank =’,my_rank, ’n = ’,n
20. h = (b-a)/n
21.! Each processor has unique value of loc_n, loc_a and loc_b.
22. loc_n = n/p
23. loc_a = a+my_rank*loc_n*h
24. loc_b = loc_a + loc_n*h
25.! Each processor prints its loc_n, loc_a and loc_b.
26. print*,’my_rank =’,my_rank, ’loc_a = ’,loc_a
27. print*,’my_rank =’,my_rank, ’loc_b = ’,loc_b
28. print*,’my_rank =’,my_rank, ’loc_n = ’,loc_n
29.! Processors p not equal 0 sends a_loc to an array, a_list,
30.! in processor 0, and processor 0 recieves these.
31. if (my_rank.eq.0) then
32. a_list(0) = loc_a
33. do source = 1,p-1
34. call mpi_recv(a_list(source),1,mpi_real,source &
35. ,50,mpi_comm_world,status,ierr)
36. end do
37. else
38. call mpi_send(loc_a,1,mpi_real,0,50,&
39. mpi_comm_world,ierr)
40. end if
41. call mpi_barrier(mpi_comm_world,ierr)

7.1. BASIC MPI SUBROUTINES 279

42.! Processor 0 prints the list of all loc_a.
43. if (my_rank.eq.0) then
44. do i = 0,p-1
45. print*, ’a_list(’,i,’) = ’,a_list(i)
46. end do
47. end if
48.! mpi is terminated.
49. call mpi_finalize(ierr)
50. end program basicmpi

my_rank = 0 a = 0.0000000000E+00
my_rank = 0 b = 100.0000000
my_rank = 0 n = 1024.
my_rank = 1 a = 0.0000000000E+00
my_rank = 1 b = 100.0000000
my_rank = 1 n = 1024
my_rank = 2 a = 0.0000000000E+00
my_rank = 2 b = 100.0000000
my_rank = 2 n = 1024
my_rank = 3 a = 0.0000000000E+00
my_rank = 3 b = 100.0000000
my_rank = 3 n = 1024
!
my_rank = 0 loc_a = 0.0000000000E+00
my_rank = 0 loc_b = 25.00000000
my_rank = 0 loc_n = 256
my_rank = 1 loc_a = 25.00000000
my_rank = 1 loc_b = 50.00000000
my_rank = 1 loc_n = 256
my_rank = 2 loc_a = 50.00000000
my_rank = 2 loc_b = 75.00000000
my_rank = 2 loc_n = 256
my_rank = 3 loc_a = 75.00000000
my_rank = 3 loc_b = 100.0000000
my_rank = 3 loc_n = 256
!
a_list(0) = 0.0000000000E+00
a_list(1) = 25.00000000
a_list(2) = 50.00000000
a_list(3) = 75.00000000

7.1.4 Application to Dot Product

The dot product of two vectors is simply the sum of the products of the com-
ponents of the two vector. The summation can be partitioned and computed

280 CHAPTER 7. MESSAGE PASSING INTERFACE

in parallel. Once the partial dot products have been computed, the results can
be communicated to a root processor, usually processor 0, and the sum of the
partial dot products can be computed. The data in lines 9-13 is "hardwired" to
all the processors. In lines 18-20 each processor gets a unique beginning n, bn,
and an ending n, en. This is verified by the print commands in lines 21-23. The
local dot products are computed in lines 24-27. Lines 30-38 communicate these
partial dot products to processor 0 and stores them in the array loc_dots. The
local dot products are summed in line 40-43. The output is for p = 4 processors.

MPI/Fortran 9x Code dot1mpi.f

1. program dot1mpi
2.! Illustrates dot product via mpi_send and mpi_recv.
3. implicit none
4. include ’mpif.h’
5. real:: loc_dot,dot
6. real, dimension(0:31):: a,b, loc_dots
7. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
8. integer:: i,status(mpi_status_size),en,bn
9. data n,dest,tag/8,0,50/
10. do i = 1,n
11. a(i) = i
12. b(i) = i+1
13. end do
14. call mpi_init(ierr)
15. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
16. call mpi_comm_size(mpi_comm_world,p,ierr)
17.! Each processor computes a local dot product.
18. loc_n = n/p
19. bn = 1+(my_rank)*loc_n
20. en = bn + loc_n-1
21. print*,’my_rank =’,my_rank, ’loc_n = ’,loc_n
22. print*,’my_rank =’,my_rank, ’bn = ’,bn
23. print*,’my_rank =’,my_rank, ’en = ’,en
24. loc_dot = 0.0
25. do i = bn,en
26. loc_dot = loc_dot + a(i)*b(i)
27. end do
28. print*,’my_rank =’,my_rank, ’loc_dot = ’,loc_dot
29.! The local dot products are sent and recieved to processor 0.
30. if (my_rank.eq.0) then
31. do source = 1,p-1
32. call mpi_recv(loc_dots(source),1,mpi_real,source,50,&
33. 50,mpi_comm_world,status,ierr)
34. end do
35. else

7.1. BASIC MPI SUBROUTINES 281

36. call mpi_send(loc_dot,1,mpi_real,0,50,&
37. mpi_comm_world,ierr)
38. end if
39.! Processor 0 sums the local dot products.
40. if (my_rank.eq.0) then
41. dot = loc_dot + sum(loc_dots(1:p-1))
42. print*, ’dot product = ’,dot
43. end if
44. call mpi_finalize(ierr)
45. end program dot1mpi

my_rank = 0 loc_n = 2
my_rank = 0 bn = 1
my_rank = 0 en = 2
my_rank = 1 loc_n = 2
my_rank = 1 bn = 3
my_rank = 1 en = 4
my_rank = 2 loc_n = 2
my_rank = 2 bn = 5
my_rank = 2 en = 6
my_rank = 3 loc_n = 2
my_rank = 3 bn = 7
my_rank = 3 en = 8
!
my_rank = 0 loc_dot = 8.000000000
my_rank = 1 loc_dot = 32.00000000
my_rank = 2 loc_dot = 72.00000000
my_rank = 3 loc_dot = 128.0000000
dot product = 240.0000000

Another application is numerical integration, and in this case a summation
also can be partitioned and computed in parallel. See Chapter 6.4 where this is
illustrated for the trapezoid rule, trapmpi.f. Also, the collective communication
mpi_reduce is introduced, and this will be discussed in more detail in the next
section.
There are many variations of mpi_send() and mpi_recv() such as mpi_isend(),

mpi_irecv(), mpi_sendrecv() and mpi_sendrecv_replace(). The mpi_isend()
and mpi_irecv() are nonblocking communications that attempt to use an in-
termediate buffer so as to avoid locking of the processors involved with the
communications. The mpi_sendrecv() and mpi_sendrecv_replace() are com-
positions of mpi_send() and mpi_recv(), and more details on these can be
found in the texts [17] and [6].

282 CHAPTER 7. MESSAGE PASSING INTERFACE

Figure 7.2.1: A Fan-in Communication

7.1.5 Exercises

1. Duplicate the calculations for basicmpi.f and experiment with different
numbers of processors.
2. Duplicate the calculations for dot1mpi.f and experiment with different
numbers of processors and different size vectors.
3. Modify dot1mpi.f so that one can compute in parallel a linear combina-
tion of the two vectors, αx+ βy.
4. Modify trapmpi.f to execute Simpson’s rule in parallel.

7.2 Reduce and Broadcast

If there are a large number of processors, then the loop method for communicat-
ing information can be time consuming. An alternative is to use any available
processors to execute some of the communications using either a fan-out (see
Figure 6.4.1) or a fan-in (see Figure 7.2.1). As depicted in Figure 7.2.1, consider
the dot product problem where there are p = 8 partial dot products that have
been computed on processors 0 to 7. Processors 0, 2, 4, and 6 could receive
the partial dot products from processors 1, 3, 5, and 7; in the next time step
processors 0 and 4 receive two partial dot products from processors 2 and 6; in
the third time step processor 0 receives the four additional partial dot products
from processor 4. In general, if there are p = 2d processors, then fan-in and
and fan-out communications can be executed in d time steps plus some startup
time.
Four important collective communication subroutines that use these ideas

are mpi_reduce(), mpi_bcast(), mpi_gather() and mpi_scatter(). These sub-
routines and their variations can significantly reduce communication and com-
putation times, simplify MPI codes and reduce coding errors and times.

7.2. REDUCE AND BROADCAST 283

7.2.1 Syntax for mpi_reduce() and mpi_bcast()

The subroutine mpi_reduce() not only can send data to a root processor but
it can also perform a number of additional operations with this data. It can
add the data sent to the root processor or it can calculate the product of the
sent data or the maximum of the sent data as well as other operations. The
operations are indicated by the mpi_oper parameter. The data is collected
from all the other processors in the communicator, and the call to mpi_reduce
must appear in all processors of the communicator.

mpi_reduce(loc_data, result, count, mpi_datatype, mpi_oper
, root, mpi_comm, ierr)

loc_data array(*)
result array(*)
count integer
mpi_datatype integer
mpi_oper integer
root integer
mpi_comm integer
ierr integer

The subroutine mpi_bcast() sends data from a root processor to all of the
other processors in the communicator, and the call to mpi_bcast() must appear
in all the processors of the communicator. The mpi_bcast() does not execute
any computation, which is in contrast to mpi_reduce().

mpi_bcast(data, count, mpi_datatype,
, root, mpi_comm, ierr)

data array(*)
count integer
mpi_datatype integer
root integer
mpi_comm integer
ierr integer

7.2.2 Illustrations of mpi_reduce()

The subroutine mpi_reduce() is used to collect results from other processors
and then to perform additional computations on the root processor. The code
reducmpi.f illustrates this for the additional operations of sum and product of
the output from the processors. After the MPI is initialized in lines 10-12,
each processor computes local values of a and b in lines 16 and 17. The call
to mpi_reduce() in line 23 sums all the loc_b to sum in processor 0 via the
mpi_oper equal to mpi_sum. The call to mpi_reduce() in line 26 computes
the product of all the loc_b to prod in processor 0 via the mpi_oper equal to
mpi_prod. These results are verified by the print commands in lines 18-20 and
27-30.

284 CHAPTER 7. MESSAGE PASSING INTERFACE

MPI/Fortran 9x Code reducmpi.f

1. program reducmpi
2.! Illustrates mpi_reduce.
3. implicit none
4. include ’mpif.h’
5. real:: a,b,h,loc_a,loc_b,total,sum,prod
6. real, dimension(0:31):: a_list
7. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
8. integer:: i,status(mpi_status_size)
9. data a,b,n,dest,tag/0.0,100.0,1024,0,50/
10. call mpi_init(ierr)
11. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
12. call mpi_comm_size(mpi_comm_world,p,ierr)
13.! Each processor has a unique loc_n, loc_a and loc_b.
14. h = (b-a)/n
15. loc_n = n/p
16. loc_a = a+my_rank*loc_n*h
17. loc_b = loc_a + loc_n*h
18. print*,’my_rank =’,my_rank, ’loc_a = ’,loc_a
19. print*,’my_rank =’,my_rank, ’loc_b = ’,loc_b
20. print*,’my_rank =’,my_rank, ’loc_n = ’,loc_n
21.! mpi_reduce is used to compute the sum of all loc_b
22.! to sum on processor 0.
23. call mpi_reduce(loc_b,sum,1,mpi_real,mpi_sum,0,&

mpi_comm_world,status,ierr)
24.! mpi_reduce is used to compute the product of all loc_b
25.! to prod on processor 0.
26. call mpi_reduce(loc_b,prod,1,mpi_real,mpi_prod,0,&

mpi_comm_world,status,ierr)
27. if (my_rank.eq.0) then
28. print*, ’sum = ’,sum
29. print*, ’product = ’,prod
30. end if
31. call mpi_finalize(ierr)
32. end program reducmpi

my_rank = 0 loc_a = 0.0000000000E+00
my_rank = 0 loc_b = 25.00000000
my_rank = 0 loc_n = 256
my_rank = 1 loc_a = 25.00000000
my_rank = 1 loc_b = 50.00000000
my_rank = 1 loc_n = 256
my_rank = 2 loc_a = 50.00000000
my_rank = 2 loc_b = 75.00000000
my_rank = 2 loc_n = 256

7.2. REDUCE AND BROADCAST 285

my_rank = 3 loc_a = 75.00000000
my_rank = 3 loc_b = 100.0000000
my_rank = 3 loc_n = 256
!
sum = 250.0000000
product = 9375000.000

The next code is a second version of the dot product, and mpi_reduce()
is now used to sum the partial dot products. As in dot1mpi.f the local dot
products are computed in parallel in lines 24-27. The call to mpi_reduce() in
line 31 sends the local dot products, loc_dot, to processor 0 and sums them
to dot on processor 0. This is verified by the print commands in lines 28 and
32-34.

MPI/Fortran 9x Code dot2mpi.f

1. program dot2mpi
2.! Illustrates dot product via mpi_reduce.
3. implicit none
4. include ’mpif.h’
5. real:: loc_dot,dot
6. real, dimension(0:31):: a,b, loc_dots
7. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
8. integer:: i,status(mpi_status_size),en,bn
9. data n,dest,tag/8,0,50/
10. do i = 1,n
11. a(i) = i
12. b(i) = i+1
13. end do
14. call mpi_init(ierr)
15. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
16. call mpi_comm_size(mpi_comm_world,p,ierr)
17.! Each processor computes a local dot product.
18. loc_n = n/p
19. bn = 1+(my_rank)*loc_n
20. en = bn + loc_n-1
21. print*,’my_rank =’,my_rank, ’loc_n = ’,loc_n
22. print*,’my_rank =’,my_rank, ’bn = ’,bn
23. print*,’my_rank =’,my_rank, ’en = ’,en
24. loc_dot = 0.0
25. do i = bn,en
26. loc_dot = loc_dot + a(i)*b(i)
27. end do
28. print*,’my_rank =’,my_rank, ’loc_dot = ’,loc_dot
29.! mpi_reduce is used to sum all the local dot products
30.! to dot on processor 0.
31. call mpi_reduce(loc_dot,dot,1,mpi_real,mpi_sum,0,&

286 CHAPTER 7. MESSAGE PASSING INTERFACE

mpi_comm_world,status,ierr)
32. if (my_rank.eq.0) then
33. print*, ’dot product = ’,dot
34. end if
35. call mpi_finalize(ierr)
36. end program dot2mpi

my_rank = 0 loc_dot = 8.000000000
my_rank = 1 loc_dot = 32.00000000
my_rank = 2 loc_dot = 72.00000000
my_rank = 3 loc_dot = 128.0000000
dot product = 240.0000000

Others illustrations of the subroutine mpi_reduce() are given in Chapter
6.4 and 6.5. In trapmpi.f the partial integrals are sent to processor 0 and
added to form the total integral. In matvecmpi.f the matrix-vector products are
computed by forming linear combinations of the column vector of the matrix.
Parallel computations are formed by computing partial linear combinations,
and using mpi_reduce() with the count parameter equal to the number of
components in the column vectors.

7.2.3 Illustrations of mpi_bcast()

The subroutine mpi_bcast is a fan-out algorithm that sends data to the other
processors in the communicator. The constants a = 0 and b = 100 are defined
in lines 12-15 for processor 0. Lines 17 and 18 verifies that only processor 0 has
this information. Lines 21 and 22 uses mpi_bcast() to send these values to all
the other processors. This is verified by the print commands in lines 25 and
26. Like the mpi_send() and mpi_recv() the mpi_bcast() must appear in the
code for all the processors involved in the communication. Lines 29-33 also do
this, and they enable the receiving processors to rename the sent data. This is
verified by the prints command in line 34.

MPI/Fortran 9x Code bcastmpi.f

1. program bcastmpi
2.! Illustrates mpi_bcast.
3. implicit none
4. include ’mpif.h’
5. real:: a,b,new_b
6. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
7. integer:: i,status(mpi_status_size)
8. data n,dest,tag/1024,0,50/
9. call mpi_init(ierr)
10. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
11. call mpi_comm_size(mpi_comm_world,p,ierr)
12. if (my_rank.eq.0) then

7.2. REDUCE AND BROADCAST 287

13. a = 0
14. b = 100.
15. end if
16.! Each processor attempts to print a and b.
17. print*,’my_rank =’,my_rank, ’a = ’,a
18. print*,’my_rank =’,my_rank, ’b = ’,b
19.! Processor 0 broadcasts a and b to the other processors.
20.! The mpi_bcast is issued by all processors.
21. call mpi_bcast(a,1,mpi_real,0,&

mpi_comm_world,ierr)
22. call mpi_bcast(b,1,mpi_real,0,&

mpi_comm_world,ierr)
23. call mpi_barrier(mpi_comm_world,ierr)
24.! Each processor prints a and b.
25. print*,’my_rank =’,my_rank, ’a = ’,a
26. print*,’my_rank =’,my_rank, ’b = ’,b
27.! Processor 0 broadcasts b to the other processors and
28.! stores it in new_b.
29. if (my_rank.eq.0) then
30. call mpi_bcast(b,1,mpi_real,0,&

mpi_comm_world,ierr)
31. else
32. call mpi_bcast(new_b,1,mpi_real,0,&

mpi_comm_world,ierr)
33. end if
34. print*,’my_rank =’,my_rank, ’new_b = ’,new_b
35. call mpi_finalize(ierr)
36. end program bcastmpi

my_rank = 0 a = 0.0000000000E+00
my_rank = 0 b = 100.0000000
my_rank = 1 a = -0.9424863232E+10
my_rank = 1 b = -0.1900769888E+30
my_rank = 2 a = -0.9424863232E+10
my_rank = 2 b = -0.1900769888E+30
my_rank = 3 a = -0.7895567565E+11
my_rank = 3 b = -0.4432889195E+30
!
my_rank = 0 a = 0.0000000000E+00
my_rank = 0 b = 100.0000000
my_rank = 1 a = 0.0000000000E+00
my_rank = 1 b = 100.0000000
my_rank = 2 a = 0.0000000000E+00
my_rank = 2 b = 100.0000000
my_rank = 3 a = 0.0000000000E+00

288 CHAPTER 7. MESSAGE PASSING INTERFACE

my_rank = 3 b = 100.0000000
!
my_rank = 0 new_b = 0.4428103147E-42
my_rank = 1 new_b = 100.0000000
my_rank = 2 new_b = 100.0000000
my_rank = 3 new_b = 100.0000000

The subroutines mpi_reduce() and mpi_bcast() are very effective when the
count and mpi_oper parameters are used. Also, there are variations of these
subroutines such as mpi_allreduce() and mpi_alltoall(), and for more details
one should consult the texts [17] and [6].

7.2.4 Exercises

1. Duplicate the calculations for reducmpi.f and experiment with different
numbers of processors.
2. Duplicate the calculations for dot2mpi.f and experiment with different
numbers of processors and different size vectors.
3. Modify dot2mpi.f so that one can compute in parallel a linear combina-
tion of the two vectors, αx+ βy.
4. Use mpi_reduce() to modify trapmpi.f to execute Simpson’s rule in par-
allel.
5. Duplicate the calculations for bcastmpi.f and experiment with different
numbers of processors.

7.3 Gather and Scatter

7.3.1 Introduction

When programs are initialized, often the root or host processor has most of the
initial data, which must be distributed either to all the processors or parts
of the data must be distributed to various of processors. The subroutine
mpi_scatter() can send parts of the initial data to various processors. This
differs from mpi_bcast(), because mpi_bcast() sends certain data to all of the
processors in the communicator. Once the parallel computation has been exe-
cuted, the parallel outputs must be sent to the host or root processor. This can
be done by using mpi_gather, which systematically stores the outputs from
the non root processors. These collective subroutines use fan-in and fan-out
schemes, and so they are effective for larger numbers of processors.

7.3.2 Syntax for mpi_scatter() and mpi_gather

The subroutine mpi_scatter() can send adjacent segments of data to local ar-
rays in other processors. For example, an array a(1:16) defined on processor 0
may be distributed to loc_a(1:4) on each of four processor by a(1:4), a(5:8),

7.3. GATHER AND SCATTER 289

a(9:12) and a(13:16). In this case, the count parameter is used where count =
4. The processors in the communicator are the destination processors.

mpi_scatter(sourecedata, count, mpi_datatype,
recvdata, count, mpi_datatype,
source, mpi_comm, status, ierr)

sourcedata array(*)
count integer
mpi_datatype integer
recvdata array(*)
count integer
mpi_datatype integer
source integer
mpi_comm integer
status(mpi_status_size) integer
ierr integer

The subroutine mpi_gather() can act as an inverse of mpi_scatter(). For
example, if loc_a(1:4) is on each of four processors, then

processor 0 sends loc_a(1:4) to a(1:4) on processor 0,
processor 1 sends loc_a(1:4) to a(5:8) on processor 0,
processor 2 sends loc_a(1:4) to a(9:12) on processor 0 and
processor 3 sends loc_a(1:4) to a(13:16) on processor 0.

mpi_gather(locdata, count, mpi_datatype,
destdata, count, mpi_datatype,
source, mpi_comm, status, ierr)

locdata array(*)
count integer
mpi_datatype integer
destdata array(*)
count integer
mpi_datatype integer
dest integer
mpi_comm integer
status(mpi_status_size) integer
ierr integer

7.3.3 Illustrations of mpi_scatter()

In scatmpi.f the array a_list(0:7) is initialized for processor 0 in line 12-16.
The scatmpi.f code scatters the arrary a_list(0:7) to four processors in groups
of two components, which is dictated by the count parameter in mpi_scatter()
in line 19. The two real numbers are stored in the first two components in the
local arrays, a_loc. The components a_loc(2:7) are not defined, and the print
commands in line 20 verifies this.

290 CHAPTER 7. MESSAGE PASSING INTERFACE

MPI/Fortran 9x Code scatmpi.f

1. program scatmpi
2.! Illustrates mpi_scatter.
3. implicit none
4. include ’mpif.h’
5. real, dimension(0:7):: a_list,a_loc
6. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
7. integer:: i,status(mpi_status_size)
8. data n,dest,tag/1024,0,50/
9. call mpi_init(ierr)
10. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
11. call mpi_comm_size(mpi_comm_world,p,ierr)
12. if (my_rank.eq.0) then
13. do i = 0,7
14. a_list(i) = i
15. end do
16. end if
17.! The array, a_list, is sent and received in groups of
18.! two to the other processors and stored in a_loc.
19. call mpi_scatter(a_list,2,mpi_real,a_loc,2,mpi_real,0,&

mpi_comm_world,status,ierr)
20. print*, ’my_rank =’,my_rank,’a_loc = ’, a_loc
21. call mpi_finalize(ierr)
22. end program scatmpi

my_rank = 0 a_loc = 0.0000000000E+00 1.000000000
!
0.2347455187E-40 0.1010193260E-38 -0.8896380928E+10
-0.2938472521E+30 0.3083417141E-40 0.1102030158E-38
!
my_rank = 1 a_loc = 2.000000000 3.000000000
!
.2347455187E-40 0.1010193260E-38 -0.8896380928E+10
-0.2947757071E+30 0.3083417141E-40 0.1102030158E-38
!
my_rank = 2 a_loc = 4.000000000 5.000000000
!
0.2347455187E-40 0.1010193260E-38 -0.8896380928E+10
-0.2949304496E+30 0.3083417141E-40 0.1102030158E-38
!
my_rank = 3 a_loc = 6.000000000 7.000000000
!
0.2347455187E-40 0.1010193260E-38 -0.8896380928E+10
-0.3097083589E+30 0.3083417141E-40 0.1102030158E-38

7.3. GATHER AND SCATTER 291

7.3.4 Illustrations of mpi_gather()

The second code gathmpi.f collects some of the data loc_n, loc_a, and loc_b,
which is computed in lines 15-17 for each processor. In particular, all the values
of loc_a are sent and stored in the array a_list on processor 0. This is done by
mpi_gather() on line 23 where count is equal to one and the root processor is
zero. This is verified by the print commands in lines 18-20 and 25-29.

MPI/Fortran 9x Code gathmpi.f

1. program gathmpi
2.! Illustrates mpi_gather.
3. implicit none
4. include ’mpif.h’
5. real:: a,b,h,loc_a,loc_b,total
6. real, dimension(0:31):: a_list
7. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
8. integer:: i,status(mpi_status_size)
9. data a,b,n,dest,tag/0.0,100.0,1024,0,50/
10. call mpi_init(ierr)
11. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
12. call mpi_comm_size(mpi_comm_world,p,ierr)
13. h = (b-a)/n
14.! Each processor has a unique loc_n, loc_a and loc_b
15. loc_n = n/p
16. loc_a = a+my_rank*loc_n*h
17. loc_b = loc_a + loc_n*h
18. print*,’my_rank =’,my_rank, ’loc_a = ’,loc_a
19. print*,’my_rank =’,my_rank, ’loc_b = ’,loc_b
20. print*,’my_rank =’,my_rank, ’loc_n = ’,loc_n
21.! The loc_a are sent and recieved to an array, a_list, on
22.! processor 0.
23. call mpi_gather(loc_a,1,mpi_real,a_list,1,mpi_real,0,&

mpi_comm_world,status,ierr)
24. call mpi_barrier(mpi_comm_world,ierr)
25. if (my_rank.eq.0) then
26. do i = 0,p-1
27. print*, ’a_list(’,i,’) = ’,a_list(i)
28. nd do
29. end if
30. call mpi_finalize(ierr)
31. end program gathmpi

my_rank = 0 loc_a = 0.0000000000E+00
my_rank = 0 loc_b = 25.00000000
my_rank = 0 loc_n = 256
my_rank = 1 loc_a = 25.00000000

292 CHAPTER 7. MESSAGE PASSING INTERFACE

my_rank = 1 loc_b = 50.00000000
my_rank = 1 loc_n = 256
my_rank = 2 loc_a = 50.00000000
my_rank = 2 loc_b = 75.00000000
my_rank = 2 loc_n = 256
my_rank = 3 loc_a = 75.00000000
my_rank = 3 loc_b = 100.0000000
my_rank = 3 loc_n = 256
!
a_list(0) = 0.0000000000E+00
a_list(1) = 25.00000000
a_list(2) = 50.00000000
a_list(3) = 75.00000000

The third version of a parallel dot product in dot3mpi.f uses mpi_gather()
to collect the local dot products that have been computed concurrently in
lines 25-27. The local dot products, loc_dot, are sent and stored in the ar-
ray loc_dots(0:31) on processor 0. This is done by the call to mpi_gather()
on line 31 where the count parameter is equal to one and the root processor is
zero. Lines 33-36 sum the local dot products, and the print commands in lines
21-23 and 33-36 confirms this.

