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Abstract

In our PhD research, we have been working on a control-theoretic approach for the development of adaptive
systems with a Requirements Engineering perspective. The approach consists of three phases – Awareness
Requirements elicitation, System Identification and Evolution Requirements elicitation — which are con-
ducted in parallel with vanilla requirements activities to design a system that is able to adapt at runtime
to undesirable situations. To facilitate this adaptation, the system models are done in a way that can be
exploited at runtime by an adaptation framework.

In the context of this research, we have conducted an experiment in the modeling of an adaptive system
based on the well-known London Ambulance Service Computer Aided Dispatch (LAS-CAD) case. This
report presents the requirements elicited and modeled for an Adaptive Computer-aided Amblance Dispatch
system (A-CAD) that has been designed using the aforementioned process.
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Chapter 1

Introduction

For the past years, in the context of a PhD program, we have been working on a control-theoretic approach
for the development of adaptive systems that adopts a Requirements Engineering (RE) perspective. The
approach is based on state-of-the-art Goal-Oriented Requirements Engineering approaches and augments
requirements models with information that is used at runtime for the operationalization of the system’s
adaptation.

An important aspect of any research proposal is validation. Roel Wieringa [2010] classifies many different
forms of validation that can be conducted with respect to a research proposal, varying from a simple illus-
tration, that helps the reader better understand the proposal, to a full case study, in which people outside
of the research group use the proposed product/technique in the field in order to show that it produces
the desired effects. In particular, Wieringa describes a “Lab Demo” (i.e. a “Laboratory Demonstration”)
as a technique used by the author on a realistic example in an artificial environment that shows that the
technique could work in practice [Wieringa, 2010].

The purpose of this report is to document in detail all the steps taken in order to produce a lab demo as
an initial validation of our approach for the development of adaptive systems. We believe that at this point
of this research, a lab demonstration is enough to show the validity of the proposal and that further research
on the topic could be pursued with possible application in practice once the research and its technological
products have matured. We do not, however, think that further validation is unnecessary — deeper forms
of validation, such as field experiments or case studies, are in our long-term research plans.

In order to use a realistic example, we based our lab demo in the case of the London Ambulance Service
Computer Aided Despatch (LAS-CAD) System [swt, 1993]. This case study was presented at the 8th

International Workshop on Software Specification and Design [Finkelstein and Dowell, 1996] and became
an exemplar in the Software Engineering community.

The adaptive system whose development is described in this report is based on the information available
about the LAS-CAD system. From this point on, we refer to it as Adaptive Computer-aided Ambulance
Dispatch, or A-CAD for short. Throughout this report its requirements models will be constructed iteratively
and the final, complete version of the A-CAD models are provided in appendix A.

1.1 Papers related to this research

The focus of this technical report is the experiment conducted to validate the approach that is being developed
in the context of our PhD program at the University of Trento. The approach itself has been presented in
different publications and will not be further discussed here. After this section, we assume that the reader is
familiar with it. The list below provides references to papers that are related to this research, summarizing
each paper’s contribution1.

1PDF versions can be downloaded from the author’s website: http://disi.unitn.it/∼vitorsouza/academia/
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• Awareness Requirements for Self-Adaptive Socio-technical Systems [Souza, 2010]: qualifying paper
written as prerequisite for admission in the second year of the PhD program. It reviews the state-of-
the-art on requirements for self-adaptive systems, presents the general idea of Awareness Requirements
and discusses how the research in the context of the PhD course would be conducted around this
proposal;

• Awareness Requirements for Adaptive Systems [Souza et al., 2011b]: full paper published at the 6th

International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
2011). The paper presents the baseline for our research, characterizes Awareness Requirements, ex-
emplifies its use with a running example and validates the proposal using a requirements monitoring
framework. Similar versions of this paper were published as technical reports DISI-10-049 (earlier
version submitted to the 33rd International Conference on Software Engineering — ICSE 2011, but
not accepted for publication) [Souza et al., 2010] and DISI-11-352 (extended version of the accepted
SEAMS 2011 paper) [Souza et al., 2011c];

• System Identification for Adaptive Systems: a Requirements Engineering Perspective [Souza et al.,
2011a]: full paper published at the 30th International Conference on Conceptual Modeling (ER 2011).
The paper presents a language and a systematic process for conducting System Identification, which, in
Control Theory, is the process of quantifying the effects of control input in the measured output. The
proposal adopts ideas from Qualitative Reasoning to cope with uncertainty and represent, in general
terms, how changing a parameter in the target system affects its output;

• From Awareness Requirements to Adaptive Systems: a Control-Theoretic Approach [Souza and My-
lopoulos, 2011]: short position paper published at the 2nd InternationalWorkshop on requirements@run.time
(