MPI/Fortran 9x Code dot3mpi.f

1. program dot3mpi
2.! Illustrates dot product via mpi_gather.
3. implicit none
4. include ’mpif.h’
5. real:: loc_dot,dot
6. real, dimension(0:31):: a,b, loc_dots
7. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
8. integer:: i,status(mpi_status_size),en,bn
9. data n,dest,tag/8,0,50/
10. do i = 1,n
11. a(i) = i
12. b(i) = i+1
13. end do
14. call mpi_init(ierr)
15. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
16. call mpi_comm_size(mpi_comm_world,p,ierr)
17.! Each processor computes a local dot product
18. loc_n = n/p
19. bn = 1+(my_rank)*loc_n
20. en = bn + loc_n-1
21. print*,’my_rank =’,my_rank, ’loc_n = ’,loc_n
22. print*,’my_rank =’,my_rank, ’bn = ’,bn
23. print*,’my_rank =’,my_rank, ’en = ’,en

7.3. GATHER AND SCATTER 293

24. loc_dot = 0.0
25. do i = bn,en
26. loc_dot = loc_dot + a(i)*b(i)
27. end do
28. print*,’my_rank =’,my_rank, ’loc_dot = ’,loc_dot
29.! mpi_gather sends and recieves all local dot products
30.! to the array loc_dots in processor 0.
31. call mpi_gather(loc_dot,1,mpi_real,loc_dots,1,mpi_real,0,&

mpi_comm_world,status,ierr)
32.! Processor 0 sums the local dot products.
33. if (my_rank.eq.0) then
34. dot = loc_dot + sum(loc_dots(1:p-1))
35. print*, ’dot product = ’,dot
36. end if
37. call mpi_finalize(ierr)
38. end program dot3mpi

my_rank = 0 loc_n = 2
my_rank = 0 bn = 1
my_rank = 0 en = 2
my_rank = 1 loc_n = 2
my_rank = 1 bn = 3
my_rank = 1 en = 4
my_rank = 2 loc_n = 2
my_rank = 2 bn = 5
my_rank = 2 en = 6
my_rank = 3 loc_n = 2
my_rank = 3 bn = 7
my_rank = 3 en = 8
!
my_rank = 0 loc_dot = 8.000000000
my_rank = 1 loc_dot = 32.00000000
my_rank = 2 loc_dot = 72.00000000
my_rank = 3 loc_dot = 128.0000000
dot product = 240.0000000

Another application of mpi_gather() is in the matrix-matrix product code
mmmpi.f, which was presented in Chapter 6.5. Here the product BC was
formed by computing in parallel BC (bn : en) , and these partial products were
communicated via mpi_gather() to the root processor.

7.3.5 Exercises

1. Duplicate the calculations for scatmpi.f and experiment with different
numbers of processors.

294 CHAPTER 7. MESSAGE PASSING INTERFACE

2. Duplicate the calculations for gathmpi.f and experiment with different
numbers of processors.
3. Duplicate the calculations for dot3mpi.f and experiment with different
numbers of processors and different size vectors.
4. Use mpi_gather() to compute in parallel a linear combination of the two
vectors, αx+ βy.
5. Use mpi_gather() to modify trapmpi.f to execute Simpson’s rule in par-
allel.

7.4 Grouped Data Types

7.4.1 Introduction

There is some startup time associated with each MPI subroutine. So if are large
number of calls to mpi_send() and mpi_recv() are made, then the communi-
cation portion of the code may be significant. By collecting data in groups a
single communication subroutine may be used for large amounts of data. Here
we will present three methods for the grouping of data: count, derived types
and packed.

7.4.2 Count Type

The count parameter has already been used in some of the previous codes. The
parameter count refers to the number of mpi_datatypes to be communicated.
The most common data types are mpi_real or mpi_int, and these are usually
stored in arrays whose components are addressed sequentially. In Fortran the
two dimensional arrays components are listed by columns starting with the left
most column. For example, if the array is b(1:2,1:3), then the list for b is b(1,1),
b(2,1), b(1,2), b(2,2), b(1,3) and b(2,3). Starting at b(1,1) with count = 4 gives
the first four components, and starting at b(1,2) with count = 4 gives the last
four components.
The code countmpi.f illustrates the count parameter method when it is used

in the subroutine mpi_bcast(). Lines 14-24 initialize in processor 0 two arrays
a(1:4) and b(1:2,1:3). All of the array a is broadcast, in line 29, to the other
processors, and just the first four components of the two dimensional array b
are broadcast, in line 30, to the other processors. This is confirmed by the print
commands in lines 26, 32 and 33.

MPI/Fortran 9x Code countmpi.f

1. program countmpi
2.! Illustrates count for arrays.
3. implicit none
4. include ’mpif.h’
5. real, dimension(1:4):: a
6. integer, dimension(1:2,1:3):: b

7.4. GROUPED DATA TYPES 295

7. integer:: my_rank,p,n,source,dest,tag,ierr,loc_n
8. integer:: i,j,status(mpi_status_size)
9. data n,dest,tag/4,0,50/
10. call mpi_init(ierr)
11. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
12. call mpi_comm_size(mpi_comm_world,p,ierr)
13.! Define the arrays.
14. if (my_rank.eq.0) then
15. a(1) = 1.
16. a(2) = exp(1.)
17. a(3) = 4*atan(1.)
18. a(4) = 186000.
19. do j = 1,3
20. do i = 1,2
21. b(i,j) = i+j
22. end do
23. end do
24. end if
25.! Each processor attempts to print the array.
26. print*,’my_rank =’,my_rank, ’a = ’,a
27. call mpi_barrier(mpi_comm_world,ierr)
28.! The arrays are broadcast via count equal to four.
29. call mpi_bcast(a,4,mpi_real,0,&

mpi_comm_world,ierr)
30. call mpi_bcast(b,4,mpi_int,0,&

mpi_comm_world,ierr)
31.! Each processor prints the arrays.
32. print*,’my_rank =’,my_rank, ’a = ’,a
33. print*,’my_rank =’,my_rank, ’b = ’,b
34. call mpi_finalize(ierr)
35. end program countmpi

my_rank = 0 a = 1.000000000 2.718281746
3.141592741 186000.0000

my_rank = 1 a = -0.1527172301E+11 -0.1775718601E+30
0.8887595380E-40 0.7346867719E-39

my_rank = 2 a = -0.1527172301E+11 -0.1775718601E+30
0.8887595380E-40 0.7346867719E-39

my_rank = 3 a = -0.1527172301E+11 -0.1775718601E+30
0.8887595380E-40 0.7346867719E-39

!
my_rank = 0 a = 1.000000000 2.718281746

3.141592741 186000.0000
my_rank = 0 b = 2 3 3 4 4 5
my_rank = 1 a = 1.000000000 2.718281746

296 CHAPTER 7. MESSAGE PASSING INTERFACE

3.141592741 186000.0000
my_rank = 1 b = 2 3 3 4 -803901184 -266622208
my_rank = 2 a = 1.000000000 2.718281746

3.141592741 186000.0000
my_rank = 2 b = 2 3 3 4 -804478720 -266622208
my_rank = 3 a = 1.000000000 2.718281746

3.141592741 186000.0000
my_rank = 3 b = 2 3 3 4 -803901184 -266622208

7.4.3 Derived Type

If the data to be communicated is either of mixed type or is not adjacent in the
memory, then one can create a user defined mpi_type. For example, the data
to be grouped may have some mpi_real, mpi_int and mpi_char entries and be
in non adjacent locations in memory. The derived type must have four items
for each entry: blocks or count of each mpi_type, type list, address in memory
and displacement. The address in memory can be gotten by a MPI subroutine
called mpi_address(a,addresses(1),ierr) where a is one of the entries in the new
data type.
The following code dertypempi.f creates a new data type, which is called

data_mpi_type. It consists of four entries with one mpi_real, a, one mpi_real,
b, one mpi_int, c and one mpi_int, d. These entries are initialized on processor
0 by lines 19-24. In order to communicate them as a single new data type
via mpi_bcast, the new data type is created in lines 26-43. The four arrays
blocks, typelist, addresses and displacements are initialized. The call in line 42
to mpi_type_struct(4, blocks, displacements, typelist, data_mpi_type ,ierr)
enters this structure and identifies it with the name data_mpi_type. Finally
the call in line 43 to mpi_type_commit(data_mpi_type,ierr) finalizes this user
defined data type. The call to mpi_bcast() in line 52 addresses the first entry
of the data_mpi_type and uses count =1 so that the data a, b, c and d will
be broadcast to the other processors. This is verified by the print commands
in lines 46-49 and 54-57.

MPI/Fortran 9x Code dertypempi.f

1. program dertypempi
2.! Illustrates a derived type.
3. implicit none
4. include ’mpif.h’
5. real:: a,b
6. integer::c,d
7. integer::data_mpi_type
8. integer::ierr
9. integer, dimension(1:4)::blocks
10. integer, dimension(1:4)::displacements
11. integer, dimension(1:4)::addresses

7.4. GROUPED DATA TYPES 297

12. integer, dimension(1:4)::typelist
13. integer:: my_rank,p,n,source,dest,tag,loc_n
14. integer:: i,status(mpi_status_size)
15. data n,dest,tag/4,0,50/
16. call mpi_init(ierr)
17. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
18. call mpi_comm_size(mpi_comm_world,p,ierr)
19. if (my_rank.eq.0) then
20. a = exp(1.)
21. b = 4*atan(1.)
22. c = 1
23. d = 186000
24. end if
25.! Define the new derived type, data_mpi_type.
26. typelist(1) = mpi_real
27. typelist(2) = mpi_real
28. typelist(3) = mpi_integer
29. typelist(4) = mpi_integer
30. blocks(1) = 1
31. blocks(2) = 1
32. blocks(3) = 1
33. blocks(4) = 1
34. call mpi_address(a,addresses(1),ierr)
35. call mpi_address(b,addresses(2),ierr)
36. call mpi_address(c,addresses(3),ierr)
37. call mpi_address(d,addresses(4),ierr)
38. displacements(1) = addresses(1) - addresses(1)
39. displacements(2) = addresses(2) - addresses(1)
40. displacements(3) = addresses(3) - addresses(1)
41. displacements(4) = addresses(4) - addresses(1)
42. call mpi_type_struct(4,blocks,displacements,&

. typelist,data_mpi_type,ierr)
43. call mpi_type_commit(data_mpi_type,ierr)
44.! Before the broadcast of the new type data_mpi_type
45.! try to print the data.
46. print*,’my_rank =’,my_rank, ’a = ’,a
47. print*,’my_rank =’,my_rank, ’b = ’,b
48. print*,’my_rank =’,my_rank, ’c = ’,c
49. print*,’my_rank =’,my_rank, ’d = ’,d
50. call mpi_barrier(mpi_comm_world,ierr)
51.! Broadcast data_mpi_type.
52. call mpi_bcast(a,1,data_mpi_type,0,&

mpi_comm_world,ierr)
53.! Each processor prints the data.
54. print*,’my_rank =’,my_rank, ’a = ’,a

298 CHAPTER 7. MESSAGE PASSING INTERFACE

55. print*,’my_rank =’,my_rank, ’b = ’,b
56. print*,’my_rank =’,my_rank, ’c = ’,c
57. print*,’my_rank =’,my_rank, ’d = ’,d
58. call mpi_finalize(ierr)
59. end program dertypempi

my_rank = 0 a = 2.718281746
my_rank = 0 b = 3.141592741
my_rank = 0 c = 1
my_rank = 0 d = 186000
my_rank = 1 a = 0.2524354897E-28
my_rank = 1 b = 0.1084320046E-18
my_rank = 1 c = 20108
my_rank = 1 d = 3
my_rank = 2 a = 0.2524354897E-28
my_rank = 2 b = 0.1084320046E-18
my_rank = 2 c = 20108
my_rank = 2 d = 3
my_rank = 3 a = 0.2524354897E-28
my_rank = 3 b = 0.1084320046E-18
my_rank = 3 c = 20108
my_rank = 3 d = 3
!
my_rank = 0 a = 2.718281746
my_rank = 0 b = 3.141592741
my_rank = 0 c = 1
my_rank = 0 d = 186000
my_rank = 1 a = 2.718281746
my_rank = 1 b = 3.141592741
my_rank = 1 c = 1
my_rank = 1 d = 186000
my_rank = 2 a = 2.718281746
my_rank = 2 b = 3.141592741
my_rank = 2 c = 1
my_rank = 2 d = 186000
my_rank = 3 a = 2.718281746
my_rank = 3 b = 3.141592741
my_rank = 3 c = 1
my_rank = 3 d = 186000

7.4.4 Packed Type

The subroutine mpi_pack() relocates data to a new array, which is addressed
sequentially. Communication subroutines such as mpi_bcast() can be used

7.4. GROUPED DATA TYPES 299

with the count parameter to send the data to other processors. The data is
then unpacked from the array created by mpi_unpack()

mpi_pack(locdata, count, mpi_datatype,
packarray, position, mpi_comm, ierr)

locdata array(*)
count integer
mpi_datatype integer
packarray array(*)
packcount integer
position integer
mpi_comm integer
ierr integer

mpi_unpack(destarray, count, mpi_datatype,
locdata, position, mpi_comm, ierr)

packarray array(*)
packcount integer
mpi_datatype integer
locdata array(*)
count integer
position integer
mpi_comm integer
ierr integer

In packmpi.f four variables on processor 0 are initialize in lines 17-18 and
packed into the array numbers in lines 21-25. Then in lines 26 and 28 the
array number is broadcast to the other processors. In lines 30-34 this data in
unpacked to the original local variables, which are duplicated on each of the
other processors. The print commands in lines 37-40 verify this.

MPI/Fortran 9x Code packmpi.f

1. program packmpi
2.! Illustrates mpi_pack and mpi_unpack.
3. implicit none
4. include ’mpif.h’
5. real:: a,b
6. integer::c,d,location
7. integer::ierr
8. character, dimension(1:100)::numbers
9. integer:: my_rank,p,n,source,dest,tag,loc_n
10. integer:: i,status(mpi_status_size)
11. data n,dest,tag/4,0,50/
12. call mpi_init(ierr)
13. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
14. call mpi_comm_size(mpi_comm_world,p,ierr)
15.! Processor 0 packs and broadcasts the four number.

300 CHAPTER 7. MESSAGE PASSING INTERFACE

16. if (my_rank.eq.0) then
17. a = exp(1.)
18. b = 4*atan(1.)
19. c = 1
20. d = 186000
21. location = 0
22. call mpi_pack(a,1,mpi_real,numbers,100,location,&

mpi_comm_world, ierr)
23. call mpi_pack(b,1,mpi_real,numbers,100,location,&

mpi_comm_world, ierr)
24. call mpi_pack(c,1,mpi_integer,numbers,100,location,&

mpi_comm_world, ierr)
25. call mpi_pack(d,1,mpi_integer,numbers,100,location,&

mpi_comm_world, ierr)
26. call mpi_bcast(numbers,100,mpi_packed,0,&

mpi_comm_world,ierr)
27. else
28. call mpi_bcast(numbers,100,mpi_packed,0,&

mpi_comm_world,ierr)
29.! Each processor unpacks the numbers.
30. location = 0
31. call mpi_unpack(numbers,100,location,a,1,mpi_real,&

mpi_comm_world, ierr)
32. call mpi_unpack(numbers,100,location,b,1,mpi_real,&

mpi_comm_world, ierr)
33. call mpi_unpack(numbers,100,location,c,1,mpi_integer,&

mpi_comm_world, ierr)
34. call mpi_unpack(numbers,100,location,d,1,mpi_integer,&

mpi_comm_world, ierr)
35. end if
36.! Each processor prints the numbers.
37. print*,’my_rank =’,my_rank, ’a = ’,a
38. print*,’my_rank =’,my_rank, ’b = ’,b
39. print*,’my_rank =’,my_rank, ’c = ’,c
40. print*,’my_rank =’,my_rank, ’d = ’,d
41. call mpi_finalize(ierr)
42. end program packmpi

!
my_rank = 0 a = 2.718281746
my_rank = 0 b = 3.141592741
my_rank = 0 c = 1
my_rank = 0 d = 186000
my_rank = 1 a = 2.718281746
my_rank = 1 b = 3.141592741

7.5. COMMUNICATORS 301

my_rank = 1 c = 1
my_rank = 1 d = 186000
my_rank = 2 a = 2.718281746
my_rank = 2 b = 3.141592741
my_rank = 2 c = 1
my_rank = 2 d = 186000
my_rank = 3 a = 2.718281746
my_rank = 3 b = 3.141592741
my_rank = 3 c = 1
my_rank = 3 d = 186000

7.4.5 Exercises

1. Duplicate the calculations for countmpi.f and experiment with different
size arrays and numbers of processors.
2. Duplicate the calculations for dertypempi.f and experiment with different
data types.
3. Duplicate the calculations for packmpi.f and experiment with different
numbers of processors and different size vectors.
4. Consider a one dimensional array that has many nonzero numbers. Use
mpi_pack() and mpi_unpack() to communicate the nonzero entries in the ar-
ray.
5. Repeat problem four for a two dimensional array.

7.5 Communicators

7.5.1 Introduction

The generic communicator that has been used in all of the previous codes is
called mpi_comm_world. It is the set of all p processors, and all processors
can communicate with each other. When collective subroutines are called and
the communicator is mpi_comm_world, then the data is to be communicated
among the other p-1 processors. In many applications it may not be necessary
to communicate with all other processors. Two similar examples were given
in the Chapter 6.6 where the two space dimension heat and pollutant models
are considered. In this cases each processor is associated with a horizontal
portion of space, and each processor is required to exchange information with
the adjacent processors. So, we associate an ordering with the processor and to
communicate with the nearest processor.

7.5.2 A Grid Communicator

In this and the next section grid communicators will be used to do matrix-
matrix products. In order to motivate this discussion, consider at block 3 × 3

302 CHAPTER 7. MESSAGE PASSING INTERFACE

matrix times a block 3× 1 matrix where the blocks are n× n A11 A12 A13
A21 A22 A23
A31 A32 A33

 X1

X2

X3

 =
 A11X1 +A12X2 +A13X3

A21X1 +A22X2 +A23X3

A31X1 +A32X2 +A33X3

 .
Consider p = 9 processors and they are associated with a 3 × 3 grid. Assume
the matrices Aij are stored on grid processor ij. Then the 9 matrix products
AijXj could be done concurrently. The overall process is as follows:

broadcast Xj to column j of processors,
in parallel compute the matrix products AijXj and
sum the products in row i of processors.

We wish to use collective subroutines restricted to either columns or rows of
this grid of processors. In particular, start with the generic communicator, and
then create a two dimension grid communicator as well as three row and three
column subgrid communicators. The MPI subroutines mpi_cart_create(),
mpi_cart_coords() and mpi_cart_sub() will help us do this. The subrou-
tine Setup_grid(grid) uses these three MPI subroutines, and it is used in grid-
commpi.f, and in foxmpi.f of the next section.
The subroutine mpi_cart_create() will generate a d = dim dimensional

grid communicator from p = qd processors in the original communicator called
mpi_comm. The dimsize = q with periodic parameter in each dimension is
set equal to TRUE, and the numbering of the processor in each row or column
of processor will begin at 0 and end at q − 1. The new communicator is called
grid_comm.

call mpi_cart_create(mpi_comm_world, dim,&
dimsize, periods, .TRUE. , grid_comm, ierr)

mpi_comm integer
dim integer
dimsize integer(*)
periods logical(*)
reorder logical
grid_comm integer
ierr logical

The subroutine mpi_cart_coords() associates with each processor, given
by grid_my_rank, in grid_comm, a grid_row = coordinates(0) or grid_col =
coordinates(1) for dim = 2.

call mpi_cart_coords(grid_comm, grid_my_rank, 2,&
coordinates, ierr)

grid_comm integer
grid_my_rank integer
dim integer
coordinates integer(*)
ierr logical

7.5. COMMUNICATORS 303

Subcommunicators can easily be formed by a call to mpi_cart_sub(). The
subcommunicators are associated with the grid row or grid columns of proces-
sors for dim =2.

call mpi_cart_sub(grid_comm, vary_coords, &
sub_comm, ierr)

grid_comm integer
vary_coords logical(*)
sub_comm integer
ierr logical

7.5.3 Illustration gridcommpi.f

First, we examine the subroutine Setup_grid(grid) in lines 56-91. This is
a two dimensional grid and we have assumed p = q2. The parameter grid
is of type GRID_INFO_TYPE as defined in lines 5-14. The integer array
dimension and logical array periods are defined in lines 70-73. The call to
mpi_cart_create() is done in line 74 where a grid%comm is defined. In line
76 grid%my_rank is identified for the communicator grid%comm. Lines 79-80
identifies the grid%my_row and grid%my_col. Lines 84 and 88 mpi_cart_sub()
defines the communicators grid%row_comm and grid%col_comm.
Second, the main part of gridcommpi.f simply defines a 6×6 array and uses

p = 32 processors so that the array can be defined by nine processors as given
in lines 26-32. The local arrays A are 2 × 2, and there is a version on each of
the nine processors. After line 32 the 6× 6 array, which is distributed over the
grid communicator, is 

1 1 2 2 3 3
1 1 2 2 3 3
2 2 3 3 4 4
2 2 3 3 4 4
3 3 4 4 5 5
3 3 4 4 5 5

 .

In line 48 mpi_bcast() from column processors 1 (corresponds to the second
block column in the above matrix) to the other processors in row_comm. This
means the new distribution of the matrix will be

2 2 2 2 2 2
2 2 2 2 2 2
3 3 3 3 3 3
3 3 3 3 3 3
4 4 4 4 4 4
4 4 4 4 4 4

 .

The output from the print command in lines 50-53 verifies this.

304 CHAPTER 7. MESSAGE PASSING INTERFACE

MPI/Fortran 9x gridcommpi.f

1. program gridcommpi
2.! Illustrates grid communicators.
3. include ’mpif.h’
4. IMPLICIT NONE
5. type GRID_INFO_TYPE
6. integer p ! total number of processes.
7. integer comm ! communicator for the entire grid.
8. integer row_comm ! communicator for my row.
9. integer col_comm ! communicator for my col.
10. integer q ! order of grid.
11. integer my_row ! my row number.
12. integer my_col ! my column number.
13. integer my_rank ! my rank in the grid communicator.
14. end type GRID_INFO_TYPE
15. TYPE (GRID_INFO_TYPE) :: grid_info
16. integer :: my_rank, ierr
17. integer, allocatable, dimension(:,:) :: A,B,C
18. integer :: i,j,k,n, n_bar
19. call mpi_init(ierr)
20. call Setup_grid(grid_info)
21. call mpi_comm_rank(mpi_comm_world, my_rank, ierr)
22. if (my_rank == 0) then
23. n=6
24. endif
25. call mpi_bcast(n,1,mpi_integer, 0, mpi_comm_world, ierr)
26. n_bar = n/(grid_info%q)
27.! Allocate local storage for local matrix.
28. allocate(A(n_bar,n_bar))
29. allocate(B(n_bar,n_bar))
30. allocate(C(n_bar,n_bar))
31. A = 1 + grid_info%my_row + grid_info%my_col
32. B = 1 - grid_info%my_row - grid_info%my_col
33. if (my_rank == 0) then
34. print*,’n = ’,n,’n_bar = ’,n_bar,&
35. ’grid%p = ’,grid_info%p, ’grid%q = ’,grid_info%q
36. end if
37. print*, ’my_rank = ’,my_rank,&
38. ’grid_info%my_row = ’,grid_info%my_row,&
39. ’grid_info%my_col = ’,grid_info%my_col
40. call mpi_barrier(mpi_comm_world, ierr)
41. print*, ’grid_info%my_row =’,grid_info%my_row,&
42. ’grid_info%my_col =’,grid_info%my_col,&
43. ’A = ’,A(1,:),&

7.5. COMMUNICATORS 305

44. ’ ; ’,A(2,:)
45.! Uses mpi_bcast to send and recieve parts of the array, A,
46.! to the processors in grid_info%row_com, which was defined
47.! in the call to the subroutine Setup_grid(grid_info).
48. call mpi_bcast(A,n_bar*n_bar,mpi_integer,&
49. 1, grid_info%row_comm, ierr)
50. print*, ’grid_info%my_row =’,grid_info%my_row,&
51. ’grid_info%my_col =’,grid_info%my_col,&
52. ’ new_A = ’,A(1,:),&
53. ’ ; ’,A(2,:)
54. call mpi_finalize(ierr)
55. contains
!
56. subroutine Setup_grid(grid)
57.! This subroutine defines a 2D grid communicator.
58.! And for each grid row and grid column additional
59.! communicators are defined.
60. TYPE (GRID_INFO_TYPE), intent(inout) :: grid
61. integer old_rank
62. integer dimensions(0:1)
63. logical periods(0:1)
64. integer coordinates(0:1)
65. logical varying_coords(0:1)
66. integer ierr
67. call mpi_comm_size(mpi_comm_world, grid%p, ierr)
68. call mpi_comm_rank(mpi_comm_world, old_rank, ierr)
69. grid%q = int(sqrt(dble(grid%p)))
70. dimensions(0) = grid%q
71. dimensions(1) = grid%q
72. periods(0) = .TRUE.
73. periods(1) = .TRUE.
74. call mpi_cart_create(mpi_comm_world, 2,&
75. dimensions, periods, .TRUE. , grid%comm, ierr)
76. call mpi_comm_rank (grid%comm, grid%my_rank, ierr)
77. call mpi_cart_coords(grid%comm, grid%my_rank, 2,&
78. coordinates, ierr)
79. grid%my_row = coordinates(0)
80. grid%my_col = coordinates(1)
81.! Set up row and column communicators.
82. varying_coords(0) = .FALSE.
83. varying_coords(1) = .TRUE.
84. call mpi_cart_sub(grid%comm,varying_coords,&
85. grid%row_comm,ierr)
86. varying_coords(0) = .TRUE.
87. varying_coords(1) = .FALSE.

306 CHAPTER 7. MESSAGE PASSING INTERFACE

88. call mpi_cart_sub(grid%comm,varying_coords,&
89. grid%col_comm,ierr)
90. end subroutine Setup_grid
91. end program gridcommpi
!

n = 6 n_bar = 2 grid%p = 9 grid%q = 3
!
my_rank = 0 grid_info%my_row = 2 grid_info%my_col = 2
my_rank = 1 grid_info%my_row = 2 grid_info%my_col = 1
my_rank = 2 grid_info%my_row = 2 grid_info%my_col = 0
my_rank = 3 grid_info%my_row = 1 grid_info%my_col = 0
my_rank = 4 grid_info%my_row = 1 grid_info%my_col = 2
my_rank = 5 grid_info%my_row = 0 grid_info%my_col = 2
my_rank = 6 grid_info%my_row = 0 grid_info%my_col = 1
my_rank = 7 grid_info%my_row = 0 grid_info%my_col = 0
my_rank = 8 grid_info%my_row = 1 grid_info%my_col = 1
!
grid_info%my_row = 0 grid_info%my_col = 0 A = 1 1 ; 1 1
grid_info%my_row = 1 grid_info%my_col = 0 A = 2 2 ; 2 2
grid_info%my_row = 2 grid_info%my_col = 0 A = 3 3 ; 3 3
grid_info%my_row = 0 grid_info%my_col = 1 A = 2 2 ; 2 2
grid_info%my_row = 1 grid_info%my_col = 1 A = 3 3 ; 3 3
grid_info%my_row = 2 grid_info%my_col = 1 A = 4 4 ; 4 4
grid_info%my_row = 0 grid_info%my_col = 2 A = 3 3 ; 3 3
grid_info%my_row = 1 grid_info%my_col = 2 A = 4 4 ; 4 4
grid_info%my_row = 2 grid_info%my_col = 2 A = 5 5 ; 5 5
!
grid_info%my_row = 0 grid_info%my_col = 0 new_A = 2 2 ; 2 2
grid_info%my_row = 1 grid_info%my_col = 0 new_A = 3 3 ; 3 3
grid_info%my_row = 2 grid_info%my_col = 0 new_A = 4 4 ; 4 4
grid_info%my_row = 0 grid_info%my_col = 1 new_A = 2 2 ; 2 2
grid_info%my_row = 1 grid_info%my_col = 1 new_A = 3 3 ; 3 3
grid_info%my_row = 2 grid_info%my_col = 1 new_A = 4 4 ; 4 4
grid_info%my_row = 0 grid_info%my_col = 2 new_A = 2 2 ; 2 2
grid_info%my_row = 1 grid_info%my_col = 2 new_A = 3 3 ; 3 3
grid_info%my_row = 2 grid_info%my_col = 2 new_A = 4 4 ; 4 4

7.5.4 Exercises

1. Duplicate the computations for gridcommpi.f. Change mpi_bcast() to
mpi_bcast(A,n_bar*n_bar,mpi_real,x,grid_info%row_comm,ierr) where x is
0 and 2. Explain the outputs.

7.6. FOX’S ALGORITHM FOR AB 307

2. In gridcommpi.f change the communicator from row_comm to col_comm.by
using mpi_bcast(A,n_bar*n_bar,mpi_real,x,grid_info%col_comm,ierr) where
x is 0, 1 and 2. Explain the outputs.

7.6 Fox’s Algorithm for AB

7.6.1 Introduction

In this section the block matrix-matrix product AB will be done where A and
B are both q × q block matrices. The number of processor used to do this
will be p = q2, and the grid communicator that was defined in the subroutine
Setup_grid() will be used. Fox’s algorithm follows a similar pattern as in AX
in the previous section where A is 3× 3 and X is 3× 1. The numbering of the
block row and columns of the matrices will start at 0 and end at q − 1.

7.6.2 Matrix-Matrix Product

The classical definition of matrix product C = AB is block ij of C equals block
row i of A times block column j of B

Cij =

q−1X
k=0

AikBkj .

The summation can be done in any order, and the matrix products for a fixed
ij can be done by the grid processor ij. If the matrices Aij , Bij , and Cij

are stored on the grid processor ij, then the challenge is to communicate the
required matrices to the grid processor ij.

7.6.3 Parallel Fox Algorithm

In order to motivate the Fox algorithm, consider the block 3× 3 case C00 C01 C02
C10 C11 C12
C20 C21 C22

 =
 A00 A01 A02

A10 A11 A12
A20 A21 A22

 B00 B01 B02
B10 B11 B12
B20 B21 B22

 .
Assume that processor ij in the grid communicator has stored the matrices Aij

and Bij . Consider the computation of the second block row of C, which can be
reordered as follows

C10 = A11B10 +A12B20 +A10B00

C11 = A11B11 +A12B21 +A10B01

C12 = A11B12 +A12B22 +A10B02.

Grid processor 1j can compute the first term on the right side if the matrix
A11 has been broadcast to grid processor 1j. In order for grid processor 1j

308 CHAPTER 7. MESSAGE PASSING INTERFACE

to compute the second matrix product on the right side, the matrix B1j must
replaced by B2j , and matrix A12 must be broadcast to the grid processor 1j.
The last step is for q − 1 = 2 where the matrix B2j must be replaced by B0j ,
and the matrix A10 must be broadcast to the grid processor 1j. For the q × q
block matrices there are q matrix products for each grid processor, and this can
be done in a loop whose index is step.

Fox Algorithm for the Matrix Product C = C +AB

q = p1/2, source = (mod(i+ 1, q), j), dest = (mod(i− 1, q), j)
concurrently with 0 ≤ i, j ≤ q − 1
for step = 0, q − 1

k_bar = mod(i+ step, q)
broadcast Ai,k_bar to grid row i of processors
Cij = Cij +Ai,k_barBk_bar,j

send Bk_bar,j to processor dest
receive Bkk,j from source where kk = mod(k_bar + 1, q)

endloop.

7.6.4 Illustration foxmpi.f

This implementation of the Fox algorithm is a variation on that given by
Pacheco [17], but here Fortran 9x is used, and the matrix products for the
submatrices are done either by a call to the BLAS3 subroutine sgemm() or by
the jki loops. The input to this is given in lines 1-33, the call to the fox sub-
routine is in line 34, and the output in given in lines 36-42. The subroutine
Setup_grid(grid) is the same as listed in the previous section. The fox subrou-
tine is listed in lines 48-96. The step loop of the Fox algorithm is executed in
lines 60-95. The matrix products may be done by either sgemm() or the jki
loops, which are listed here as commented out of execution. The broadcast of
the matrix Ai,k_bar over the grid_row communicator is done in lines 63,64 and
79,80; note how one stores local_A from bcast_root in temp_A so as not to
overwrite local_A in destination. Then the matrix products Ai,k_barBk_bar,j

are done in lines 66,67 and 81,82. The subroutine mpi_sendrecv_replace() in
line 92-94 is used to communicate Bk_bar,j within the grid_col communicator.

MPI/Fortran 9x Code foxmpi.f

1. program foxmpi
2. include ’mpif.h’
3. IMPLICIT NONE
4. type GRID_INFO_TYPE
5. integer p ! total number of processes.
6. integer comm ! communicator for the entire grid.
7. integer row_comm ! communicator for my row.
8. integer col_comm ! communicator for my col.
9. integer q ! order of grid.

7.6. FOX’S ALGORITHM FOR AB 309

10. integer my_row ! my row number.
11. integer my_col ! my column number.
12. integer my_rank ! my rank in the grid communicator.
13. end type GRID_INFO_TYPE
14. TYPE (GRID_INFO_TYPE) :: grid_info
15. integer :: my_rank, ierr
16. real, allocatable, dimension(:,:) :: A,B,C
17. integer :: i,j,k,n, n_bar
18. real:: mflops,t1,t2,timef
19. call mpi_init(ierr)
20. call Setup_grid(grid_info)
21. call mpi_comm_rank(mpi_comm_world, my_rank, ierr)
22. if (my_rank == 0) then
23. n = 800 !n = 6
24. t1 = timef()
25. endif
26. call mpi_bcast(n,1,mpi_integer, 0, mpi_comm_world,ierr)
27. n_bar = n/(grid_info%q)
28. ! Allocate storage for local matrix.
29. allocate(A(n_bar,n_bar))
30. allocate(B(n_bar,n_bar))
31. allocate(C(n_bar,n_bar))
32. A = 1.0 + grid_info%my_row + grid_info%my_col
33. B = 1.0 - grid_info%my_row - grid_info%my_col
34. call Fox(n,grid_info,A,B,C,n_bar)
35. ! print*,grid_info%my_row, grid_info%my_col, ’C = ’,C
36. if (my_rank == 0) then
37. t2 = timef()
38. print*,t2
39. print*,n,n_bar,grid_info%q
40. mflops = (2*n*n*n)*.001/t2
41. print*, mflops
42. endif
43. call mpi_finalize(ierr)
44. contains
45. !
46. !subroutine Setup_gridsee chapter 7.5 and gridcommpi.f
47. !
48. subroutine Fox(n,grid,local_A,local_B,local_C,n_bar)
49. integer, intent(in) :: n, n_bar
50. TYPE(GRID_INFO_TYPE), intent(in) :: grid
51. real, intent(in) , dimension(:,:) :: local_A, local_B
52. real, intent(out), dimension (:,:):: local_C
53. real, dimension(1:n_bar,1:n_bar) :: temp_A
54. integer:: step, source, dest, request,i,j

310 CHAPTER 7. MESSAGE PASSING INTERFACE

55. integer:: status(MPI_STATUS_SIZE), bcast_root
56. temp_A = 0.0
57. local_C = 0.0
58. source = mod((grid%my_row + 1), grid%q)
59. dest = mod((grid%my_row - 1 + grid%q), grid%q)
60. do step = 0, grid%q -1
61. bcast_root = mod((grid%my_row + step), grid%q)
62. if (bcast_root == grid%my_col) then
63. call mpi_bcast(local_A, n_bar*n_bar, mpi_real,&
64. bcast_root, grid%row_comm, ierr)
65. ! print*, grid%my_row, grid%my_col, ’local_A = ’,local_A
66. call sgemm(’N’,’N’,n_bar,n_bar,n_bar,1.0,&
67. local_A,n_bar,local_B,n_bar,1.0,local_C,n_bar)
68. ! do j = 1,n_bar
69. ! do k = 1,n_bar
70. ! do i = 1,n_bar
71. ! local_C(i,j)=local_C(i,j) + local_A(i,k)*&
72. ! local_B(k,j)
73. ! end do
74. ! end do
75. ! end do
76. else
77. ! Store local_A from bcast_root in temp_A so as
78. ! not to overwrite local_A in destination.
79. call mpi_bcast(temp_A, n_bar*n_bar, mpi_real,&
80. bcast_root, grid%row_comm, ierr)
81. call sgemm(’N’,’N’,n_bar,n_bar,n_bar,1.0,&
82. temp_A,n_bar,local_B,n_bar,1.0,local_C,n_bar)
83. ! do j = 1,n_bar
84. ! do k = 1,n_bar
85. ! do i = 1,n_bar
86. ! local_C(i,j)=local_C(i,j) + temp_A(i,k)*&
87. ! local_B(k,j)
88. ! enddo
89. ! enddo
90. ! enddo
91. endif
92. call mpi_sendrecv_replace(local_B,n_bar*n_bar,mpi_real,&
93. dest, 0,source, 0, &
94. grid%col_comm,status, ierr)
95. end do
96. end subroutine Fox
97. !
98. end program foxmpi

7.6. FOX’S ALGORITHM FOR AB 311

Table 7.6.1: Fox Times (.001*sec.)
Sub Product Dimension Processors Time mflops
sgemm() 800 2× 2 295 4,173
sgemm() 800 4× 4 121 8,193
sgemm() 1600 2× 2 1,635 5,010
sgemm() 1600 4× 4 578 14,173
jki loops 800 2× 2 980 1,043
jki loops 800 4× 4 306 3,344
jki loops 800 2× 2 7,755 1,056
jki loops 800 4× 4 2,103 3,895

Eight of executions where made with foxmpi.f, and the outputs are recorded
in Table 7.6.1. The first four used the sgemm() and the second four used jki
loops. The optimized sgemm() was about four times faster than the jki loops.
The mflops for the larger dimensions were always the largest.

7.6.5 Exercises

1. Verify for n = 6 the matrix product is correct. See lines 23 and 35 in
foxmpi.f.
2. Duplicate the computations for foxmpi.f, and also use a 8 × 8 grid of
processors.
3. Compare the matrix product scheme used in Chapter 6.5 mmmpi.f with
the Fox algorithm in foxmpi.f.

312 CHAPTER 7. MESSAGE PASSING INTERFACE

Chapter 8

Classical Methods for
Ax = d

The first three sections contain a description of direct methods based on the
Schur complement and domain decomposition. After the first section the coeffi-
cient matrix will be assumed to be symmetric positive definite (SPD). In section
three an MPI code will be studied that illustrates domain decomposition. It-
erative methods based on P-regular splittings and domain decompositions will
be described in the last three sections. Here convergence analysis will be given
via the minimization of the equivalent quadratic functional. An MPI version
of SOR using domain decomposition will be presented. This chapter is more
analysis oriented and less application driven.

8.1 Gauss Elimination
Gauss elimination method, which was introduced in Chapter 2.2, requires A to
be factored into a product of a lower and upper triangular matrices that have
inverses. This is not always possible, for example, consider the 2 × 2 matrix
where the a11 is zero. Then one can interchange the second and first row·

0 1
1 0

¸ ·
0 a12
a21 a22

¸
=

·
a21 a22
0 a12

¸
.

If a11 is not zero, then one can use an elementary row operation·
1 0

−a21/a11 1

¸ ·
a11 a12
a21 a22

¸
=

·
a11 a12
0 a22 − (a21/a11)a12

¸
.

Definition. If there is a permutation matrix P such that PA = LU where L
and U are invertible lower and upper triangular matrices, respectively, then the
matrix PA is said to have an LU factorization.

313

314 CHAPTER 8. CLASSICAL METHODS FOR AX = D

Gaussian elimination method for the solution of Ax = d uses permutations
of the rows and elementary row operations to find the LU factorization so that

PAx = L(Ux) = Pd

solve Ly = Pd and

solve Ux = y.

Example. Consider the 3× 3 matrix 1 2 0
1 2 1
0 1 3

 .
Since the component in the first row and column is not zero, no row interchange
is necessary for the first column. The elementary row operation on the first
column is  1 0 0

−1 1 0
0 0 1

 1 2 0
1 2 1
0 1 3

 =
 1 2 0
0 0 1
0 1 3

 .
For column two we must interchange rows two and three 1 0 0

0 0 1
0 1 0

 1 0 0
−1 1 0
0 0 1

 1 2 0
1 2 1
0 1 3

 =
 1 2 0
0 1 3
0 0 1

 .
Note the first two factors on the left side can be rewritten as 1 0 0

0 0 1
0 1 0

 1 0 0
−1 1 0
0 0 1

 =
 1 0 0

0 1 0
−1 0 1

 1 0 0
0 0 1
0 1 0

 .
This gives the desired factorization of the matrix 1 0 0

0 1 0
−1 0 1

 1 0 0
0 0 1
0 1 0

 1 2 0
1 2 1
0 1 3

 =
 1 2 0
0 1 3
0 0 1


 1 0 0
0 0 1
0 1 0

 1 2 0
1 2 1
0 1 3

 =
 1 0 0
0 1 0
1 0 1

 1 2 0
0 1 3
0 0 1

 .
In order to extend this to n×n matrices, consider just a 2× 2 block matrix

where the diagonal blocks are square but may not have the same dimension

A =

·
B E
F C

¸
. (8.1.1)

In general A is n× n with n = k +m, B is k × k, C is m×m, E is k ×m and
F is m× k. If B has an inverse, then we can multiply block row one by FB−1

and subtract it from block row two. This is equivalent to multiplication of A
by a block elementary matrix of the form

8.1. GAUSS ELIMINATION 315·
Ik 0

−FB−1 Im

¸
.

If Ax = d is viewed in block form, then·
B E
F C

¸ ·
X1

X2

¸
=

·
D1

D2

¸
. (8.1.2)

The above block elementary matrix multiplication gives·
B E
0 C − FB−1E

¸ ·
X1

X2

¸
=

·
D1

D2 − FB−1D1

¸
. (8.1.3)

So, if the block upper triangular matrix has an inverse, then this last block
equation can be solved.
The following basic properties of square matrices play an important role in

the solution of (8.1.1). These properties follow directly from the definition of
an inverse matrix.

Theorem 8.1.1 (Basic Matrix Properties) Let B and C be square matrices
that have inverses. Then the following equalities hold:

1.
·
B 0
0 C

¸−1
=

·
B−1 0
0 C−1

¸
,

2.
·
Ik 0
F Im

¸−1
=

·
Ik 0
−F Im

¸
,

3.
·
B 0
F C

¸
=

·
B 0
0 C

¸ ·
Ik 0

C−1F Im

¸
and

4.
·
B 0
F C

¸−1
=

·
B−1 0

−C−1FB−1 C−1

¸
.

Definition. Let A have the form in (8.1.1) and B be nonsingular. The Schur
complement of B in A is C − FB−1E.

Theorem 8.1.2 (Schur Complement Existence) Consider A as in (8.1.1) and
let B have an inverse. A has an inverse if and only if the Schur complement of
B in A has an inverse.

Proof. The proof of the Schur complement theorem is a direct consequence
of using a block elementary row operation to get a zero matrix in the block row
2 and column 1 position·

Ik 0
−FB−1 Im

¸ ·
B E
F C

¸
=

·
B E
0 C − FB−1E

¸
.

316 CHAPTER 8. CLASSICAL METHODS FOR AX = D

Assume that A has an inverse and show the Schur complement must have an
inverse. Since the two matrices on the left side have inverses, the matrix on
the right side has an inverse. Because B has an inverse, the Schur complement
must have an inverse. Conversely, A may be factored as·

B E
F C

¸
=

·
Ik 0

FB−1 Im

¸ ·
B E
0 C − FB−1E

¸
.

If both B and the Schur complement have inverses, then both matrices on the
right side have inverses so that A also has an inverse.

The choice of the blocks B and C can play a very important role. Often the
choice of the physical object, which is being modeled, does this. For example
consider the airflow over an aircraft. Here we might partition the aircraft into
wing, rudder, fuselage and "connecting" components. Such partitions of the
physical object or the matrix are called domain decompositions.
Physical problems often should have a unique solution, and so we shall

assume that Ax = d , if it has a solution, then the solution is unique. This
means if Ax = d and Abx = d, then x = bx. This will be true if the only solution
of Az = 0 is the zero vector z = 0 because for z = x− bx

Ax−Abx = A(x− bx) = d− d = 0.

Another important consequence of Az = 0 implies z = 0 is that no column of A
can be the zero column vector. This follows from contradiction, if the column
j of A is a zero vector, then let z be the j unit column vector so that Az = 0
and z is not a zero vector.
The condition, Az = 0 implies z = 0, is very helpful in finding the factor-

ization PA = LU. For example, if A is 2 × 2 and Az = 0 implies z = 0, then
column one must have at least one nonzero component so that either PA = U
or A = LU, see the first paragraph of this section. If A has an inverse, then
Az = 0 implies z = 0 and either PA = U or L−1A = U so that U must have
an inverse. This generalizes via mathematical induction when A is n× n.

Theorem 8.1.3 (LU Factorization) If A has an inverse so that Az = 0 implies
z = 0, then there exist permutation matrix P, and invertible lower and upper
triangular matrices L and U , respectively, such that PA = LU.

Proof. We have already proved the n = 2 case. Assume it is true for
any (n− 1) × (n − 1) matrix. If A is invertible, then column one must have
some nonzero component, say in row i. So, if the first component is not zero,
interchange the first row with the row i. Let P be the associated permutation
matrix so that

PA =

·
b e
f C

¸
where b 6= 0 is 1×1, e is 1×(n−1), f is (n−1)×1 and C is (n−1)×(n−1). Apply
the Schur complement analysis and the block elementary matrix operation·

1 0
−fb−1 In−1

¸ ·
b e
f C

¸
=

·
b e

0 bC
¸

8.1. GAUSS ELIMINATION 317

where bC = C − fb−1e is the (n− 1)× (n− 1) Schur complement. By the Schur
complement theorem bC must have an inverse. Use the inductive assumption to
write bC = bP bLbU.·

b e

0 bC
¸

=

·
b e

0 bP bLbU
¸

=

·
1 0

0 bP
¸ ·

1 0

0 bL
¸ ·

b e

0 bU
¸
.

Since bP is a permutation matrix,·
1 0

0 bP
¸ ·

1 0
−fb−1 In−1

¸
PA =

·
1 0

0 bL
¸ ·

b e

0 bU
¸
.

Note ·
1 0

0 bP
¸ ·

1 0
−fb−1 In−1

¸
=

·
1 0bP (−fb−1) bP

¸
=

·
1 0bP (−fb−1) In−1

¸ ·
1 0

0 bP
¸
.

Then ·
1 0bP (−fb−1) In−1

¸ ·
1 0

0 bP
¸
PA =

·
1 0

0 bL
¸ ·

b e

0 bU
¸
.

Finally, multiply by the inverse of the left factor on the left side to get the
desired factorization·

1 0

0 bP
¸
PA =

·
1 0bPfb−1 In−1

¸ ·
1 0

0 bL
¸ ·

b e

0 bU
¸

=

·
1 0bPfb−1 bL

¸ ·
b e

0 bU
¸
.

In order to avoid significant roundoff errors due to small diagonal compo-
nents, the row interchanges can be done by choosing the row with the largest
possible nonzero component. If the matrix is symmetric positive definite, then
the diagonals will be positive and the row interchanges may not be necessary.
In either case one should give careful consideration to using the subroutines in
LAPACK [1].

8.1.1 Exercises

1. Consider the 3 × 3 example. Use the Schur complement as in (8.1.3) to
solve Ax = d = [1 2 3]

T where B = [1].

318 CHAPTER 8. CLASSICAL METHODS FOR AX = D

2. Consider the 3× 3 example. Identify the steps in the existence theorem
for the factorization of the matrix.
3. In the proof of the existence theorem for the factorization of the matrix,
write the factorization in component form using the Schur complementbC = C − (f/b)e = [cij − (fi/b)ej]
where ej is jth component of the 1× (n− 1) array e. Write this as either the ij
or ji version and explain why these could be described as the row and column
versions, respectively.
4. Assume B is an invertible k × k matrix.

(a). Verify the following for bC = C − FB−1F·
Ik 0

−FB−1 Im

¸ ·
B E
F C

¸ ·
Ik −B−1E
0 Im

¸
=

·
B 0

0 bC
¸
.

(b). Use this to show A has an inverse if and only if bC has and
inverse.
5. Assume A is an n× n matrix and prove the following are equivalent:

(i). A has an inverse,
(ii). there exist permutation matrix P, and

invertible lower and upper triangular matrices L and U ,
respectively, such that PA = LU and

(iii). Az = 0 implies z = 0.

8.2 Symmetric Positive Definite Matrices
In this section we will restrict the matrices to symmetric positive definite ma-
trices. Although this restriction may seem a little severe, there are a num-
ber of important applications, which include some classes of partial differential
equations and some classes of least squares problems. The advantage of this
restriction is that the number of operations to do Gaussian elimination can be
cut in half.

Definition. Let A be an n × n real matrix. A is a real symmetric positive
definite matrix (SPD) if and only if A = AT and for all x 6= 0, xTAx > 0.

Examples.

1. Consider the 2× 2 matrix
·
2 −1
−1 2

¸
and note

xTAx = x21 + (x1 − x2)
2 + x22 > 0.

A similar n× n matrix is positive definite
2 −1
−1 2

. . .
. . .

. . . −1
−1 2

 .

8.2. SYMMETRIC POSITIVE DEFINITE MATRICES 319

2. A = AT with aii >
P

j 6=i |aij | is positive definite. The symmetry implies
that the matrix is also column strictly diagonally dominant, that is, ajj >P

i6=j |aij |̇. Now use this and the inequality |ab| ≤ 1
2(a

2 + b2) to show for all
x 6= 0, xTAx > 0.

3. Consider the normal equation from the least squares problem where A is
m× n where m > n. Assume A has full column rank (Ax = 0 implies x = 0),
then the normal equation ATAx = ATd is equivalent to finding the least squares
solution of Ax = d. Here ATA is SPD because if x 6= 0 , then Ax 6= 0, and
xT (ATA)x = (Ax)T (Ax) > 0.

Theorem 8.2.1 (Basic Properties of SPD Matrices) If A is an n × n SPD,
then

1. The diagonal components of A are positive, aii > 0,

2. If A =

·
B FT

F C

¸
, then B and C are SPD,

3. Ax = 0 implies x = 0 so that A has an inverse and

4. If S is m×n with m ≥ n and has full column rank, then STAS is positive
definite.

Proof. 1. Choose x = ei, the unit vector with 1 in component i so that
xTAx = aii > 0.

2. Choose x =
·
X1

0

¸
so that xTAx = XT

1 BX1 > 0.

3. Let x 6= 0 so that by the positive definite assumption xTAx > 0 and
Ax 6= 0. This is equivalent to item 3 and the existence of an inverse matrix.
4. Let x 6= 0 so that by the full rank assumption on S Sx 6= 0. By the

positive definite assumption on A

(Sx)TA(Sx) = xT (STAS)x > 0.

The next theorem uses the Schur complement to give a characterization of
the block 2× 2 SPD matrix

A =

·
B FT

F C

¸
. (8.2.1)

Theorem 8.2.2 (Schur Complement Characterization) Let A as in (8.2.1)
be symmetric. A SPD if and only if B and the Schur complement of B in A,bC = C − FB−1FT , are SPD.

320 CHAPTER 8. CLASSICAL METHODS FOR AX = D

Proof. Assume A is SPD so that B is also SPD and has an inverse. Then
one can use block row and column elementary operations to show·

Ik 0
−FB−1 Im

¸ ·
B FT

F C

¸ ·
Ik −B−1FT

0 Im

¸
=

·
B 0

0 bC
¸
.

Since B is SPD,
¡
B−1

¢T
=
¡
BT
¢−1

= B−1 and thus

S =

·
Ik −B−1FT

0 Im

¸
and ST =

·
Ik −B−1FT

0 Im

¸T
=

·
Ik 0

−FB−1 Im

¸
.

Then

STAS =

·
B 0

0 bC
¸
.

Since S has an inverse, it has full rank and B and bC must be SPD. The converse
is also true by reversing the above argument.

Example. Consider the 3× 3 matrix

A =

 2 −1 0
−1 2 −1
0 −1 2

 .
The first elementary row operation is 1 0 0

1/2 1 0
0 0 1

 2 −1 0
−1 2 −1
0 −1 2

 =
 2 −1 0
0 3/2 −1
0 −1 2

 .
The Schur complement of the 1× 1 matrix B = [2] is

bC = C − FB−1FT =

·
3/2 −1
−1 2

¸
.

It clearly is SPD and so one can do another elementary row operation, but now
on the second column 1 0 0

0 1 0
0 2/3 1

 2 −1 0
0 3/2 −1
0 −1 2

 =
 2 −1 0
0 3/2 −1
0 0 4/3

 .
Thus the matrix A can be factored as

A =

 1 0 0
−1/2 1 0
0 −2/3 1

 2 −1 0
0 3/2 −1
0 0 4/3


=

 1 0 0
−1/2 1 0
0 −2/3 1

 2 0 0
0 3/2 0
0 0 4/3

 1 −1/2 0
0 1 −2/3
0 0 1


=

 √
2 0 0

−1/√2 √
3/
√
2 0

0 −√2/√3 2/
√
3

 √
2 0 0

−1/√2 √
3/
√
2 0

0 −√2/√3 2/
√
3

T .

8.2. SYMMETRIC POSITIVE DEFINITE MATRICES 321

Definition. A Cholesky factorization of A is A = GGT where G is a lower
triangular matrix with positive diagonal components.

Any SPD has a Cholesky factorization. The proof is again by mathematical
induction on the dimension of the matrix.

Theorem 8.2.3 (Cholesky Factorization) If A is SPD, then it has a Cholesky
factorization.

Proof. The n = 2 case is clearly true. Let b = a11 > 0 and apply a row and

column elementary operation to A =
·

b fT

f C

¸
·

1 0
−fb−1 I

¸ ·
b fT

f C

¸ ·
1 −b−1fT
0 I

¸
=

·
b 0
0 C − fb−1fT

¸
.

The Schur complement bC = C−fb−1fT must be SPD and has dimension n−1.
Therefore, by the mathematical induction assumption it must have a Cholesky
factorization bC = bG bGT . Then·

b 0
0 C − fb−1fT

¸
=

·
b 0

0 bG bGT

¸
=

· √
b 0

0 bG
¸ · √

b 0

0 bGT

¸
.

A =

·
1 0

fb−1 I

¸ · √
b 0

0 bG
¸ · √

b 0

0 bGT

¸ ·
1 b−1fT

0 I

¸
=

· √
b 0

f/
√
b bG

¸ · √
b 0

f/
√
b bG

¸T
.

The mathematical induction proofs are not fully constructive, but they do
imply that the Schur complement is either invertible or is SPD. This allows
one to continue with possible permutations and elementary column operations.
This process can be done until the upper triangular matrix is obtained. In the
case of the SPD matrix, the Schur complement is also SPD and the first pivot
must be positive and so no row interchanges are required.
The following Fortran 90 subroutine solves AX = D where A is SPD, X

and D may have more than one column and with no row interchanges. The
lower triangular part of A is over written by the lower triangular factor. The
matrix is factored only one time in lines 19-26 where the column version of the
loops is used. The subsequent lower and upper triangular solves are done for
each column of D. The column version of the lower triangular solves are done

322 CHAPTER 8. CLASSICAL METHODS FOR AX = D

in lines 32-40, and the column version of the upper triangular solves are done
in lines 45-57. This subroutine will be used in the next section as part of direct
solver based on domain decomposition.

Fortran 90 Code for subroutine gespd()
1. Subroutine gespd(a,rhs,sol,n,m)
2!
3.! Solves Ax = d with A a nxn SPD and d a nxm.
4.!
5. implicit none
6. real, dimension(n,n), intent(inout):: a
7. real, dimension(n,m), intent(inout):: rhs
8. real, dimension(n,n+m):: aa
9. real, dimension(n,m) :: y
10. real, dimension(n,m),intent(out)::sol
11. integer ::k,i,j,l
12. integer,intent(in)::n,m
13. aa(1:n,1:n)= a
14. aa(1:n,(n+1):n+m) = rhs
15.!
16.! Factor A via column version and
17.! write over the matrix.
18.!
19. do k=1,n-1
20. aa(k+1:n,k) = aa(k+1:,k)/aa(k,k)
21. do j=k+1,n
22. do i=k+1,n
23. aa(i,j) = aa(i,j) - aa(i,k)*aa(k,j)
24. end do
25. end do
26. end do
27.!
28.! Solve Ly = d via column version and
29.! multiple right sides.
30.!
31. do j=1,n-1
32. do l =1,m
33. y(j,l)=aa(j,n+l)
34. end do
35. do i = j+1,n
36. do l=1,m
37. aa(i,n+l) = aa(i,n+l) - aa(i,j)*y(j,l)
38. end do
39. end do
40. end do

8.3. DOMAIN DECOMPOSITION AND MPI 323

41.!
42.! Solve Ux = y via column version and
43.! multiple right sides.
44.!
45. do j=n,2,-1
46. do l = 1,m
47. sol(j,l) = aa(j,n+l)/aa(j,j)
48. end do
49. do i = 1,j-1
50. do l=1,m
51. aa(i,n+l)=aa(i,n+l)-aa(i,j)*sol(j,l)
52. end do
53. end do
54. end do
55. do l=1,m
56. sol(1,l) = aa(1,n+l)/a(1,1)
57. end do
58. end subroutine

8.2.1 Exercises

1. Complete the details showing example 2 is a SPD matrix
2. By hand find the Cholesky factorization for

A =

 3 −1 0
−1 3 −1
0 −1 3

 .
3. In Theorem 8.2.1, part 2, prove C is SPD.
4. For the matrix in problem 2 use Theorem 8.2.2 to show it is SPD.
5. Prove the converse part of Theorem 8.2.2.
6. In Theorem 8.2.3 prove the n = 2 case.
7. For the matrix in problem 2 trace through the steps in the subroutine
gespd() to solve

AX =

 1 4
2 5
3 6

 .
8.3 Domain Decomposition and MPI

Domain decomposition order can be used to directly solve certain algebraic
systems. This was initially described in Chapters 2.4 and 4.6. Consider the
Poisson problem where the spatial domain is partitioned into three blocks with
the first two big blocks separated by a smaller interface block. If the interface

324 CHAPTER 8. CLASSICAL METHODS FOR AX = D

block for the Poisson problem is listed last, then the algebraic system may have
the form  A11 0 A13

0 A22 A23
A31 A32 A33

 U1
U2
U3

 =
 F1

F2
F3

 .
In the Schur complement B is the 2 × 2 block given by the block diagonal
from A11 and A22, and C is A33. Therefore, all the solves with B can be done
concurrently, in this case with two processors. By partitioning the domain into
more blocks one can take advantage of additional processors. In the 3D space
model the big block solves will be smaller 3D subproblems, and here one may
need to use iterative methods such as SOR or conjugate gradient. Note the
conjugate gradient algorithm has a number of vector updates, dot products
and matrix-vector products, and all these steps have independent parts.
In order to be more precise about the above, consider (p+1)× (p+1) block

matrix equation in block component form with 1 ≤ k ≤ p

Ak,kUk +Ak,p+1Up+1 = Fk (8.3.1)
pX

k=1

Ap+1,kUk +Ap+1,p+1Up+1 = Fp+1. (8.3.2)

Now solve (8.3.1) for Uk, and note the computations for A
−1
k,kAk,p+1 and A

−1
k,kFk,

can be done concurrently. Put Uk into (8.3.2) and solve for Up+1bAp+1,p+1Up+1 = bFp+1 where
bAp+1,p+1 = Ap+1,p+1 −

pX
k=1

Ap+1,kA
−1
k,kAk,p+1

bFp+1 = Fp+1 −
pX

k=1

Ap+1,kA
−1
k,kFk.

Then concurrently solve for Uk = A−1k,kFk −A−1k,kAk,p+1Up+1.
In order to do the above calculations, the matrices Ak,k for 1 ≤ k ≤ p, andbAp+1,p+1 must be invertible. Consider the 2× 2 block version of the (p+ 1)×

(p+ 1) matrix

A =

·
B E
F C

¸
where B is the block diagonal of Ak,k for 1 ≤ k ≤ p, and C is Ak+1,k+1. In
this case the Schur complement of B is bAp+1,p+1. According to Theorem 8.1.2,
if the matrices A and Ak,k for 1 ≤ k ≤ p have inverses, then bAp+1,p+1 will have
an inverse. Or, according to Theorem 8.2.2, if the matrix A is SPD, then the
matrices Ak,k for 1 ≤ k ≤ p, and bAp+1,p+1 must be SPD and have inverses.
Consider the 2D steady state heat diffusion problem as studied in Chapter

4.6. The MATLAB code gedd.m uses block Gaussian elimination where the B

8.3. DOMAIN DECOMPOSITION AND MPI 325

matrix, in the 2 × 2 block matrix of the Schur complement formulation, is a
block diagonal matrix with four (p = 4) blocks on its diagonal. The C = A55
matrix is for the coefficients of the three interface grid rows between the four
big blocks 

A11 0 0 0 A15
0 A22 0 0 A25
0 0 A33 0 A35
0 0 0 A44 A45

A51 A52 A53 A54 A55




U1
U2
U3
U4
U5

 =


F1
F2
F3
F4
F5

 .
The following MPI code is a parallel implementation of the MATLAB code

gedd.m. It uses three subroutines, which are not listed. The subroutine ma-
trix_def() initializes the above matrix for the Poisson problem, and the dimen-
sion of the matrix is 4n2 + 3n where n = 30 is the number of unknowns in
the x direction and 4n+ 3 is the number of unknowns in the y direction. The
subroutine gespd() is the same as in the previous section, and it assumes the
matrix is SPD and does Gaussian elimination for multiple right hand sides. The
subroutine cgssor3() is sparse implementation of the preconditioned conjugate
gradient method with SSOR preconditioner. It is a variation of cgssor() used
in Chapter 4.3, but now it is for multiple right hand sides. For the larger solves
with Ak,k for 1 ≤ k ≤ p, this has a much shorter computation time than when
using gespd(). Because the Schur complement, bAp+1,p+1, is not sparse, gespd()
is used to do this solve for Up+1.
The arrays for n = 30 are declared and initialized in line 8-27. MPI is

started in line 28-37 where up to four processors can be used. Lines 38-47
concurrently compute the arrays that are used in the Schur complement. These
are gathered onto processor 0 in lines 49-51, and the Schur complement array
is formed in lines 52-58. The Schur complement equation is solved by a call to
gespd() in line 60. In line 62 the solution is broadcast from processor 0 to the
other processors. Lines 64-70 concurrently solve for the big blocks of unknowns.
The results are gathered in lines 72-82 onto processor 0 and partial results are
printed.

MPI/Fortran Code geddmpi.f
1. program schurdd
2.! Solves algebraic system via domain decomposition.
3! This is for the Poisson equation with 2D space grid nx(4n+3).
4.! The solves may be done either by GE or PCG. Use either PCG
5.! or GE for big solves, and GE for the Schur complement solve.
6. implicit none
7. include ’mpif.h’
8. real, dimension(30,30):: A,Id
9.! AA is only used for the GE big solve.
10. real, dimension(900,900)::AA
11. real, dimension(900,91,4)::AI,ZI

326 CHAPTER 8. CLASSICAL METHODS FOR AX = D

12. real, dimension(900,91):: AII
13. real, dimension(90,91) :: Ahat
14. real, dimension(90,91,4) :: WI
15. real, dimension(900) :: Ones
16. real, dimension(90) :: dhat,xO
17. real, dimension(900,4) :: xI, dI
18. real:: h
19. real:: t0,t1,timef
20. integer:: n,i,j,loc_n,bn,en,bn1,en1
21. integer:: my_rank,p,source,dest,tag,ierr,status(mpi_status_size)
22. integer :: info
23.! Define the nonzero parts of the coefficient matrix with
24.! domain decomposition ordering.
25. n = 30
26. h = 1./(n+1)
27. call matrix_def(n,A,AA,Ahat,AI,AII,WI,ZI,dhat)
28.! Start MPI
29. call mpi_init(ierr)
30. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
31. call mpi_comm_size(mpi_comm_world,p,ierr)
32. if (my_rank.eq.0) then
33. t0 = timef()
34. end if
35. loc_n = 4/p
36. bn = 1+my_rank*loc_n
37. en = bn + loc_n -1
38.! Concurrently form the Schur complement matrices.
39. do i = bn,en
40. ! call gespd(AA,AI(1:n*n,1:3*n+1,i),&
41. ! ZI(1:n*n,1:3*n+1,i),n*n,3*n+1)
42. call cgssor3(AI(1:n*n,1:3*n+1,i),&
43. ZI(1:n*n,1:3*n+1,i),n*n,3*n+1,n)
44. AII(1:n*n,1:3*n) = AI(1:n*n,1:3*n,i)
45. WI(1:3*n,1:3*n+1,i)=matmul(transpose(AII(1:n*n,1:3*n))&
46. ,ZI(1:n*n,1:3*n+1,i))
47. end do
48. call mpi_barrier(mpi_comm_world,ierr)
49. call mpi_gather(WI(1,1,bn),3*n*(3*n+1)*(en-bn+1),mpi_real,&
50. WI,3*n*(3*n+1)*(en-bn+1),mpi_real,0,&
51. mpi_comm_world,status ,ierr)
52. if (my_rank.eq.0) then
53. Ahat(1:3*n,1:3*n) = Ahat(1:3*n,1:3*n)-&
54. WI(1:3*n,1:3*n,1)-WI(1:3*n,1:3*n,2)-&
55. WI(1:3*n,1:3*n,3)-WI(1:3*n,1:3*n,4)
56. dhat(1:3*n) = dhat(1:3*n) -&

8.3. DOMAIN DECOMPOSITION AND MPI 327

Table 8.3.1: MPI Times for geddmpi.f
p gespd() cgssor3()
1 18.871 .924
2 09.547 .572
4 04.868 .349

57. WI(1:3*n,1+3*n,1)-WI(1:3*n,1+3*n,2)-&
58. WI(1:3*n,1+3*n,3) -WI(1:3*n,1+3*n,4)
59.! Solve the Schur complement system via GE
60. call gespd(Ahat(1:3*n,1:3*n),dhat(1:3*n),xO(1:3*n),3*n,1)
61. end if
62. call mpi_bcast(xO,3*n,mpi_real,0,mpi_comm_world,ierr)
63.! Concurrently solve for the big blocks.
64. do i = bn,en
65. dI(1:n*n,i) = AI(1:n*n,3*n+1,i)-&
66. matmul(AI(1:n*n,1:3*n,i),xO(1:3*n))
67. ! call gespd(AA,dI(1:n*n,i),XI(1:n*n,i),n*n,1)
68. call cgssor3(dI(1:n*n,i),&
69. xI(1:n*n,i),n*n,1,n)
70. end do
71. call mpi_barrier(mpi_comm_world,ierr)
72. call mpi_gather(xI(1,bn),n*n*(en-bn+1),mpi_real,&
73. xI,n*n*(en-bn+1),mpi_real,0,&
74. mpi_comm_world,status ,ierr)
75. call mpi_barrier(mpi_comm_world,ierr)
76. if (my_rank.eq.0) then
77. t1 = timef()
78. print*, t1
79. print*, xO(n/2),xO(n+n/2),xO(2*n+n/2)
80. print*, xI(n*n/2,1),xI(n*n/2,2),&
81. xI(n*n/2,3),xI(n*n/2,4)
82. end if
83. call mpi_finalize(ierr)
84. end program

The code was run for 1, 2 and 4 processors with both the gespd() and
cgssor3() subroutines for the four large solves with Ak,k for 1 ≤ k ≤ p = 4.
The computations times using gespd() were about 14 to 20 times longer than
the time with cgssor3(). The computation times (sec.) are given in Table
8.3.1, and they indicate good speedups close to the number of processors. The
speedups with gespd() are better than those with cgssor3() because the large
solves are a larger proportion of the computations, which include the same time
for communication.

.

328 CHAPTER 8. CLASSICAL METHODS FOR AX = D

8.3.1 Exercises

1. Verify the computations in Table 8.3.1.
2. Experiment with the convergence criteria in the subroutine cgssor3().
3. Experiment with the n, the number of unknowns in the x direction.
4. Experiment with the k, the number of large spatial blocks of unknowns.
Vary the number of processors that divide k.

8.4 SOR and P-regular Splittings

SPD matrices were initially introduced in Chapter 3.5 where the steady state
membrane model was studied. Two equivalent models were introduced: the
deformation must satisfy a particular partial differential operation, or it must
minmize the potential energy of the membrane. The discrete form of these are
for x the approximation of the deformation and J (y) the approximation of the
potential energy

Ax = d (8.4.1)

J(x) = min
y

J(y) where J (y) ≡ 1
2
yTAy − yT d. (8.4.2)

When A is SPD matrix, (8.4.1) and (8.4.2) are equivalent. Three additional
properties are stated in the following theorem.

Theorem 8.4.1 (SPD Equivalence Properties) If A is a SPD matrix, then

1. the algebraic problem (8.4.1) and the minimum problem (8.4.2) are equiv-
alent,

2. there is a constant c0 > 0 such that xTAx ≥ c0x
Tx,

3.
¯̄
xTAy

¯̄ ≤ ¡xTAx¢ 12 ¡yTAy¢ 12 (Cauchy inequality) and
4. kxkA ≡ (xTAx)

1
2 is a norm.

Proof. 1. First, we will show if A is SPD and Ax = d, then J(x) ≤ J(y) for
all y. Let y = x+ (y − x) and use A = AT to derive

J(y) =
1

2
(x+ (y − x))TA(x+ (y − x))− (x+ (y − x))Td

=
1

2
xTAx+ (y − x)TAx

+
1

2
(y − x)TA(y − x)− xTd− (y − x)Td

= J(x)− r(x)T (y − x) +
1

2
(y − x)TA(y − x). (8.4.3)

8.4. SOR AND P-REGULAR SPLITTINGS 329

Since r(x) = d−Ax = 0, (8.4.3) implies

J(y) = J(x) +
1

2
(y − x)TA(y − x).

Because A is positive definite, (y−x)TA(y−x) is greater than or equal to zero.
Thus, J(y) is greater than or equal to J(x).
Second, prove the converse by assuming J(x) ≤ J(y) for all y = x + tr(x)

where t is any real number. From (8.4.3)

J(y) = J(x)− r(x)T (y − x) +
1

2
(y − x)TA(y − x)

= J(x)− r(x)T (tr(x)) +
1

2
(tr(x))TA(tr(x))

= J(x)− tr(x)T r(x) +
1

2
t2r(x)TAr(x).

Since 0 ≤ J(y) − J(x) = −tr(x)T r(x) + 1
2 t2r(x)TAr(x). If r (x) is not zero,

then r(x)T r(x) and r(x)TAr(x) are positve. Choose

t = �
r(x)T r(x)

r(x)TAr(x)
> 0.

This gives the following inequality

0 ≤ −r(x)T r(x) + 1
2
tr(x)TAr(x)

≤ −r(x)T r(x) + 1
2
�
r(x)T r(x)

r(x)TAr(x)
r(x)TAr(x)

≤ −r(x)T r(x) + 1
2
�r(x)T r(x)

≤ r(x)T r(x)(−1 + 1
2
�).

For 0 < � < 2 this is a contradiction so that r(x) must be zero.
2. The function f (x) = xTAx is a continuous real valued function. Since

the set of y such that yT y = 1 is closed and bounded, f restricted to this set
will attain its minimum, that is, there exists by with byT by = 1 such that

min
yT y=1

f(y) = f(by) = byTAby > 0.
Now let y = x/(xTx)

1
2 and c0 = f(by) = byTAby so that

f(x/(xTx)
1
2) ≥ f(by)

(x/(xTx)
1
2)TA(x/(xTx)

1
2) ≥ c0

xTAx ≥ c0 x
Tx.

330 CHAPTER 8. CLASSICAL METHODS FOR AX = D

3. Consider the real valued function of the real number α and use the SPD
property of A

f(α) ≡ (x+ αy)TA(x+ αy)

= xTAx+ 2αxTAy + α2yTAy.

This quadratic function of α attains its nonnegative minimum at

bα ≡ −xTAy/yTAy and
0 ≤ f(bα) = xTAx− (xTAy)2/yTAy.

This implies the desired inequality.
4. Since A is SPD, kxkA ≡ (xTAx)

1
2 ≥ 0, and kxkA = 0 if and only if x = 0.

Let α be a real number.

kαxkA ≡ ((αx)T A(αx))
1
2 = (α2xTAx)

1
2 = |α| (xTAx) 12 = |α| kxkA .

The triangle inequality is given by the symmetry of A and the Cauchy inequality

kx+ yk2A = (x+ y)TA(x+ y)

= xTAx+ 2xTAy + yTAy

≤ kxk2A + 2
¯̄
xTAy

¯̄
+ kyk2A

≤ kxk2A + 2 kxkA kykA + kyk2A
≤ (kxkA + kykA)2 .

We seek to solve the system Ax = d by an iterative method which utilizes
splitting the coefficient matrix A into a difference of two matrices

A =M −N

where M is assumed to have an inverse. Substituting this into the equation
Ax = d, we have

Mx−Nx = d.

Solve for x to obtain a fixed point problem

x =M−1Nx+M−1d.

The iterative method based on the splitting is

xm+1 = M−1Nxm +M−1d
= xm +M−1r(xm) (8.4.4)

Here x0 is some initial guess for the solution, and the solve step with the matrix
M is assumed to be relatively easy. The analysis of convergence can be either
in terms of some norm of M−1N being less than one (see Chapter 2.5), or for

8.4. SOR AND P-REGULAR SPLITTINGS 331

A a SPD matrix one can place conditions on the splitting so that the quadratic
function continues to decrease as the iteration advances. In particular, we will
show

J(xm+1) = J(xm)− 1
2
(xm+1 − xm)T (MT +N)(xm+1 − xm). (8.4.5)

So, if MT +N is positive definite, then the sequence of real numbers J(xm) is
decreasing. For more details on the following splitting consult J. Ortega [16]

Definition. A = M −N is called a P-regular splitting if and only if M has
an inverse and MT +N is positive definite.

Note, if A is SPD, then A = AT =MT −NT and (MT +N)T =M +NT =
M +MT − A = MT + N. Thus, if A = M − N is P-regular and A is SPD,
then MT +N is SPD.

Examples.

1. Jacobi for A = D−(L+U) whereM = D is the diagonal of A. MT+N =
D + (L+ U) should be positive definite.

2. Gauss-Seidel for A = (D−L) +U where M = D− L is lower triangular
part of A. MT +N = (D−L)T +U = D−LT +U should be positive definite.
If A is SPD, then LT = U and the D will have positive diagonal components.
In this case MT +N = D is SPD.

3. SOR for 0 < ω < 2 and A SPD with

A =
1

ω
(D − ωL)− 1

ω
((1− ω)D + ωU).

HereM = 1
ω (D−ωL) has an inverse because it is lower triangular with positive

diagonal components. This also gives a P-regular splitting because

MT +N = (
1

ω
(D − ωL))T +

1

ω
((1− ω)D + ωU)

= (
2

ω
− 1)D.

Theorem 8.4.2 (P-regular Splitting Convergence) If A is SPD and A =M −
N is a P-regular splitting, then the iteration in (8.4.4) will satisfy (8.4.5) and
will converge to the solution of Ax = d.

332 CHAPTER 8. CLASSICAL METHODS FOR AX = D

Proof. First, the equality in (8.4.5) will be established by using (8.4.4) and
(8.4.3) with y = xm+1 = xm +M−1r(xm) and x = xm

J(xm+1) = J(xm)− r(xm)TM−1r(xm) +
1

2
(M−1r(xm))TA(M−1r(xm))

= J(xm)− r(xm)T [M−1 − 1
2
M−TAM−1]r(xm)

= J(xm)− r(xm)TM−T [MT − 1
2
A]M−1r(xm)

= J(xm)− (xm+1 − xm)T [MT − 1
2
(M −N)](xm+1 − xm)

= J(xm)− 1
2
(xm+1 − xm)T [2MT −M +N](xm+1 − xm).

Since zTMT z = zTMz, (8.4.5) holds.
Second, we establish that J(x) is bounded from below. Use the inequality

in part two of Theorem 8.4.1 xTAx ≥ c0x
Tx

J(x) =
1

2
xTAx− xT d

≥ 1

2
c0x

Tx− xTd.

Next use the Cauchy inequality with A = I so that
¯̄
xT d

¯̄ ≤ ¡xTx¢ 12 ¡dTd¢ 12
J(x) ≥ 1

2
c0x

Tx− ¡xTx¢ 12 ¡dT d¢ 12
≥ 1

2
c0[(

¡
xTx

¢ 1
2 −

¡
dT d

¢ 1
2

c0
)2 − (

¡
dTd

¢ 1
2

c0
)2]

≥ 1

2
c0[0− (

¡
dTd

¢ 1
2

c0
)2].

Third, note that J(xm) is decreasing sequence of real numbers that is
bounded from below. Since the real numbers are complete, J(xm) must con-
verge to some real number and J(xm) − J(xm+1) = 1

2(x
m+1 − xm)T (MT +

N)(xm+1 − xm) must converge to zero. Consider the norm associated with the
SPD matrix MT +N°°xm+1 − xm

°°2
MT+N

= 2
¡
J(xm)− J(xm+1)

¢ −→ 0.

Thus, xm+1 − xm converges to the zero vector.
Fourth, xm+1 = xm +M−1r(xm) so that M−1r(xm) converges to the zero

vector. Since M is continuous, r(xm) also converges to the zero vector. Since
A is SPD, there exist a solution of Ax = d, that is, r (x) = 0. Thus

r(xm)− r (x) = (d−Axm)− (d−Ax) = A(xm − x) −→ 0.

8.5. SOR AND MPI 333

Since A−1 is continuous, xm − x converges to the zero vector.

The next two sections will give additional examples of P-regular splittings
where the solve stepMz = r(xm) can be done in parallel. Such schemes can be
used as stand alone algorithms or as preconditioners in the conjugate gradient
method.

8.4.1 Exercises

1. In the proof of part three in Theorem 8.4.1 prove the assertion aboutbα ≡ −xTAy/yTAy.
2. Consider the following 2× 2 SPD matrix and the indicated splitting

A =

·
B FT

F C

¸
=

·
M1 0
0 M2

¸
−
·

N1 −FT

−F N2

¸
.

(a). Find conditions on this splitting so that it will be P-regular.
(b). Apply this to SOR on the first and second blocks.

8.5 SOR and MPI

Consider a block 3× 3 matrix with the following form

A =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 .
One can think of this as a generalization of the Poisson problem with the first
two block of unknowns separated by a smaller interface block. When finite
difference for finite element methods are used, often the A12 and A21 are either
zero or sparse with small nonzero components. Consider splittings of the three
diagonal blocks

Aii =Mi −Ni.

Then one can associate a number of splittings with the large A matrix.

Examples.

1. In this example the M in the splitting of A is block diagonal. The
inversion of M has three independent computations

A =

 M1 0 0
0 M2 0
0 0 M3

−
 N1 −A12 −A13
−A21 N2 −A23
−A31 −A32 N3

 . (8.5.1)

2. The second example is slightly more complicated, and the M is block
lower triangular. The inversion of M has two independent computations and

334 CHAPTER 8. CLASSICAL METHODS FOR AX = D

some computations with just one processor.

A =

 M1 0 0
0 M2 0

A31 A32 M3

−
 N1 −A12 −A13
−A21 N2 −A23
0 0 N3

 . (8.5.2)

3. This M has the form from domain decomposition. The inversion of M
can be done by the Schur complement where B is the block diagonal ofM1 and
M2, and C =M3.

A =

 M1 0 A13
0 M2 A23

A31 A32 M3

−
 N1 −A12 0
−A21 N2 0
0 0 N3

 . (8.5.3)

Theorem 8.5.1 (Block P-regular Splitting) Consider the iteration given by
(8.5.2). If A is SPD, and

MT +N =

 MT
1 +N1 −A12 0
−A21 MT

2 +N2 0
0 0 MT

3 +N3


is SPD, then the iteration will converge to the solution of Ax = d.

Proof. The proof is a straight forward application of Theorem 8.4.2. Since A
is symmetric AT

ij = Aji,

MT +N =

 M1 0 0
0 M2 0

A31 A32 M3

T +
 N1 −A12 −A13
−A21 N2 −A23
0 0 N3


=

 MT
1 0 AT

31

0 MT
2 AT

32

0 0 MT
3

+
 N1 −A12 −A13
−A21 N2 −A23
0 0 N3


=

 MT
1 +N1 −A12 0
−A21 MT

2 +N2 0
0 0 MT

3 +N3

 .
If the A12 = A21 = 0, then MT + N will be P-regular if and only if each

splitting Aii = Mi − Ni is P-regular. A special case is the SOR algorithm
applied to the large blocks of unknowns, updating the unknowns, and doing
SOR of the interface block, which is listed last. In this case Mi =

1
ω (Di−ωLi)

so that MT
i +Ni = (

2
ω − 1)Di.

The following MPI code solves the Poisson problem where the spatial blocks
of nodes include horizontal large blocks with n = 447 unknowns in the x direc-
tion and (n− p+ 1) /p unknowns in the y direction. There are p = 2, 4, 8, 16
or 32 processors with (n− p+ 1) /p = 223, 111, 55, 27 and 13 in unknowns in

8.5. SOR AND MPI 335

the y direction, respectively. There are p− 1 smaller interface blocks with one
row each of n unknowns so that the p+1 block of the matrix A has n× (p− 1)
unknowns.
The code is initialized in lines 6-30, and the SOR while loop is in lines 32-

120. SOR is done concurrently in lines 38-48 for the larger blocks, the results
are communicated to the adjacent processors in lines 50-83, then SOR is done
concurrently in lines 84-96 for the smaller interface blocks, and finally in lines
98-105 the results are communicated to adjacent blocks. The communication
scheme used in lines 50-83 is similar to that used in Chapter 6.6 and illustrated
in Figures 6.6.1 and 6.6.2. Here we have stored the kth big block and the top
interface block on processor k − 1 where 0 < k < p; the last big block is stored
on processor p− 1. In lines 107-119 the global error is computed and broadcast
to all the processors. If it satisfies the convergence criteria, then the while loop
on each processor is exited. One can use the MPI subroutine mpi_allreduce()
to combine the gather and broadcast operations, see Chapter 9.3 and the MPI
code cgssormpi.f. The results in lines 123-133 are gathered onto processor 0
and partial results are printed.

MPI/Fortran Code sorddmpi.f
1. program sor
2.!
3.! Solve Poisson equation via SOR.
4.! Uses domain decomposition to attain parallel computation.
5.!
6. implicit none
7. include ’mpif.h’
8. real ,dimension (449,449)::u,uold
9. real ,dimension (1:32)::errora
10. real :: w, h, eps,pi,error,utemp,to,t1,timef
11. integer :: n,maxk,maxit,it,k,i,j,jm,jp
12. integer :: my_rank,p,source,dest,tag,ierr,loc_n
13. integer :: status(mpi_status_size),bn,en,sbn
14. n = 447
15. w = 1.99
16. h = 1.0/(n+1)
17. u = 0.
18. errora(:) = 0.0
19. error = 1.
20. uold = 0.
21. call mpi_init(ierr)
22. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
23. call mpi_comm_size(mpi_comm_world,p,ierr)
24. if (my_rank.eq.0) then
25. to = timef()
26. end if

336 CHAPTER 8. CLASSICAL METHODS FOR AX = D

27. pi = 3.141592654
28. maxit = 2000
29. eps = .001
30. it = 0
31.! Begin the while loop for the parallel SOR iterations.
32. do while ((it.lt.maxit).and.(error.gt.eps))
33. it = it + 1
34. loc_n = (n-p+1)/p
35. bn = 2+(my_rank)*(loc_n+1)
36. en = bn + loc_n -1
37.! Do SOR for big blocks.
38. do j=bn,en
39. do i =2,n+1
40. utemp = (1000.*sin((i-1)*h*pi)*sin((j-1)*h*pi)*h*h&
41. + u(i-1,j) + u(i,j-1) &
42. + u(i+1,j) + u(i,j+1))*.25
43. u(i,j) = (1. -w)*u(i,j) + w*utemp
44. end do
45. end do
46. errora(my_rank+1) = maxval(abs(u(2:n+1,bn:en)-&
47. uold(2:n+1,bn:en)))
48. uold(2:n+1,bn:en) = u(2:n+1,bn:en)
49.! Communicate computations to adjacent blocks.
50. if (my_rank.eq.0) then
51. call mpi_recv(u(1,en+2),(n+2),mpi_real,my_rank+1,50,&
52. mpi_comm_world,status,ierr)
53. call mpi_send(u(1,en+1),(n+2),mpi_real,my_rank+1,50,&
54. mpi_comm_world,ierr)
55. end if
56. if ((my_rank.gt.0).and.(my_rank.lt.p-1)&
57. .and.(mod(my_rank,2).eq.1)) then
58. call mpi_send(u(1,en+1),(n+2),mpi_real,my_rank+1,50,&
59. mpi_comm_world,ierr)
60. call mpi_recv(u(1,en+2),(n+2),mpi_real,my_rank+1,50,&
61. mpi_comm_world,status,ierr)
62. call mpi_send(u(1,bn),(n+2),mpi_real,my_rank-1,50,&
63. mpi_comm_world,ierr)
64. call mpi_recv(u(1,bn-1),(n+2),mpi_real,my_rank-1,50,&
65. mpi_comm_world,status,ierr)
66. end if
67. if ((my_rank.gt.0).and.(my_rank.lt.p-1)&
68. .and.(mod(my_rank,2).eq.0)) then
69. call mpi_recv(u(1,bn-1),(n+2),mpi_real,my_rank-1,50,&
70. mpi_comm_world,status,ierr)
71. call mpi_send(u(1,bn),(n+2),mpi_real,my_rank-1,50,&

8.5. SOR AND MPI 337

72. mpi_comm_world,ierr)
73. call mpi_recv(u(1,en+2),(n+2),mpi_real,my_rank+1,50,&
74. mpi_comm_world,status,ierr)
75. call mpi_send(u(1,en+1),(n+2),mpi_real,my_rank+1,50,&
76. mpi_comm_world,ierr)
77. end if
78. if (my_rank.eq.p-1) then
79. call mpi_send(u(1,bn),(n+2),mpi_real,my_rank-1,50,&
80. mpi_comm_world,ierr)
81. call mpi_recv(u(1,bn-1),(n+2),mpi_real,my_rank-1,50,&
82. mpi_comm_world,status,ierr)
83. end if
84. if (my_rank.lt.p-1) then
85. j = en +1
86.! Do SOR for smaller interface blocks.
87. do i=2,n+1
88. utemp = (1000.*sin((i-1)*h*pi)*sin((j-1)*h*pi)*h*h&
89. + u(i-1,j) + u(i,j-1)&
90. + u(i+1,j) + u(i,j+1))*.25
91. u(i,j) = (1. -w)*u(i,j) + w*utemp
92. end do
93. errora(my_rank+1) = max1(errora(my_rank+1),&
94. maxval(abs(u(2:n+1,j)-uold(2:n+1,j))))
95. uold(2:n+1,j) = u(2:n+1,j)
96. endif
97.! Communicate computations to adjacent blocks.
98. if (my_rank.lt.p-1) then
99. call mpi_send(u(1,en+1),(n+2),mpi_real,my_rank+1,50,&
100. mpi_comm_world,ierr)
101. end if
102. if (my_rank.gt.0) then
103. call mpi_recv(u(1,bn-1),(n+2),mpi_real,my_rank-1,50,&
104. mpi_comm_world,status,ierr)
105. end if
106.! Gather local errors to processor 0.
107. call mpi_gather(errora(my_rank+1),1,mpi_real,&
108. errora,1,mpi_real,0,&
109. mpi_comm_world,ierr)
110. call mpi_barrier(mpi_comm_world,ierr)
111.! On processor 0 compute the maximum of the local errors.
112. if (my_rank.eq.0) then
113. error = maxval(errora(1:p))
114. end if
115.! Send this global error to all processors so that
116.! they will exit the while loop when the global error

338 CHAPTER 8. CLASSICAL METHODS FOR AX = D

Table 8.5.1: MPI Times for sorddmpi.f
p time iteration
2 17.84 673
4 07.93 572
8 03.94 512
16 02.18 483
32 01.47 483

117.! test is satisfied.
118. call mpi_bcast(error,1,mpi_real,0,&
119. mpi_comm_world,ierr)
120. end do
121.! End of the while loop.
122.! Gather the computations to processor 0
123. call mpi_gather(u(1,2+my_rank*(loc_n+1)),&
124. (n+2)*(loc_n+1),mpi_real,&
125. u,(n+2)*(loc_n+1),mpi_real,0,&
126. mpi_comm_world,ierr)
127. if (my_rank.eq.0) then
128. t1 = timef()
129. print*, ’sor iterations = ’,it
130. print*, ’time = ’, t1
131. print*, ’error = ’, error
132. print*, ’center value of solution = ’, u(225,225)
133. end if
134. call mpi_finalize(ierr)
135. end

The computations in Table 8.5.1 use 2, 4, 8, 16 and 32 processors. Since the
orderings of the unknowns are different, the SOR iterations required for conver-
gence vary; in this case they decrease as the number of processors increase. Also,
as the number of processors increase, the number of interface blocks increase
as does the amount of communication. The execution times (sec.) reflect rea-
sonable speedups given the decreasing iterations for convergence and increasing
communication.

8.5.1 Exercises

1. Establish analogues of Theorem 8.5.1 for the splittings in lines (8.5.1)
and (8.5.3).
2. In Theorem 8.5.1 use the Schur complement to give conditions so that
MT +N will be positive definite.

8.6. PARALLEL ADI SCHEMES 339

3. Verify the computations in Table 8.5.1. Experiment with the convergence
criteria.
4. Experiment with sorddmpi.f by varying the number of unknowns and
SOR parameter. Note the effects of using different numbers of processors.

8.6 Parallel ADI Schemes
Alternating direction implicit (ADI) iterative methods can be used to approxi-
mate the solution to a two variable Poisson problem by a sequence of ordinary
differential equations solved in the x or y directions

−uxx − uyy = f

−uxx = f + uyy

−uyy = f + uxx.

One may attempt to approximate this by the following scheme

for m = 0, maxm
for each y solve

−um+ 1
2

xx = f + umyy
for each x solve
−um+1yy = f + u

m+ 1
2

xx

test for convergence
endloop.

The discrete version of this uses the finite difference method to discretize
the ordinary differential equations

−u
m+ 1

2
i+1,j − 2um+

1
2

i,j + u
m+ 1

2
i−1,j

∆x2
= fi,j +

umi,j+1 − 2umi,j + umi,j−1
∆y2

(8.6.1)

−u
m+1
i,j+1 − 2um+1i,j + um+1i,j−1

∆y2
= fi,j +

u
m+ 1

2
i+1,j − 2um+

1
2

i,j + u
m+ 1

2
i−1,j

∆x2
. (8.6.2)

The discrete version of the above scheme is

for m = 0, maxm
for each j solve

tridiagonal problem (8.6.1) for u
m+ 1

2
i,j

for each i solve
tridiagonal problem (8.6.2) for um+1i,j

test for convergence
endloop.

The solve steps may be done by the tridiagonal algorithm. The i or j solves are

independent, that is, the solves for u
m+ 1

2
i,j and u

m+ 1
2

i,bj can be done concurrently

340 CHAPTER 8. CLASSICAL METHODS FOR AX = D

for j 6= bj, and also the solves for um+1i,j and um+1bi,j can be done concurrently for

i 6= bi.
The matrix form of this requires the coefficient matrix to be written as

A = H+V where H and V reflect the discretized ordinary differential equations
in the x and y directions, respectively. For example, suppose ∆x = ∆y = h and
there are n unknowns in each direction of a square domain. The A will be an
block n × n matrix and using the classical order of bottom grid row first and
moving from left to right in the grid rows

A = H + V B −I Z
−I B −I
Z −I B

 =

 C Z Z
Z C Z
Z Z C

+
 2I −I Z
−I 2I −I
Z −I 2I


where I is a n× n identity matrix, Z is a n× n zero matrix and C is a n× n
tridiagonal matrix, for example for n = 3

C =

 2 −1 0
−1 2 −1
0 −1 2

 .
The ADI algorithm for the solution of Ax = d is based on two splittings of

A

A = (αI +H)− (αI − V)

A = (αI + V)− (αI −H).

The positive constant α is chosen so that αI+H and αI+V have inverses and
to accelerate convergence. More generally, α is a diagonal matrix with positive
diagonal components chosen to obtain an optimal convergence rate.

ADI Algorithm for Ax = d with A = H + V.

for m = 0, maxm
solve (αI +H)xm+

1
2 = d+ (αI − V)xm

solve (αI + V)xm+1 = d+ (αI −H)xm+
1
2

test for convergence
endloop.

This algorithm may be written in terms of a single splitting.

xm+1 = (αI + V)−1[d+ (αI −H)xm+
1
2]

= (αI + V)−1[d+ (αI −H)(αI +H)−1(d+ (αI − V)xm)]

= (αI + V)−1[d+ (αI −H)(αI +H)−1d] +
(αI + V)−1(αI −H)(αI +H)−1(αI − V)xm

= M−1d+M−1Nxm

8.6. PARALLEL ADI SCHEMES 341

where

M−1 ≡ (αI + V)−1[I + (αI −H)(αI +H)−1] and
M−1N = (αI + V)−1(αI −H)(αI +H)−1(αI − V).

Thus, the convergence can be analyzed by either requiring some norm ofM−1N
to be less than one, or by requiring A to be SPD and A = M −N to be a P-
regular splitting. The following theorem uses the P-regular splitting approach.

Theorem 8.6.1 (ADI Splitting Convergence) Consider the ADI algorithm
where α is some positive constant. If A,H and V are SPD and α is such
that αI+ 1

2α(V H+HV) is positive definite, then the ADI splitting is P-regular
and must converge to the solution.

Proof. Use the above splitting associated with the ADI algorithm

M−1 = (αI + V)−1[I + (αI −H)(αI +H)−1]
= (αI + V)−1[(αI +H) + (αI −H)](αI +H)−1

= (αI + V)−12α(αI +H)−1.

Thus, M = 1
2α (αI +H)(αI +V) and N = −A+M = −V −H +M so that by

the symmetry of H and V

MT +N = (
1

2α
(αI +H)(αI + V))T − V −H +

1

2α
(αI +H)(αI + V)

=
1

2α
(αI + V T)(αI +HT)− V −H +

1

2α
(αI +H)(αI + V)

= αI +
1

2α
(V H +HV).

Example 2 in Chapter 8.2 implies that, for suitably large α, MT + N =
αI+ 1

2α(V H+HV) will be positive definite. The parallel aspects of this method
are that αI + H and αI + V are essentially block diagonal with tridiagonal
matrices, and therefore, the solve steps have many independent substeps. The
ADI method may also be applied to three space dimension problems, and also
there are several domain decomposition variations of the tridiagonal algorithm.

ADI in Three Space Variables.
Consider the partial differential equation in three variables −uxx − uyy −

uzz = f. Discretize this so that the algebraic problem Ax = d can be broken
into parts associated with three directions and A = H + V +W where W is
associated with the z direction. Three splittings are

A = (αI +H)− (αI − V −W)

A = (αI + V)− (αI −H −W)

A = (αI +W)− (αI −H − V).

342 CHAPTER 8. CLASSICAL METHODS FOR AX = D

The ADI scheme has the form

for m = 0, maxm
solve (αI +H)xm+1/3 = d+ (αI − V −W)xm

solve (αI + V)xm+2/3 = d+ (αI −H −W)xm+1/3

solve (αI +W)xm+1 = d+ (αI − V −H)xm+2/3

test for convergence
endloop.

For this three variable case one can easily prove an analogue to Theorem 8.6.1.

Tridiagonal with Domain Decomposition and Interface Blocks.
Consider the tridiagonal matrix with dimension n = 3m + 2. Reorder the

unknowns so that unknowns for i = m+ 1 and i = 2m+ 2 are listed last. The
reordered coefficient matrix for m = 3 will have the following nonzero pattern

x x
x x x

x x x
x x x
x x x

x x x
x x x
x x x

x x
x x x

x x x


.

This is has the form associated with the Schur complement where B is the block
diagonal with three tridiagonal matrices. There will then be three independent
tridiagonal solves as substeps for solving this domain decomposition or "arrow"
matrix.

Tridiagonal with Domain Decomposition and No Interface Blocks.
Consider the tridiagonal matrix with dimension n = 3m. Multiply this

matrix by the inverse of the block diagonal of the matrices A(1 : m, 1 : m),
A(m+ 1 : 2m,m+ 1 : 2m) and A(2m+ 1 : 3m, 2m+ 1 : 3m). The new matrix
has the following nonzero pattern for m = 3

1 x
1 x

1 x
x 1 x
x 1 x
x 1 x

x 1
x 1
x 1


.

8.6. PARALLEL ADI SCHEMES 343

Now reorder the unknowns so that unknowns for i = m,m+ 1, 2m and 2m+ 1
are listed last. The new coefficient matrix has the form for m = 3

1 x
1 x
1 x x
1 x
1 x

1 x
x 1 x
x 1 x

x 1


.

This matrix has a bottom diagonal block, which can be permuted to a 4 × 4
tridiagonal matrix. The top diagonal block is the identity matrix with dimen-
sion 3m − 4 so that the new matrix is a 2 × 2 block upper triangular matrix.
More details on this approach can be found in the paper by N. Mattor, T. J.
Williams and D. W. Hewett [11]

8.6.1 Exercises

1. Generalize Theorem 8.6.1 to the case where α is a diagonal matrix with
positive diagonal components.
2. Generalize Theorem 8.6.1 to the three space variable case.
3. Generalize the tridiagonal algorithm with p− 1 interface nodes and n =
pm + p − 1 where there are p blocks with m unknowns per block. Implement
this in an MPI code using p processors.
4. Generalize the tridiagonal algorithm with no interface nodes and n = pm
where there are p blocks with m unknowns per block Implement this in an MPI
code using p processors.

344 CHAPTER 8. CLASSICAL METHODS FOR AX = D

Chapter 9

Krylov Methods for Ax = d

The conjugate gradient method was introduced in chapter three. In this chapter
we show each iterate of the conjugate gradient method can be expressed as the
initial guess plus a linear combination of the Air(x0) where r0 = r(x0) = d−Ax0
is the initial residual and Air(x0) are called the Krylov vectors. Here xm = x0+
c0r

0 + c1Ar
0+ · · ·+ cm−1Am−1r0 and the coefficients are the unknowns. They

can be determined by either requiring J(xm) = 1
2(x

m)TAxm− (xm)T d where A
is a SPD matrix, to be a minimum, or to require R (xm) = r(xm)T r(xm) to be a
minimum. The first case gives rise to the conjugate gradient method (CG), and
the second case generates the generalized minimum residual method (GMRES).
Both methods have many variations, and they can be accelerated by using
suitable preconditioners, M , where one applies these methods to M−1Ax =
M−1d. A number of preconditioners will be described, and the parallel aspects
of these methods will be illustrated by MPI codes for preconditioned CG and
a restarted version of GMRES.

9.1 Conjugate Gradient Method

The conjugate gradient method as described in Chapter 3.5 and 3.6 is an en-
hanced version of the method of steepest descent. First, the multiple residuals
are used so as to increase the dimensions of the underlying search set of vectors.
Second, conjugate directions are used so that the resulting algebraic systems for
the coefficients will be diagonal. As an additional benefit to using the conjugate
directions, all the coefficients are zero except for the last one. This means the
next iterate in the conjugate gradient method is the previous iterate plus a con-
stant times the last search direction. Thus, not all the search directions need
to be stored. This is in contrast with the GMRES method, which is applicable
to problems where the coefficient matrix is not SPD.
The implementation of the conjugate gradient method has the form given

below. The steepest descent in the direction is given by using the parameter α,
and the new conjugate direction pm+1 is given by using the parameter β. For

345

346 CHAPTER 9. KRYLOV METHODS FOR AX = D

each iteration there are two dot products, three vector updates and a matrix-
vector product. These substages can be done in parallel, and often one tries to
avoid storage of the full coefficient matrix.

Conjugate Gradient Method.

Let x0 be an initial guess
r0 = d−Ax0

p0 = r0

for m = 0, maxm
α = (rm)T rm/(pm)TApm

xm+1 = xm + αpm

rm+1 = rm − αApm

test for convergence
β = (rm+1)T rm+1/(rm)T rm

pm+1 = rm+1 + βpm

endloop.

The connection with the Krylov vectors Air(x0) evolve from expanding the
conjugate gradient loop.

x1 = x0 + α0p
0 = x0 + α0r

0

r1 = r0 − α0Ap
0 = r0 − α0Ar

0

p1 = r1 + β0p
0 = r1 + β0r

0

x2 = x1 + α1p
1

= x1 + α1
¡
r1 + β0r

0
¢

= x0 + α0r
0 + α1

¡
r0 − α0Ar

0 + β0r
0
¢

= x0 + c0r
0 + c1Ar

0

...

xm = x0 + c0r
0 + c1Ar

0 + · · ·+ cm−1Am−1r0.

An alternative definition of the conjugate gradient method is to choose the
coefficients of the Krylov vectors so as to minimize J(x)

J(xm+1) = min
c

J(x0 + c0r
0 + c1Ar

0 + · · ·+ cmA
mr0).

Another way to view this is to define the Krylov space as

Km ≡ {x | x = c0r
0 + c1Ar

0 + · · ·+ cm−1Am−1r0, ci ∈ R}.
The Krylov spaces have the very useful properties:

Km ⊂ Km+1 (9.1.1)

AKm ⊂ Km+1 and (9.1.2)

Km ≡ {x | x = a0r
0 + a1r

1 + · · ·+ am−1rm−1, ai ∈ R}. (9.1.3)

9.1. CONJUGATE GRADIENT METHOD 347

So the alternate definition of the conjugate gradient method is to choose
xm+1 ∈ x0 +Km+1 so that

J(xm+1) = min
y∈x0+Km+1

J(y). (9.1.4)

This approach can be shown to be equivalent to the original version, see C. T.
Kelley [8, chapter 2].
In order to gain some insight to this let xm ∈ x0 + Km be such that it

minimizes J(y) where y ∈ x0 +Km. Let y = xm + tz where z ∈ Km and use
the identity in (8.4.3)

J(xm + tz) = J(xm)− r(xm)T tz +
1

2
(tz)TA(tz).

Then the derivative of J(xm+ tz) with respect to the parameter t evaluated at
t = 0 must be zero so that

r(xm)T z = 0 for all z ∈ Km. (9.1.5)

Since Km contains the previous residuals,

r(xm)T r(xl) = 0 for all l < m.

Next consider the difference between two iterates given by (9.1.4), xm+1 =
xm + w where w ∈ Km+1. Use (9.1.5) with m replaced by m+ 1

r(xm+1)T z = 0 for all z ∈ Km+1

(d−A(xm + w))T z = 0

(d−Axm)T z − wTAT z = 0

r(xm)T z − wTAz = 0.

Since Km ⊂ Km+1, we may let z ∈ Km and use (9.1.5) to get

wTAz = (xm+1 − xm)TAz = 0. (9.1.6)

This implies that w = xm+1 − xm ∈ Km+1 can be expressed as a multiple of
r(xm) + bz for some bz ∈ Km. Additional inductive arguments show for suitable
α and β

xm+1 − xm = α(r(xm) + βpm−1). (9.1.7)

This is a note worthy property because one does not need to store all the
conjugate search directions p0, · · · , pm.
The proof of (9.1.7) is done by mathematical induction. x0+1 ∈ x0 +K0+1

is such that

J(x0+1) = min
y∈x0+K0+1

J(y)

= min
c0

J(x0 + c0r
0).

348 CHAPTER 9. KRYLOV METHODS FOR AX = D

Thus, x1 = x0 + α0r
0 for an appropriate α0 as given by the identity in (8.4.3).

Note

r1 = d−Ax1

= d−A(x0 + α0r
0)

= (d−Ax0)− α0Ar
0

= r0 − α0Ap
0

The next step is a little more interesting. By definition x1+1 ∈ x0 + K1+1 is
such that

J(x1+1) = min
y∈x0+K1+1

J(y).

Properties (9.1.5) and (9.1.6) imply

(r1)T r0 = 0

(x2 − x1)TAr0 = 0.

Since x2 − x1 ∈ K2, x
2 − x1 = α(r1 + βp0) and

(x2 − x1)TAr0 = 0

(r1 + βp0)TAr0 = 0

(r1)TAr0 + (βp0)TAr0 = 0.

Since r1 = r0 − α0Ap
0 and (r1)T r0 = 0,

(r1)T r0 = (r0 − α0Ap
0)T r0

= (r0)T r0 − α0(Ap
0)T r0

= 0.

So, if r0 6= 0, (Ap0)T r0 6= 0 and we may choose

β =
−(r1)TAr0
(Ap0)T r0

.

The inductive step of the formal proof is similar.

Theorem 9.1.1 (Alternate CG Method) Let A be SPD and let xm+1 be the
alternate definition of the conjugate gradient method in (9.1.4). If the residuals
are not zero vectors, then equations (9.1.5-9.1.7) are true.

The utility of the Krylov approach to both the conjugate gradient and the
generalize residual methods is a very nice analysis of convergence properties.
These are based on the following algebraic identities. Let x be the solution of
Ax = d so that r(x) = d − Ax = 0, and use the identity in line (8.4.3) for
symmetric matrices

J(xm+1)− J(x) =
1

2
(xm+1 − x)TA(xm+1 − x)

=
1

2

°°xm+1 − x
°°2
A
.

9.1. CONJUGATE GRADIENT METHOD 349

Now write the next iterate in terms of the Krylov vectors

x− xm+1 = x− (x0 + c0r
0 + c1Ar

0 + · · ·+ cmA
mr0)

= x− x0 − (c0r0 + c1Ar
0 + · · ·+ cmA

mr0)

= x− x0 − (c0I + c1A+ · · ·+ cmA
m)r0.

Note r0 = d−Ax0 = Ax−Ax0 = A(x− x0) so that

x− xm+1 = x− x0 − (c0I + c1A+ · · ·+ cmA
m)A(x− x0)

= (I − (c0I + c1A+ · · ·+ cmA
m))A(x− x0)

= (I − (c0A+ c1A+ · · ·+ cmA
m+1))(x− x0).

Thus

2(J(xm+1)− J(x)) =
°°xm+1 − x

°°2
A
≤ °°qm+1(A)(x− x0)

°°2
A

(9.1.8)

where qm+1(z) = 1 − (c0z + c1z
2 + · · · + cmz

m+1). One can make appropriate
choices of the polynomial qm+1(z) and use some properties of from eigenvalues
and matrix algebra to prove the following theorem, see [8, chapter 2]

Theorem 9.1.2 (CG Convergence Properties) Let A be an n×n SPD matrix,
and consider Ax = d.

1. The conjugate gradient method will obtain the solution within n iterations.

2. If d is a linear combination of k of the eigenvectors of A, then the con-
jugate gradient method will obtain the solution within k iterations.

3. If the set of all eigenvalues of A has at most k distinct eigenvalues, then
the conjugate gradient method will obtain the solution within k iterations.

4. Let κ2 ≡ λmax/λmin be the condition number of A, which is the ratio
of the largest and smallest eigenvalues of A. Then the following error
estimate holds so that a condition number closer to one is desirable

kxm − xkA ≤ 2
°°x0 − x

°°
A
(

√
κ2 − 1√
κ2 + 1

)m. (9.1.9)

9.1.1 Exercises

1. Show the three properties if Krylov spaces in line (9.1.1-9.1.3) are true.
2. Show equation (9.1.7) is true for m = 2.

3. Give a mathematical induction proof of Theorem 9.1.1.

350 CHAPTER 9. KRYLOV METHODS FOR AX = D

9.2 Preconditioners

Consider the SPD matrix A and the problem Ax = d. For the preconditioned
conjugate gradient method a preconditioner is another SPD matrix M. The
matrix M is chosen so that the equivalent problem M−1Ax = M−1d can be
more easily solved. Note M−1A may not be SPD. However M−1 is also SPD
and must have a Cholesky factorization, which we write as

M−1 = STS.

The systemM−1Ax =M−1d can be rewritten in terms of a SPD matrix bAbx = bd
STSAx = STSd

(SAST)(S−Tx) = Sd where

bA = SAST , bx = S−Tx and bd = Sd. bA is SPD. It is similar to M−1A, that
is, S−T (M−1A)ST = bA so that the eigenvalues of M−1A and bA are the same.
The idea is use conjugate gradient on bAbx = bd and to choose M so that the
properties in Theorem 9.1.1 favor rapid convergence of the conjugate gradient
method.
At first glance it may appear to be very costly to do this. However the

following identifications show that the application of the conjugate gradient
method to bAbx = bd is relatively simple:

bA = SAST , bx = S−Tx, br = S(d−Ax) and bp = S−T p.

Then bα = brT brbpT bAbp = (Sr)T (Sr)

(S−Tp)T (SAST) (S−T p)
=

rT (STSr)

pTAp
.

Similar calculations hold for bβ and bp. This eventually gives the following pre-
conditioned conjugate gradient algorithm, which does require an "easy" solution
of Mz = r for each iterate.

Preconditioned Conjugate Gradient Method.

Let x0 be an initial guess
r0 = d−Ax0

solve Mz0 = r0 and set p0 = z0

for m = 0, maxm
α = (zm)T rm/(pm)TApm

xm+1 = xm + αpm

rm+1 = rm − αApm

test for convergence
solve Mzm+1 = rm+1

β = (zm+1)T rm+1/(zm)T rm

pm+1 = zm+1 + βpm

9.2. PRECONDITIONERS 351

endloop.

Examples of Preconditioners.

1. Block diagonal part of A. For the Poisson problem in two space variables

M =


B 0 0 0
0 B 0 0

0 0
. . .

...
0 0 · · · B

 where

A =


B −I 0 0
−I B −I 0

0 −I . . .
...

0 0 · · · B

 and B =


4 −1 0 0
−1 4 −1 0

0 −1 . . .
...

0 0 · · · 4

 .
2. Incomplete Cholesky factorization of A. Let A = M + E = bG bGT + E
where E is chosen so that either the smaller components in A are neglected
or some desirable structure of M is attained. This can be done by defining a
subset S ⊂ {1, . . . , n} and overwrite the aij when i, j ∈ S

aij = aij − aik
1

akk
akj .

This common preconditioner and some variations are described in [5].

3. Incomplete domain decomposition. Let A =M+E whereM has the form
of an "arrow" associated with domain decompositions. For example, consider
a problem with two large blocks separated by a smaller block, which is listed
last.

M =

 A11 0 A13
0 A22 A23

A31 A32 A33

 where

A =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 .
Related preconditioners are described in the paper by E. Chow and Y. Saad [4].

4. ADI sweeps. Form M by doing one or more ADI sweeps. For example,
if A = H + V and one sweep is done in each direction, then for A =M −N as
defined by

(αI +H)xm+
1
2 = d+ (αI − V)xm

(αI + V)xm+1 = d+ (αI −H)xm+
1
2

= d+ (αI −H)((αI +H)−1(d+ (αI − V)xm).

352 CHAPTER 9. KRYLOV METHODS FOR AX = D

Solve for xm+1 =M−1d+M−1Nxm where

M−1 = (αI + V)−1(I + (αI −H)(αI +H)−1)
= (αI + V)−1((αI +H) + (αI −H))(αI +H)−1

= (αI + V)−12α(αI +H)−1 so that

M = (αI +H)
1

2α
(αI + V).

The parallelism in this approach comes from independent tridiagonal solves in
each direction. Another approach is to partition each tridiagonal solve as is
indicated in [11].

5. SSOR. Form M by doing one forward SOR and then one backward SOR
sweep. Let A = D − L− U where LT = U and 0 < ω < 2.

1

ω
(D − ωL)xm+

1
2 = d+

1

ω
((1− ω)D + ωU)xm

1

ω
(D − ωU)xm+1 = d+

1

ω
((1− ω)D + ωL)xm+

1
2

= d+
1

ω
((1− ω)D + ωL)((

1

ω
(D − ωL))−1

(d+
1

ω
((1− ω)D + ωU)xm).

Solve for xm+1 =M−1d+M−1Nxm where

M−1 = (
1

ω
(D − ωU))−1(I +

1

ω
((1− ω)D + ωL)(

1

ω
(D − ωL))−1

= (
1

ω
(D − ωU))−1((

1

ω
(D − ωL)) +

1

ω
((1− ω)D + ωL)(

1

ω
(D − ωL))−1

= (
1

ω
(D − ωU))−1

2− ω

ω
D(
1

ω
(D − ωL))−1 so that

M =
1

ω
(D − ωL)(

2− ω

ω
D)−1

1

ω
(D − ωU).

6. Additive Schwarz. As motivation consider the Poisson problem and di-
vide the space grid into subsets of ni unknowns so that Σni ≥ n. Let Bi be
associated with a splitting of restriction of the coefficient matrix to subset i of
unknowns, and let Ri be the restriction operator so that

A : Rn −→ Rn

Bi : Rni −→ Rni

Ri : Rn −→ Rni

RT
i : Rni −→ Rn.

Define cMi = RT
i B
−1
i Ri : Rn −→ Rn. Although these matrices are not invertible,

one may be able to associate a splitting with the summation ΣcMi. Often a

9.2. PRECONDITIONERS 353

coarse mesh is associated with the problem. In this case let A0 be n0 × n0 and
let RT

0 : Rn0 −→ Rn be an extension operator from the coarse to fine mesh.
The following may accelerate the convergence

M−1 ≡ RT
0 A
−1
0 R0 +ΣcMi = RT

0 A
−1
0 R0 +ΣR

T
i B
−1
i Ri.

A common example is to apply SSOR to the subsets of unknowns with zero
boundary conditions. A nice survey of Schwarz methods can be found in the
paper written by Xiao-Chuan Cai in the first chapter of [9]

7. Least squares approximations for AcM = I. This is equivalent to n least
squares problems

Abmj = ej .

For example, if the column vectors bmj were to have nonzero components in
rows i = j − 1, j and j + 1, then this becomes a least squares problem with n
equations and three unknowns emj = [mj−1,mj ,mj+1]

T where A is restricted
to columns j − 1, j and j + 1

A(1 : n, j − 1 : j + 1)emj = ej .

The preconditioner is formed by collecting the column vectors bmj

M−1 = [bm1 bm2 · · · bmn].

Additional information on this approach can be found in the paper by M. J.
Grote and T. Huckle [7]

The following MATLAB code is slight variation of precg.m that was de-
scribed in Chapter 3.6. Here the SSOR and the block diagonal preconditioners
are used. The choice of preconditioners is made in lines 28-33. The number of
iterates required for convergence was 19, 55 and 73 for SSOR, block diagonal
and no preconditioning, respectively. In the ssorpc.m preconditioner function
the forward solve is done in lines 3-7, and the backward solve is done in lines
9-13. In the bdiagpc.m preconditioner function the diagonal blocks are all the
same and are defined in lines 3-12 every time the function is evaluated. The
solves for each block are done in lines 13-15.

MATLAB Code pccg.m with ssorpc.m and bdiagpc.m

1. % Solves -u_xx - u_yy = 200+200sin(pi x)sin(pi y).
2. % Uses PCG with SSOR or block diagonal preconditioner.
3. % Uses 2D arrays for the column vectors.
4. % Does not explicity store the matrix.
5. clear;
6. w = 1.6;
7. n = 65;
8. h = 1./n;
9. u(1:n+1,1:n+1)= 0.0;

354 CHAPTER 9. KRYLOV METHODS FOR AX = D

10. r(1:n+1,1:n+1)= 0.0;
11. rhat(1:n+1,1:n+1) = 0.0;
12. % Define right side of PDE
13. for j= 2:n
14. for i = 2:n
15. r(i,j)= h*h*(200+200*sin(pi*(i-1)*h)*sin(pi*(j-1)*h));
16. end
17. end
18. errtol = .0001*sum(sum(r(2:n,2:n).*r(2:n,2:n)))^.5;
19. p(1:n+1,1:n+1)= 0.0;
20. q(1:n+1,1:n+1)= 0.0;
21. err = 1.0;
22. m = 0;
23. rho = 0.0;
24. % Begin PCG iterations
25. while ((err > errtol)&(m < 200))
26. m = m+1;
27. oldrho = rho;
28. % Execute SSOR preconditioner
29. rhat = ssorpc(n,n,1,1,1,1,4,.25,w,r,rhat);
30. % Execute block diagonal preconditioner
31. % rhat = bdiagpc(n,n,1,1,1,1,4,.25,w,r,rhat);
32. % Use the following line for no preconditioner
33. % rhat = r;
34. % Find conjugate direction
35. rho = sum(sum(r(2:n,2:n).*rhat(2:n,2:n)));
36. if (m==1)
37. p = rhat;
38. else
39. p = rhat + (rho/oldrho)*p;
40. end
41. % Use the following line for steepest descent method
42. % p=r;
43. % Executes the matrix product q = Ap without storage of A
44. for j= 2:n
45. for i = 2:n
46. q(i,j)=4.*p(i,j)-p(i-1,j)-p(i,j-1)-p(i+1,j)-p(i,j+1);
47. end
48. end
49. % Executes the steepest descent segment
50. alpha = rho/sum(sum(p.*q));
51. u = u + alpha*p;
52. r = r - alpha*q;
53. % Test for convergence via the infinity norm of the residual
54. err = max(max(abs(r(2:n,2:n))));

9.2. PRECONDITIONERS 355

55. reserr(m) = err;
56. end
57. m
58. semilogy(reserr)

1. function r = ssorpc(nx,ny,ae,aw,as,an,ac,rac,w,d,r)
2. % This preconditioner is SSOR.
3. for j= 2:ny
4. for i = 2:nx
5. r(i,j) = w*(d(i,j) + aw*r(i-1,j) + as*r(i,j-1))*rac;
6. end
7. end
8. r(2:nx,2:ny) = ((2.-w)/w)*ac*r(2:nx,2:ny);
9. for j= ny:-1:2
10. for i = nx:-1:2
11. r(i,j) = w*(r(i,j)+ae*r(i+1,j)+an*r(i,j+1))*rac;
12. end
13. end

1. function r = bdiagpc(nx,ny,ae,aw,as,an,ac,rac,w,d,r)
2. % This preconditioner is block diagonal.
3. Adiag = zeros(nx-1);
4. for i = 1:nx-1
5. Adiag(i,i) = ac;
6. if i>1
7. Adiag(i,i-1) = -aw;
8. end
9. if i<nx-1
10. Adiag(i,i+1) = -ae;
11. end
12. end
13. for j = 2:ny
14. r(2:nx,j) = Adiag\d(2:nx,j);
15. end

9.2.1 Exercises

1. In the derivation of the preconditioned conjugate gradient method do the
calculations for bβ and bp. Complete the derivation of the PCG algorithm.
2. Verify the calculations for the MATLAB code pccg.m. Experiment with
some variations of the SSOR and block preconditioners.
3. Experiment with the incomplete Cholesky preconditioner.
4. Experiment with the incomplete domain decomposition preconditioner.
5. Experiment with the ADI preconditioner.
6. Experiment with the additive Schwarz preconditioner.

356 CHAPTER 9. KRYLOV METHODS FOR AX = D

7. Experiment with the least squares preconditioner. You may want to
review least squares as in Chapter 9.4 and see the interesting paper by Grote
and Huckle [7].

9.3 PCG and MPI
This section contains the MPI Fortran code of the preconditioned conjugate
gradient algorithm for the solution of a Poisson problem. The preconditioner is
an implementation of the additive Schwarz preconditioner with no coarse mesh
acceleration. It uses SSOR on large block of unknowns by partitioning the
second index with zero boundary conditions on the grid boundaries. So, this
could be viewed as a block diagonal preconditioner where the diagonal blocks
of the coefficient matrix are split by the SSOR splitting. Since the number of
blocks are associated with the number of processors, the preconditioner really
does change with the number of processors.
The global initialization is done in lines 1-36, and an initial guess is the

zero vector. In lines 37-42 MPI is started and the second index is partitioned
according to the number of processors. The conjugate gradient loop is executed
in lines 48-120, and the partial outputs are given by lines 121-138.
The conjugate gradient loop has substages, which are done in parallel. The

preconditioner is done on each block in lines 50-62. The local dot products for
β are computed, then mpi_allreduce() is used to total the local dot products
and to broadcast the result to all the processors. The local parts of the updated
search direction are computed in lines 67-71. In order to do the sparse matrix
product Ap, the top and bottom grid rows of p are communicated in lines 72-
107 to the adjacent processors. This communication scheme is similar to that
used in Chapter 6.6 and is illustrated in Figures 6.6.1 and 6.6.2. Lines 108-109
contain the local computation of Ap. In lines 111-114 the local dot products
for the computation of α in the steepest descent direction computation are
computed, and then mpi_allreduce() is used to total the local dot products
and to broadcast the result to all the processors. Lines 114 and 115 contain the
updated local parts of the approximated solution and residual. Lines 117-118
contain the local computation of the residual error, and then mpi_allreduce() is
used to total the errors and to broadcast the result to all the processors. Once
the error criteria has been satisfied for all processor, the conjugate gradient loop
will be exited.

MPI/Fortran Code cgssormpi.f
1. program cgssor
2.! This code approximates the solution of
3.! -u_xx - u_yy = f
4.! PCG is used with a SSOR verson of the
5.! Schwarz additive preconditioner.
6.! The sparse matrix product, dot products and updates
7.! are also done in parallel.

9.3. PCG AND MPI 357

8. implicit none
9. include ’mpif.h’
10. real,dimension(0:1025,0:1025):: u,p,q,r,rhat
11. real,dimension (0:1025) :: x,y
12. real :: oldrho,ap, rho,alpha,error,dx2,w,t0,timef,tend
13. real :: loc_rho,loc_ap,loc_error
14. integer :: i,j,n,m
15. integer :: my_rank,proc,source,dest,tag,ierr,loc_n
16. integer :: status(mpi_status_size),bn,en
17. integer :: maxit,sbn
18. w = 1.8
19. u = 0.0
20. n = 1025
21. maxit = 200
22. dx2 = 1./(n*n)
23. do i=0,n
24. x(i) = float(i)/n
25. y(i) = x(i)
26. end do
27. r = 0.0
28. rhat = 0.0
29. q = 0.0
30. p = 0.0
31. do j = 1,n-1
32. r(1:n-1,j)=200.0*dx2*(1+sin(3.14*x(1:n-1))*sin(3.14*y(j)))
33. end do
34. error = 1.
35. m = 0
36. rho = 0.0
37. call mpi_init(ierr)
38. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
39. call mpi_comm_size(mpi_comm_world,proc,ierr)
40. loc_n = (n-1)/proc
41. bn = 1+(my_rank)*loc_n
42. en = bn + loc_n -1
43. call mpi_barrier(mpi_comm_world,ierr)
44. if (my_rank.eq.0) then
45. t0 = timef()
46. end if
47. do while ((error>.0001).and.(m<maxit))
48. m = m+1
49. oldrho = rho
50. ! Execute Schwarz additive SSOR preconditioner.
51. ! This preconditioner changes with the number of processors!
52 do j= bn,en

358 CHAPTER 9. KRYLOV METHODS FOR AX = D

53. do i = 1,n-1
54. rhat(i,j) = w*(r(i,j)+rhat(i-1,j)+rhat(i,j-1))*.25
55. end do
56. end do
57. rhat(1:n-1,bn:en) = ((2.-w)/w)*4.*rhat(1:n-1,bn:en)
58. do j= en,bn,-1
59. do i = n-1,1,-1
60. rhat(i,j) = w*(rhat(i,j)+rhat(i+1,j)+rhat(i,j+1))*.25
61. end do
62. end do
63. ! rhat = r
64. ! Find conjugate direction.
65. loc_rho = sum(r(1:n-1,bn:en)*rhat(1:n-1,bn:en))
66. call mpi_allreduce(loc_rho,rho,1,mpi_real,mpi_sum,&

mpi_comm_world,ierr)
67. if (m.eq.1) then
68. p(1:n-1,bn:en) = rhat(1:n-1,bn:en)
69. else
70. p(1:n-1,bn:en) = rhat(1:n-1,bn:en)&

+ (rho/oldrho)*p(1:n-1,bn:en)
71. endif
72. ! Execute matrix product q = Ap.
73. ! First, exchange information between processors.
74. if (my_rank.eq.0) then
75. call mpi_recv(p(0,en+1),(n+1),mpi_real,my_rank+1,50,&
76. mpi_comm_world,status,ierr)
77. call mpi_send(p(0,en),(n+1),mpi_real,my_rank+1,50,&
78. mpi_comm_world,ierr)
79. end if
80. if ((my_rank.gt.0).and.(my_rank.lt.proc-1)&
81. .and.(mod(my_rank,2).eq.1)) then
82. call mpi_send(p(0,en),(n+1),mpi_real,my_rank+1,50,&
83. mpi_comm_world,ierr)
84. call mpi_recv(p(0,en+1),(n+1),mpi_real,my_rank+1,50,&
85. mpi_comm_world,status,ierr)
86. call mpi_send(p(0,bn),(n+1),mpi_real,my_rank-1,50,&
87. mpi_comm_world,ierr)
88. call mpi_recv(p(0,bn-1),(n+1),mpi_real,my_rank-1,50,&
89. mpi_comm_world,status,ierr)
90. end if
91. if ((my_rank.gt.0).and.(my_rank.lt.proc-1)&
92. .and.(mod(my_rank,2).eq.0)) then
93. call mpi_recv(p(0,bn-1),(n+1),mpi_real,my_rank-1,50,&
94. mpi_comm_world,status,ierr)
95. call mpi_send(p(0,bn),(n+1),mpi_real,my_rank-1,50,&

9.3. PCG AND MPI 359

96. mpi_comm_world,ierr)
97. call mpi_recv(p(0,en+1),(n+1),mpi_real,my_rank+1,50,&
98. mpi_comm_world,status,ierr)
99. call mpi_send(p(0,en),(n+1),mpi_real,my_rank+1,50,&
100. mpi_comm_world,ierr)
101. end if
102. if (my_rank.eq.proc-1) then
103. call mpi_send(p(0,bn),(n+1),mpi_real,my_rank-1,50,&
104. mpi_comm_world,ierr)
105. call mpi_recv(p(0,bn-1),(n+1),mpi_real,my_rank-1,50,&
106. mpi_comm_world,status,ierr)
107. end if
108. q(1:n-1,bn:en)=4.0*p(1:n-1,bn:en)-p(0:n-2,bn:en)-p(2:n,bn:en)&
109. - p(1:n-1,bn-1:en-1) - p(1:n-1,bn+1:en+1)
110. ! Find steepest descent.
111. loc_ap = sum(p(1:n-1,bn:en)*q(1:n-1,bn:en))
112. call mpi_allreduce(loc_ap,ap,1,mpi_real,mpi_sum,&
113. mpi_comm_world,ierr)
114. alpha = rho/ap
115. u(1:n-1,bn:en) = u(1:n-1,bn:en) + alpha*p(1:n-1,bn:en)
116. r(1:n-1,bn:en) = r(1:n-1,bn:en) - alpha*q(1:n-1,bn:en)
117. loc_error = maxval(abs(r(1:n-1,bn:en)))
118. call mpi_allreduce(loc_error,error,1,mpi_real, mpi_sum,&
119. mpi_comm_world,ierr)
120. end do
121. ! Send local solutions to processor zero.
122. if (my_rank.eq.0) then
123. do source = 1,proc-1
124. sbn = 1+(source)*loc_n
125. call mpi_recv(u(0,sbn),(n+1)*loc_n,mpi_real,source,50,&
126. mpi_comm_world,status,ierr)
127. end do
128. else
129. call mpi_send(u(0,bn),(n+1)*loc_n,mpi_real,0,50,&
130. mpi_comm_world,ierr)
131. end if
132. if (my_rank.eq.0) then
133. tend = timef()
134. print*, ’time =’, tend
135. print*, ’time per iteration = ’, tend/m
136. print*, m,error, u(512 ,512)
137. print*, ’w = ’,w
138. end if
139. call mpi_finalize(ierr)
140. end program

360 CHAPTER 9. KRYLOV METHODS FOR AX = D

Table 9.3.1: MPI Times for cgssormpi.f
p time iteration
2 35.8 247
4 16.8 260
8 07.9 248
16 03.7 213
32 03.0 287

The Table 9.3.1 contains computations for n = 1025 and using w = 1.8. The
computation times are in seconds, and note the number of iterations vary with
the number of processors.

9.3.1 Exercises

1. Verify the computations in Table 9.3.1. Experiment with the convergence
criteria.
2. Experiment with variations on the SSOR preconditioner and include dif-
ferent n and ω.
3. Experiment with variations of the SSOR to include the use of a coarse
mesh in the additive Schwarz preconditioner.
4. Use an ADI preconditioner in place of the SSOR preconditioner.

9.4 Least Squares
Consider an algebraic system where there are more equations than unknowns.
This will be a subproblem in the next two sections where the unknowns will be
the coefficients of the Krylov vectors. Let A be n ×m where n > m. In this
case it may not be possible to find x such that Ax = d, that is, the residual
vector r(x) = d− Ax may never be the zero vector. The next best alternative
is to find x so that in some way the residual vector is a small as possible.

Definition. Let R(x) ≡ r(x)T r(x) where A is n×m, r(x) = d−Ax and x is
m× 1. The least squares solution of Ax = d is

R(x) = min
y

R(y).

The following identity is important in finding a least squares solution

R(y) = (d−Ay)T (d−Ay)

= dTd− 2(Ay)Td+ (Ay)TAy
= dTd+ 2[1/2 yT (ATA)y − yT (AT d)]. (9.4.1)

9.4. LEAST SQUARES 361

If ATA is SPD, then by Theorem 8.4.1 the second term in (9.4.1) will be a
minimum if and only if

ATAx = ATd. (9.4.2)

This is called the normal equation.

Theorem 9.4.1 (Normal Equations) If A has full column rank (Ax = 0 im-
plies x = 0), then the least squares solution is characterized by the solution of
the normal equations (9.4.2).

Proof. Clearly ATA is symmetric. Note xT (ATA)x = (Ax)T (Ax) = 0 if
and only if Ax = 0. The full column rank assumption implies x = 0 so that
xT (ATA)x > 0 if x 6= 0. Thus ATA is SPD. Apply the first part of Theorem
8.4.1 to the second term in (9.4.1). Since the first term in (9.4.1) is constant
with respect to y, R(y) will be minimized if and only if the normal equation
(9.4.2) is satisfied.

Example 1. Consider the 3× 2 algebraic system 1 1
1 2
1 3

 · x1
x2

¸
=

 4
7
8

 .
This could have evolved from the linear curve y = mt + c fit to the data
(ti, yi) = (1, 4), (2, 7) and (3, 8) where x1 = c and x2 = m. The matrix has full
column rank and the normal equations are·

3 6
6 14

¸ ·
x1
x2

¸
=

·
19
42

¸
.

The solution is x1 = c = 7/3 and x2 = m = 2.

The normal equations are often ill-conditioned and prone to significant ac-
cumulation of roundoff errors. A good alternative is to use a QR factorization
of A.

Definition. Let A be n ×m. Factor A = QR where Q is n ×m such that
QTQ = I, and R is m×m is upper triangular. This is called a QR factorization
of A.

Theorem 9.4.2 (QR Factorization) If A = QR and has full column rank,
then the solution of the normal equation is given by the solution of Rx = QT d.

Proof. The normal equation becomes

(QR)T (QR)x = (QR)Td

RT (QTQ)Rx = RTQT d

RTRx = RTQT d.

362 CHAPTER 9. KRYLOV METHODS FOR AX = D

Because A is assumed to have full column rank, R must have an inverse. Thus
we only need to solve Rx = QT d.

There are a number of ways to find the QR factorization of the matrix.
The modified Gram-Schmidt method is often used when the matrix has mostly
nonzero components. If the matrix has a small number of the nonzero compo-
nents, then one can use a small sequence of Givens transformations to find the
QR factorization. Other methods for finding the QR factorization are the row
version of the Gram-Schmidt, which generates more numerical errors, and the
Householder transformation, see [12, chapter 5.5].
In order to formulate the modified (also called the column version) Gram-

Schmidt method, write the A = QR in columns

£
a1 a2 · · · am

¤
=

£
q1 q2 · · · qm

¤


r11 r12 · · · r1m
r22 · · · r2m

. . .
...

rnm


a1 = q1r11

a2 = q1r12 + q2r22
...

am = q1r1m + q2r2m + · · ·+ qmrmm.

First, choose q1 = a1/r11 where r11 = (aT1 a1)
1
2 . Second, since qT1 qk = 0 for all

k > 1, compute qT1 ak = 1r1k + 0. Third, for k > 1 move the columns q1r1k to
the left side, that is, update column vectors k = 2, ...,m

a2 − q1r12 = q2r22
...

am − q1r1m = q2r2m + · · ·+ qmrmm.

This is a reduction in dimension so that the above three steps can be repeated
on the n× (m− 1) reduced problem.
Example 2. Consider the 4× 3 matrix

A =


1 1 1
1 1 0
1 0 2
1 0 0

 .
r11 = (a

T
1 a1)

1
2 = (

£
1 1 1 1

¤T £
1 1 1 1

¤
)
1
2 = 2.

q1 =
£
1/2 1/2 1/2 1/2

¤T
.

qT1 a2 = r12 = 1 and a2 − q1r12 =
£
1/2 1/2 −1/2 −1/2 ¤T .

qT1 a3 = r13 = 3/2 and a3 − q1r13 =
£
1/4 −3/4 5/4 −3/4 ¤T .

9.4. LEAST SQUARES 363

This reduces to a 4× 2 matrix QR factorization. Eventually, the QR factoriza-
tion is obtained

A =


1/2 1/2 1/

√
10

1/2 1/2 −1/√10
1/2 −1/2 2/

√
10

1/2 −1/2 −2/√10


 2 1 3/2
0 1 −1/2
0 0

√
10/2

 .

The modified Gram-Schmidt method allows one find QR factorizations where
the column dimension of the coefficient matrix is increasing, which is the case
for the application to the GMRES methods. Suppose A was initially n×(m−1)
whose QR factorization has already computed. Augment this matrix by another
column vector. We must find qm so that

am = q1r1,m + · · ·+ qm−1rm−1,m + qmrm,m.

If the previous modified Gram-Schmidt method is to be used for the n×(m−1)
matrix, then none of the updates for the new column vector have been done.
The first update for columnm is am−q1r1,m where r1,m = qT1 am. By overwriting
the new column vector one can obtain all of the needed vector updates. The
following loop completes the modified Gram-Schmidt QR factorization when
an additional column is augmented to the matrix, augmented modified Gram-
Schmidt,

qm = am
for i = 1,m− 1

ri,m = qTi qm
qm = qm − qiri,m

endloop
rm,m = (q

T
mqm)

1
2

if rm,m = 0 then
stop

else
qm = qm/rm,m

endif.

When the above loop is used with am = Aqm−1 and within a loop with respect
to m, this gives the Arnoldi algorithm, which will be used in the next section.
In order to formulate the Givens transformation for a matrix with a small

number of nonzero components, consider the 2× 1 matrix

A =

·
a
b

¸
.

The QR factorization has a simple form

QTA = QT (QR) = (QTQ)R = R

QT

·
a
b

¸
=

·
r11
0

¸
.

364 CHAPTER 9. KRYLOV METHODS FOR AX = D

By inspection one can determine the components of a 2 × 2 matrix that does
this

QT = GT =

·
c −s
s c

¸
where s = −b/r11, c = a/r11 and r11 =

√
a2 + b2. G is often called the Givens

rotation because one can view s and c as the sine and cosine of an angle.

Example 3. Consider the 3× 2 matrix 1 1
1 2
1 3

 .
Apply three Givens transformations so as to zero out the lower triangular part
of the matrix:

GT
21A =

 1/
√
2 1/

√
2 0

−1/√2 1/
√
2 0

0 0 1

 1 1
1 2
1 3


=

 √2 3/
√
2

0 1/
√
2

1 3

 ,
GT
31G

T
21A =

 √2/√3 0 1/
√
3

0 1 0

−1/√3 0
√
2/
√
3

 √2 3/
√
2

0 1/
√
2

1 3


=

 √3 2
√
3

0 1/
√
2

0
√
3/
√
2

 and

GT
32G

T
31G

T
21A =

 1 0 0

0 1/2
√
3/2

0 −√3/2 1/2

 √3 2/
√
3

0 1/
√
2

0
√
3/
√
2


=

 √3 2
√
3

0
√
2

0 0

 .
This gives the "big" or "fat" version of the QR factorization where bQ is square
with a third column and bR has a third row of zero components

A = G21G31G32 bR = bQ bR
=

 .5774 −.7071 .4082
.5774 0 −.8165
.5774 .7071 .4082

 1.7321 3.4641
0 1.4142
0 0

 .

9.5. GMRES 365

The solution to the least squares problem in the first example can be found by
solving Rx = QTd

·
1.7321 3.4641
0 1.4142

¸ ·
x1
x2

¸
=

·
.5774 .5774 .5774
−.7071 0 .7071

¸ 4
7
8


=

·
10.9697
2.8284

¸
.

The solution is x2 = 2.0000 and x1 = 2.3333, which is the same as in the first
example. A very easy computation is in MATLAB where the single command
A\d will produce the least squares solution of Ax = d! Also, the MATLAB
command [q r] = qr(A) will generate the QR factorization of A.

9.4.1 Exercises

1. Verify by hand and by MATLAB the calculations in example 1.
2. Verify by hand and by MATLAB the calculations in example 2 for the
modified Gram-Schmidt method.
3. Consider example 2 where the first two columns in the Q matrix have
been computed. Verify by hand that the loop for the augmented modified Gram-
Schmidt will give the third column in Q.
4. Show that if the matrix A has full column rank, then the matrix R in
the QR factorization must have an inverse.
5. Verify by hand and by MATLAB the calculations in example 3 for the
sequence of Givens transformations.
6. Show QTQ = I where Q is a product of Givens transformations.

9.5 GMRES

If A is not a SPD matrix, then the conjugate gradient method can not be
directly used. One alternative is to replace Ax = d by the normal equations
ATAx = ATd, which may be ill-conditioned and subject to significant roundoff
errors. Another approach is to try to minimize the residual R(x) = r(x)T r(x)
in place of J (x) = 1

2x
TAx−xT d for the SPD case. As in the conjugate gradient

method, this will be done on the Krylov space.

Definition. The generalized minimum residual method (GMRES) is

xm+1 = x0 +
mX
i=0

αiA
ir0

366 CHAPTER 9. KRYLOV METHODS FOR AX = D

where r0 = d−Ax0 and αi ∈ R are chosen so that
R(xm+1) = min

y
R(y)

y ∈ x0 +Km+1 and

Km+1 = {z | z =
mX
i=0

ciA
ir0, ci ∈ R}.

Like the conjugate gradient method the Krylov vectors are very useful for
the analysis of convergence. Consider the residual after m+ 1 iterations

d−Axm+1 = d−A(x0 + α0r
0 + α1Ar

0 + · · ·+ αmA
mr0)

= r0 −A(α0r
0 + α1Ar

0 + · · ·+ αmA
mr0)

= (I −A(α0I + α1A+ · · ·+ αmA
m))r0.

Thus °°rm+1°°2
2
≤ °°qm+1(A)r0°°22 (9.5.1)

where qm+1(z) = 1 − (α0z + α1z
2 + · · · + αmz

m+1). Next one can make ap-
propriate choices of the polynomial qm+1(z) and use some properties of from
eigenvalues and matrix algebra to prove the following theorem, see C. T. Kelley
[8, chapter 3].

Theorem 9.5.1 (GMRES Convergence Properties) Let A be an n×n invert-
ible matrix and consider Ax = d.

1. GMRES will obtain the solution within n iterations.

2. If d is a linear combination of k of the eigenvectors of A and A =
V ΛV H where V V H = I and Λ is a diagonal matrix, then the GMRES
will obtain the solution within k iterations.

3. If the set of all eigenvalues of A has at most k distinct eigenvalues and
if A = V ΛV −1 where Λ is a diagonal matrix, then GMRES will obtain
the solution within k iterations.

The Krylov space of vectors has the nice property that AKm ⊂ Km+1. This
allows one to reformulate the problem of finding the αi

A(x0 +
m−1X
i=0

αiA
ir0) = d

Ax0 +
m−1X
i=0

αiA
i+1r0 = d

m−1X
i=0

αiA
i+1r0 = r0. (9.5.2)

9.5. GMRES 367

Let bold Km be the n×m matrix of Krylov vectors

Km =
£
r0 Ar0 · · · Am−1r0

¤
.

The equation in (9.5.2) has the form

AKmα = r0 where (9.5.3)

AKm = A
£
r0 Ar0 · · · Am−1r0

¤
and

α =
£
α0 α1 · · · αm−1

¤T
.

The equation in (9.5.3) is a least squares problem for α ∈ Rm where AKm is
an n×m matrix.
In order to efficiently solve this sequence of least squares problems, we

construct an orthonormal basis of Km one column vector per iteration. Let
Vm = {v1, v2,···, vm} be this basis, and let bold Vm be the n × m matrix of
whose columns are the basis vectors

Vm =
£
v1 v2 · · · vm

¤
.

Since AKm ⊂ Km+1, each column in AVm should be a linear combination of
columns in Vm+1. This allows one to construct Vm one column per iteration
by using the modified Gram-Schmidt process.
Let the first column of Vm be the normalized initial residual

r0 = bv1

where b = ((r0)T r0)
1
2 is chosen so that vT1 v1 = 1. Since AK0 ⊂ K1, A times

the first column should be a linear combination of v1 and v2

Av1 = v1h11 + v2h21.

Find the h11 and h21 by requiring vT1 v1 = vT2 v2 = 1 and v
T
1 v2 = 0 and assuming

Av1 − v1h11 is not the zero vector

h11 = vT1 Av1,

z = Av1 − v1h11,

h21 = (zT z)
1
2 and

v2 = z/h21.

For the next column

Av2 = v1h12 + v2h22 + v3h32.

Again require the three vectors to be orthonormal and Av2 − v1h12 − v2h22 is
not zero to get

h12 = vT1 Av2 and h22 = vT2 Av2,

z = Av2 − v1h12 − v2h22,

h32 = (zT z)
1
2 and

v3 = z/h32.

368 CHAPTER 9. KRYLOV METHODS FOR AX = D

Continue this and represent the results in matrix form

AVm = Vm+1H where (9.5.4)

AVm =
£
Av1 Av2 · · · Avm

¤
,

Vm+1 =
£
v1 v2 · · · vm+1

¤
,

H =


h11 h12 · · · h1m
h21 h22 · · · h2m
0 h32 · · · h3m

0 0
. . .

...
0 0 0 hm+1,m

 ,
hi,m = vTi Avm for i ≤ m, (9.5.5)

z = Avm − v1h1,m · · ·− vmhm,m 6= 0,
hm+1,m = (zT z)

1
2 and (9.5.6)

vm+1 = z/hm+1,m. (9.5.7)

Here A is an n×n,Vm is n×m and H is (m+1)×m upper Hessenberg matrix
(hij = 0 when i > j + 1). This allows for the easy solution of the least squares
problem (9.5.3).

Theorem 9.5.2 (GMRES Reduction) The solution of the least squares prob-
lem (9.5.3) is given by the solution of the least squares problem

Hβ = e1b (9.5.8)

where e1 is the first unit vector, b = ((r0)T r0)
1
2 and AVm = Vm+1H.

Proof. Since r0 = bv1, r
0 = Vm+1e1b. The least squares problem in (9.5.3)

can be written in terms of the orthonormal basis

AVmβ = Vm+1e1b.

Use the orthonormal property in the expression for

br(β) = Vm+1e1b−AVmβ = Vm+1e1b−Vm+1Hβ

(br(β))T br(β) = (Vm+1e1b−Vm+1Hβ)T (Vm+1e1b−Vm+1Hβ)

= (e1b−Hβ)T VT
m+1Vm+1(e1b−Hβ)

= (e1b−Hβ)T (e1b−Hβ).

Thus the least squares solution of (9.5.8) will give the least squares solution of
(9.5.3) where Kmα = Vmβ.

9.5. GMRES 369

If z = Avm − v1h1,m · · ·− vmhm,m = 0, then the next column vector vm+1
can not be found and

AVm = VmH(1 : m.1 : m).

Now H = H(1 : m.1 : m) must have an inverse and Hβ = e1b has a solution.
This means

0 = r0 −AVmβ

= d−Ax0 −AVmβ

= d−A(x0 +Vmβ).

If z = Avm − v1h1,m · · · − vmhm,m 6= 0, then hm+1,m = (zT z)
1
2 6= 0 and

AVm = Vm+1H. Now H is an upper Hessenberg matrix with nonzero compo-
nents on the subdiagonal. This means H has full column rank so that the least
squares problem in (9.5.8) can be solved by the QR factorization of H = QR.
The normal equations for (9.5.8) gives

HTHβ = HT e1b and

Rβ = QT e1b. (9.5.9)

The QR factorization of the Hessenberg matrix can easily be done by Givens
rotations. An implementation of the GMRES method can be summarized by
the following algorithm.

GMRES Method.

let x0 be an initial guess for the solution
r0 = d−Ax0 and V (:, 1) = r0/((r0)T r0)

1
2

for k = 1, m
V (:, k + 1) = AV (:, k)
compute columns k + 1 of Vk+1 and H in (9.5.4)-(9.5.7)

(use modified Gram-Schmidt)
compute the QR factorization of H

(use Givens rotations)
test for convergence
solve (9.5.8) for β
xk+1 = x0 + Vk+1β

endloop.

The following MATLAB code is for a two variable partial differential equa-
tion with both first and second order derivatives. The discrete problem is
obtained by using centered differences and upwind differences for the first order
derivatives. The sparse matrix implementation of GMRES is used along with
the SSOR preconditioner.
The code is initialized in lines 1-42, the GMRES loop is done in lines 43-

87, and the output is generated in lines 88-98. The GMRES loop has the

370 CHAPTER 9. KRYLOV METHODS FOR AX = D

sparse matrix product in lines 47-49, SSOR preconditioning in lines 51-52, the
modified Gram-Schmidt orthogonalization in lines 54-61, and Givens rotations
are done in lines 63-83. Upon exiting the GMRES loop the upper triangular
solve in (9.5.8) is done in line 89, and the approximate solution x0 +Vk+1β is
generated in the loop 91-93.

MATLAB Code pcgmres.m

1. % This code solves the partial differential equation
2. % -u_xx - u_yy + a1 u_x + a2 u_y + a3 u = f.
3. % It uses gmres with the SSOR preconditioner.
4. clear;
5. % Input data.
6. nx = 65;
7. ny = nx;
8. hh = 1./nx;
9. errtol=.0001;
10. kmax = 200;
11. a1 = 1.;
12. a2 = 10.;
13. a3 = 1.;
14. ac = 4.+a1*hh+a2*hh+a3*hh*hh;
15. rac = 1./ac;
16. aw = 1.+a1*hh;
17. ae = 1.;
18. as = 1.+a2*hh;
19. an = 1.;
20. % Initial guess.
21. x0(1:nx+1,1:ny+1) = 0.0;
22. x = x0;
23. h = zeros(kmax);
24. v = zeros(nx+1,ny+1,kmax);
25. c = zeros(kmax+1,1);
26. s = zeros(kmax+1,1);
27. for j= 1:ny+1
28. for i = 1:nx+1
29. b(i,j) = hh*hh*200.*(1.+sin(pi*(i-1)*hh)*sin(pi*(j-1)*hh));
30. end
31. end
32. rhat(1:nx+1,1:ny+1) = 0.;
33. w = 1.60;
34. r = b;
35. errtol = errtol*sum(sum(b(2:nx,2:ny).*b(2:nx,2:ny)))^.5;
36. % This preconditioner is SSOR.
37. rhat = ssorpc(nx,ny,ae,aw,as,an,ac,rac,w,r,rhat);
38. r(2:nx,2:ny) = rhat(2:nx,2:ny);

9.5. GMRES 371

39. rho = sum(sum(r(2:nx,2:ny).*r(2:nx,2:ny)))^.5;
40. g = rho*eye(kmax+1,1);
41. v(2:nx,2:ny,1) = r(2:nx,2:ny)/rho;
42. k = 0;
43. % Begin gmres loop.
44. while((rho > errtol) & (k < kmax))
45. k = k+1;
46. % Matrix vector product.
47. v(2:nx,2:ny,k+1) = -aw*v(1:nx-1,2:ny,k)-ae*v(3:nx+1,2:ny,k)-...
48. as*v(2:nx,1:ny-1,k)-an*v(2:nx,3:ny+1,k)+...
49. ac*v(2:nx,2:ny,k);
50. % This preconditioner is SSOR.
51. rhat = ssorpc(nx,ny,ae,aw,as,an,ac,rac,w,v(:,:,k+1),rhat);
52. v(2:nx,2:ny,k+1) = rhat(2:nx,2:ny);
53. % Begin modified GS. May need to reorthogonalize.
54. for j=1:k
55. h(j,k) = sum(sum(v(2:nx,2:ny,j).*v(2:nx,2:ny,k+1)));
56. v(2:nx,2:ny,k+1) = v(2:nx,2:ny,k+1)-h(j,k)*v(2:nx,2:ny,j);
57. end
58. h(k+1,k) = sum(sum(v(2:nx,2:ny,k+1).*v(2:nx,2:ny,k+1)))^.5;
59. if(h(k+1,k) ~= 0)
60. v(2:nx,2:ny,k+1) = v(2:nx,2:ny,k+1)/h(k+1,k);
61. end
62. % Apply old Givens rotations to h(1:k,k).
63. if k>1
64. for i=1:k-1
65. hik = c(i)*h(i,k)-s(i)*h(i+1,k);
66. hipk = s(i)*h(i,k)+c(i)*h(i+1,k);
67. h(i,k) = hik;
68. h(i+1,k) = hipk;
69. end
70. end
71. nu = norm(h(k:k+1,k));
72. % May need better Givens implementation.
73. % Define and Apply new Givens rotations to h(k:k+1,k).
74. if nu~=0
75. c(k) = h(k,k)/nu;
76. s(k) = -h(k+1,k)/nu;
77. h(k,k) = c(k)*h(k,k)-s(k)*h(k+1,k);
78. h(k+1,k) = 0;
79. gk = c(k)*g(k) -s(k)*g(k+1);
80. gkp = s(k)*g(k) +c(k)*g(k+1);
81. g(k) = gk;
82. g(k+1) = gkp;
83. end

372 CHAPTER 9. KRYLOV METHODS FOR AX = D

84. rho=abs(g(k+1));
85. mag(k) = rho;
86. end
87. % End of gmres loop.
88. % h(1:k,1:k) is upper triangular matrix in QR.
89. y = h(1:k,1:k)\g(1:k);
90. % Form linear combination.
91. for i=1:k
92. x(2:nx,2:ny) = x(2:nx,2:ny) + v(2:nx,2:ny,i)*y(i);
93. end
94. k
95. semilogy(mag)
96. x((nx+1)/2,(nx+1)/2)
97. % mesh(x)
98. % eig(h(1:k,1:k))

With the SSOR preconditioner convergence of the above code is attained
in 25 iteration, and 127 iteration is required with no preconditioner. Larger
numbers of iterations require more storage for the increasing number of basis
vectors. One alternative is to restart the iteration and to use the last iterate as
an initial guess for the restarted GMRES. This is examined in the next section.

9.5.1 Exercises

1. Experiment with the parameters nx, errtol and w in the code pcgmres.m.
2. Experiment with the parameters a1, a2 and a3 in the code pcgmres.m.
3. Verify the calculations with and without the SSOR preconditioner. Com-
pare the SSOR preconditioner with others such as block diagonal or ADI pre-
conditioning.

9.6 GMRES(m) and MPI

In order to avoid storage of the basis vectors that are constructed in the GMRES
method, after doing a number of iterates one can restart the GMRES iteration
using the last GMRES iterate as the initial iterate of the new GMRES iteration.

GMRES(m) Method.

let x0 be an initial guess for the solution
for i = 1, imax

for k = 1, m
find xk via GMRES
test for convergence

endloop
x0 = xm

endloop.

9.6. GMRES(M) AND MPI 373

The following is a partial listing of an MPI implementation of GMRES(m).
It solves the same partial differential equation as in the previous section where
the MATLAB code pcgmres.m used GMRES. Lines 1-66 are the initialization
of the code. The outer loop of GMRES(m) is executed in the while loop in lines
66-256. The inner loop is expected in lines 135-230, and here the restart m is
given by kmax. The new initial guess is defined in lines 112-114 where the new
initial residual is computed. The GMRES implementation is similar to that used
in the MATLAB code pcgmres.m. The additive Schwarz SSOR preconditioner
is also used, but here it changes with the number of processors. Concurrent
calculations used to do the matrix products, dot products and vector updates
are similar the MPI code cgssormpi.f.

MPI/Fortran Code gmresmmpi.f

1. program gmres
2.! This code approximates the solution of
3.! -u_xx - u_yy + a1 u_x + a2 u_y + a3 u = f
4.! GMRES(m) is used with a SSOR verson of the
5.! Schwarz additive preconditioner.
6.! The sparse matrix product, dot products and updates
7.! are also done in parallel.
8. implicit none
9. include ’mpif.h’
10. real, dimension(0:1025,0:1025,1:51):: v
11. real, dimension(0:1025,0:1025):: r,b,x,rhat
12. real, dimension(0:1025):: xx,yy
13. real, dimension(1:51,1:51):: h
14. real, dimension(1:51):: g,c,s,y,mag
15. real:: errtol,rho,hik,hipk,nu,gk,gkp,w,t0,timef,tend
16. real :: loc_rho,loc_ap,loc_error,temp
17. real :: hh,a1,a2,a3,ac,ae,aw,an,as,rac
18. integer :: nx,ny,n,kmax,k,i,j,mmax,m,sbn
19. integer :: my_rank,proc,source,dest,tag,ierr,loc_n
20. integer :: status(mpi_status_size),bn,en
Lines 21-56 initialize arrays and are not listed
57. call mpi_init(ierr)
58. call mpi_comm_rank(mpi_comm_world,my_rank,ierr)
59. call mpi_comm_size(mpi_comm_world,proc,ierr)
60. loc_n = (n-1)/proc
61. bn = 1+(my_rank)*loc_n
62. en = bn + loc_n -1
63. call mpi_barrier(mpi_comm_world,ierr)
64. if (my_rank.eq.0) then
65. t0 = timef()
66. end if
67.! Begin restart loop.

374 CHAPTER 9. KRYLOV METHODS FOR AX = D

68. do while ((rho>errtol).and.(m<mmax))
69. m = m+1
70. h = 0.0
71. v= 0.0
72. c= 0.0
73. s= 0.0
74. g = 0.0
75. y = 0.0
76.! Matrix vector product for the initial residual.
77.! First, exchange information between processors.
Lines 78-111 are not listed.
112. r(1:nx-1,bn:en) = b(1:nx-1,bn:en)+aw*x(0:nx-2,bn:en)+&
113. ae*x(2:nx,bn:en)+as*x(1:nx-1,bn-1:en-1)+&
114. an*x(1:nx-1,bn+1:en+1)-ac*x(1:nx-1,bn:en)
115.! This preconditioner changes with the number of processors!
Lines 116-126 are not listed.
127. r(1:n-1,bn:en) = rhat(1:n-1,bn:en)
128. loc_rho = (sum(r(1:nx-1,bn:en)*r(1:nx-1,bn:en)))
129. call mpi_allreduce(loc_rho,rho,1,mpi_real,mpi_sum,&
130. mpi_comm_world,ierr)
131. rho = sqrt(rho)
132. g(1) =rho
133. v(1:nx-1,bn:en,1)=r(1:nx-1,bn:en)/rho
134. k=0
135.! Begin gmres loop.
136. do while((rho > errtol).and.(k < kmax))
137. k=k+1
138.! Matrix vector product.
139.! First, exchange information between processors.
Lines 140-173 are not listed.
174. v(1:nx-1,bn:en,k+1 = -aw*v(0:nx-2,bn:en,k)&
175. -ae*v(2:nx,bn:en,k)-as*v(1:nx-1,bn-1:en-1,k)&
176. -an*v(1:nx-1,bn+1:en+1,k)+ac*v(1:nx-1,bn:en,k)
177.! This preconditioner changes with the number of processors!
Lines 178-188 are not listed.
189. v(1:n-1,bn:en,k+1) = rhat(1:n-1,bn:en)
190.! Begin modified GS. May need to reorthogonalize.
191. do j=1,k
192. temp = sum(v(1:nx-1,bn:en,j)*v(1:nx-1,bn:en,k+1))
193. call mpi_allreduce(temp,h(j,k),1,mpi_real,&
194. mpi_sum,mpi_comm_world,ierr)
195. v(1:nx-1,bn:en,k+1) = v(1:nx-1,bn:en,k+1)-&
196. h(j,k)*v(1:nx-1,bn:en,j)
197. end do
198. temp = (sum(v(1:nx-1,bn:en,k+1)*v(1:nx-1,bn:en,k+1)))

9.6. GMRES(M) AND MPI 375

199. call mpi_allreduce(temp,h(k+1,k),1,mpi_real,&
200. mpi_sum,mpi_comm_world,ierr)
201. h(k+1,k) = sqrt(h(k+1,k))
202. if (h(k+1,k).gt.0.0.or.h(k+1,k).lt.0.0) then
203. v(1:nx-1,bn:en,k+1)=v(1:nx-1,bn:en,k+1)/h(k+1,k)
204. end if
205. if (k>1) then
206.! Apply old Givens rotations to h(1:k,k).
207. do i=1,k-1
208. hik = c(i)*h(i,k)-s(i)*h(i+1,k)
209. hipk = s(i)*h(i,k)+c(i)*h(i+1,k)
210. h(i,k) = hik
211. h(i+1,k) = hipk
212. end do
213. end if
214. nu = sqrt(h(k,k)**2 + h(k+1,k)**2)
215.! May need better Givens implementation.
216.! Define and Apply new Givens rotations to h(k:k+1,k).
217. if (nu.gt.0.0) then
218. c(k) =h(k,k)/nu
219. s(k) =-h(k+1,k)/nu
220. h(k,k) =c(k)*h(k,k)-s(k)*h(k+1,k)
221. h(k+1,k) =0
222. gk =c(k)*g(k) -s(k)*g(k+1)
223. gkp =s(k)*g(k) +c(k)*g(k+1)
224. g(k) = gk
225. g(k+1) = gkp
226. end if
227. rho = abs(g(k+1))
228. mag(k) = rho
229.! End of gmres loop.
230. end do
231.! h(1:k,1:k) is upper triangular matrix in QR.
232. y(k) = g(k)/h(k,k)
233. do i = k-1,1,-1
234. y(i) = g(i)
235. do j = i+1,k
236. y(i) = y(i) -h(i,j)*y(j)
237. end do
238. y(i) = y(i)/h(i,i)
239. end do
240.! Form linear combination.
241. do i = 1,k
242. x(1:nx-1,bn:en) = x(1:nx-1,bn:en) + v(1:nx-1,bn:en,i)*y(i)
243. end do

376 CHAPTER 9. KRYLOV METHODS FOR AX = D

Table 9.6.1: MPI Times for gmresmmpi.f
p time iteration
2 358.7 10,9
4 141.6 9,8
8 096.6 10,42
16 052.3 10,41
32 049.0 12,16

244.! Send the local solutions to processor zero.
245. if (my_rank.eq.0) then
246. do source = 1,proc-1
247. sbn = 1+(source)*loc_n
248. call mpi_recv(x(0,sbn),(n+1)*loc_n,mpi_real,&
249. source,50,mpi_comm_world,status,ierr)
250. end do
251. else
252. call mpi_send(x(0,bn),(n+1)*loc_n,mpi_real,0,50,&
253. mpi_comm_world,ierr)
254. end if
255. ! End restart loop.
256. end do
257. if (my_rank.eq.0) then
258. tend = timef()
259. print*, m, mag(k)
260. print*, m,k,x(513,513)
261. print*, ’time =’, tend
262. end if
263. call mpi_finalize(ierr)
264. end program

The Table 9.6.1 contains computations for n = 1025 using w = 1.8. The com-
putation times are in seconds, and note the number of iterations changes with
the number of processors. The restarts are after 50 inner iterations, and the iter-
ations in the third column are (outer, inner) so that the total is outer*50+inner.

9.6.1 Exercises

1. Examine the full code gmresmmpi.f and identify the concurrent computa-
tions. Also study the communications that are required to do the matrix-vector
product, which are similar to those used in Chapter 6.6 and illustrated in Fig-
ures 6.6.1 and 6.6.2.
2. Verify the computations in Table 9.6.1. Experiment with different num-
ber of iterations used before restarting GMRES.

9.6. GMRES(M) AND MPI 377

3. Experiment with variations on the SSOR preconditioner and include dif-
ferent n and ω.
4. Experiment with variations of the SSOR to include the use of a coarse
mesh in the additive Schwarz preconditioner.
5. Use an ADI preconditioner in place of the SSOR preconditioner.

378 CHAPTER 9. KRYLOV METHODS FOR AX = D

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D.
Sorensen, LAPACK Users’ Guide, SIAM, 2nd ed., 1995.

[2] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging,
IOP Publishing, Bristol, UK, 1998.

[3] Richared J. Burden and Douglas J. Faires, Numerical Analysis, Brooks
Cole, 7th ed., 2000.

[4] Edmond Chow and Yousef Saad, Approximate inverse techniques for block-
partitioned matrices, SIAM J. Sci. Comp., vol. 18, no. 6, pp. 1657-1675,
Nov. 1997.

[5] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen and Henk A. van der
Vorst, Numerical Linear Algebra for High-Performance Computers, SIAM,
1998.

[6] William Gropp, Ewing Lusk, Anthony Skjellum and Rajeev Thahur, Using
MPI-2nd Edition: Portable Parallel Programming with Message Passing
Interface, MIT Press, 2nd ed., 1999.

[7] Marcus J. Grote and Thomas Huckle, Parallel preconditioning with sparse
approximate inverses, SIAM J. Sci. Comp., vol. 18, no. 3, pp. 838-853, May
1997.

[8] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM,
1995.

[9] David E. Keyes, Yousef Saad and Donald G. Truhlar (editors) , Domain-
Based Parallelism and Problem Decomposition Methods in Computional
Science and Engineering, SIAM, 1995.

[10] The MathWorks Inc., http://www.mathworks.com.

[11] Nathan Mattor, Timothy J. Williams and Dennis W. Hewett, Algorithm
for solving tridagonal matrix problems in parallel, Parllel Computing, vol.
21, pp. 1769-1782, 1995.

379

380 BIBLIOGRAPHY

[12] Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.

[13] NPACI (National Parternship for Advanced Computational Infrastruc-
ture), http://www.npaci.edu.

[14] NCSC (North Carolina Computuing Center), NCSC User Guide,
http://www.ncsc.org/usersupport/USERGUIDE/toc.html

[15] Akira Okubo and Simon A. Levin, Diffusion and Ecological Problems:
Modern Perspectives, 2nd ed., 2001.

[16] James J. Ortega, Introduction to Parallel and Vector Solution of Linear
Systems, Plenum Press, 1988.

[17] P. S. Pacheco, Parallel Programming with MPI, Morgan/Kaufman, 1996.

[18] G. D. Smith, Numerical Solution of Partial Differential Equations, Oxford,
3rd ed., 1985.

[19] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-
Verlag, 1992.

[20] C. R. Vogel, Computation Methods for Inverse Problems, SIAM, 2002.

[21] R. E. White, An Introduction to the Finite Element Method with Applica-
tions to Nonlinear Problems, Wiley, 1985.

[22] Paul Wilmott, Sam Howison and Jeff Dewynne, The Mathematics of Fi-
nancial Derivatives, Cambridge, 1995.

Index

accumulation error, 8, 46
ADI algorithm, 340, 341
Amdahl’s timing model, 251
American put option, 220
Applications

cooling fin in 1D, 77, 92
cooling fin in 2D, 33, 108
cooling fin in 3D, 244
cooling fins, 69
cooling well stirred liquid, 2, 42
cooling wire, 10, 89, 92
cooling wire via surface, 18
deformed membrane, 130
epidemic dispersion in 2D, 197
epidemics and dispersion, 189
flow around an obstacle, 124
groundwater fluid flow, 117
ideal fluid flow, 122
image restoration, 204
image restoration in 2D, 213
industrial spill, 53
nonlinear conductivity, 160
option contracts, 219
option contracts with two ass-

ests, 228
passive solar storage, 172
pollutant in 3D lake, 251
pollutant in a stream, 25, 90
pollutant in lake, 33
savings plan, 9
steady fluid flow in 2D, 116
steady state heat in 3D, 167
steady state heat in wire, 62
Stefan’s cooling, 146

Arnoldi algorithm, 363

Black-Scholes with two assets, 229
Black-Sholes equation, 222
block SOR algorithm, 111
block tridiagonal algorithm, 110
Boundary Conditions

derivative, 70, 100, 170, 192,
198

Dirichlet, 70
flux, 70
Neumann, 70
Robin, 70

Cauchy inequality, 328
central processing unit (CPU), 238
Cholesky factorization, 321
classical solution, 132
conjugate gradient alternate, 347
conjugate gradient method, 138, 346
Continuous Models

America put option with two
assets, 229

American put option, 222
cooling fin in 1D, 70
flow around an obstacle, 124
groundwater fluid flow, 117
heat in 3D, 168
heat in 3D and time, 173, 245
nonlinear heat in 2D, 160
nonlinear heat transfer, 153
pollutant in 3D, 252
SI dispersion in 2D, 198
SI with dispersion, 191
SIR epidemic, 191
steady state heat 2D, 108
steady state in 1D, 54, 62

contractive mapping, 147

381

382 INDEX

convergence of vectors, 87
Convergence Tests, 102

absolute, 102
relative, 102
relative residual, 102
residual, 102

Courant condition, 28
curl of velocity, 123

Darcy’s law, 117
data dependency, 243
density, 11
discrete Newton’s law of cooling, 2
discretization error, 45, 46, 48, 96
dispersion, 190, 197
distributed payoff, 234
divergence, 116
domain decomposition, 80, 183, 323,

335

efficiency, 252
energy solution, 131
equilibrium, 51
Euclidean norm, 86
Euler error, 47
Euler’s method, 43
exercise price, 220
expiration date, 220
Explicit Methods

cooling fin in 2D, 34
cooling fin in 2D parallel, 269
cooling fin in 3D, 245
heat diffusion in 1D, 11
heat in wire, 18
pollutant in 2D, 35
pollutant in 2D parallel, 273
pollutant in 3D, 253
pollutant is a stream, 27
projection to option constraint,

224, 230
extended mean value theorem, 46

Fick’s motion law, 190, 197
finite difference error, 96
Finite Differences

cooling fin in 1D, 71

derivative boundary condition,
118, 125

heat in 3D, 168
implicit system, 192
implicit system in 2D, 198
implicit time in 3D, 173
nonlinear algebraic system, 153
nonlinear coefficients, 161
nonlinear system in 2D, 199
Robin boundary condition, 114
steady state heat 2D, 109
steady state in 1D, 54, 62

Finite Elements, 137
algebraic system, 133
fem2d.m, 137
linear shape functions, 137
weak solution, 131

first order finite difference, 3
fixed point, 145
floating point add, 238
floating point error, 2
floating point number, 2
Fortran Codes

fin2d.f90, 114
geddmpi.f
cgssor3(), 325
gespd(), 325
matrix-def(), 325

gespd(), 322
heat2d.hpf, 253
heatl.f90, 174
newton.f90, 174
picpcg.f90, 162, 174
por2d.f90, 174
solar3d.f90, 174
cgssor3d(), 174

sor2d.f90, 174
Fourier heat law, 9, 10, 70, 108
Fox’s algorithm, 307
full column rank, 319, 361

Gauss elimination, 64, 314
Gauss-Seidel algorithm, 102
Gaussian distribution, 205
geometric series, 4, 88

INDEX 383

Givens transformation, 363, 369
GMRES, 366, 369
GMRES(m), 372
Gram-Schmidt modified, 362, 367
Green’s theorem, 128, 132

heat balance, 75
heat equation, 24
heat equation in 2D, 33
hierarchical classification, 238
high performance computing, 180,

237

improved Euler method, 43
incompressible fluid, 116, 123
irrotational fluid, 123

Jacobi algorithm, 102

Krylov space, 346
Krylov vectors, 346

least squares problem, 369
least squares solution, 360
local convergence, 148, 151
LU factorization, 61, 313
lumped payoff, 234

MATLAB Codes
bs1d.m, 224
bs2d.m, 230
bvp.m, 94
trid.m, 94

bvperr.m, 96
eulerr.m, 44
fem2d.m, 137
ffem2d.m, 137
genbc1.m, 137
gennod.m, 137
genxy.m, 137

fin1d.m, 73
sorfin.m, 73
trid.m, 73

flow1d.m, 28
flow1derr.m, 48
flow2d.m, 38

flow3d.m, 255
fofdh.m, 5
gedd.m, 185, 324
heat.m, 13
heat1d.m, 20
heat2d.m, 36
heat3d.m, 247
heaterr.m, 48
heatgelm.m, 66
ideal2d.m, 125
ijsol.m, 56
image-1d.m, 210
psi-prime.m, 210
Setup1d.m, 210

image-2d.m, 216
cgcrv.m, 216
integral-op.m, 216
psi-prime.m, 216
Setup2d.m, 216

jisol.m, 56
mov1d.m, 29
mov2dflow.m, 39
mov2dheat.m, 37
movsolar3d.m, 178
outsolar data, 178

newton.m, 150
fnewt.m, 150
fnewtp.m, 150

nonlin.m, 156
fnonl.m, 156
fnonlp.m, 156

pccg.m, 353
bdiagpc.m, 353
ssorpc.m, 353

pcgmres.m, 370
ssorpc.m, 370

picard.m, 149
gpic.m, 149

picpcg.m, 162
cond.m, 162
pcgssor.m, 162

por2d.m, 118
precg.m, 141
ssor.m, 141

SIDiff1d.m, 193

384 INDEX

SIDiff2d.m, 201
coeff-in-laplace.m, 200
pcgssor.m, 201
update-bc.m, 201

sor2d.m, 111
sor3d.m, 169
sorfin.m, 103
st.m, 135

Matrices
augmented, 59
block elementary, 79, 314
elementary, 60
inverse, 61
inverse properties, 80
Jacobian or derivative, 154, 192,

199
positive definite, 130
strictly diagonally dominant, 105,

319
symmetric, 130
symmetric positive definite (SPD),

134, 318
tridiagonal, 62
upper Hessenberg, 368
upper triangular, 55, 58

matrix splitting, 330, 333
matrix-matrix Fox parallel, 308
matrix-matrix jki parallel, 266
matrix-vector

ij version, 242
ji parallel, 263
ji version, 242

mean value theorem, 46
MPI Communicators

col-comm, 303
grid, 301, 307
mpi-comm-world, 301
row-comm, 303

MPI Grouped Data Types, 294
count, 294
derived, 296
packed, 298

MPI Subroutines
mpi-allreduce(), 356
mpi-bcast(), 283

mpi-cart-coords(), 302
mpi-cart-create(), 302
mpi-cart-sub(), 303
mpi-gather(), 289
mpi-pack(), 299
mpi-recv(), 261, 269, 276
mpi-reduce(), 261, 283
mpi-scatter(), 289
mpi-send(), 261, 269, 276
mpi-unpack(), 299

MPI/Fortran Codes
basicmpi.f, 278
bcastmpi.f, 286
cgssormpi.f, 356
countmpi.f, 294
dertypempi.f, 296
dot1mpi.f, 280
dot2mpi.f, 285
dot3mpi.f, 292
foxmpi.f, 308
gathmpi.f, 291
geddmpi.f, 325
gmresmmpi.f, 373
gridcommmpi.f, 304
heat2dmpi.f, 270
matvecmpi.f, 264
mmmpi.f, 266
packmpi.f, 299
poll2dmpi.f, 273
reducmpi.f, 284
scatmpi.f, 290
sorddmpi.f, 335
trapmpi.f, 259

Multiprocessors, 249
complete, 250
distributed memory, 249
hypercube, 250
shared memory, 238, 249

Newton’s algorithm, 148, 151, 155,
193, 199

Newton’s law of cooling, 42
nonlinear algebraic system, 207
nonlinear heat transfer, 153
nonlinear system in 2D, 215

INDEX 385

normal equations, 361
Norms, 86

Euclidean, 86
matrix, 86
vector, 86
via SPD matrix, 328

optimal exercise price, 220

P-regular splittings, 331, 341
payoff, 221
payoff with two assets, 228
PCG, 141, 193, 201, 325, 350, 356
Picard’s algorithm, 146, 151, 159,

161, 209, 215
pollutant equation, 31
pollutant equation in 2D, 34
potential energy, 131
precision, 2
Preconditioners, 350

additive Schwarz, 352, 356, 373
ADI, 351
block diagonal, 351
incomplete Cholesky, 351
incomplete domain decomposi-

ton, 351
least squares, 353
SSOR, 352

QR factorization, 361, 369
quadratic convergence, 148

Rayleigh-Ritz approximation, 133
reordering by coloring, 180
reordering by domain decomposition,

180
root, 145

Schur complement, 80, 193, 315, 319,
324

second order convergence, 96
SOR, 335

3D space, 168
block version, 111
domain decomposition, 183
full matrix version, 102

heat in 2D, 109
red-black ordering, 182

SPD, 318, 319, 321, 328, 334
specific heat, 11
SSOR, 140
stability condition, 3, 12, 19, 28, 34,

35, 90, 91, 224, 245, 253
steady state, 51
steepest descent method, 134
stream function, 123, 129
strictly diagonally dominant, 115

Taylor polynomials, 48
tension in membrane, 130
Tikhonov-TV, 206

modified, 206
modified in 2D, 215

total variation, 205
total variation in 2D, 214
tridiagonal algorithm, 72, 342

underlying asset, 220

vector pipeline, 240
floating point add, 240
timing model, 240

volatility, 223
von Neumann computer, 238
von Neumann series, 88

weak solution, 131

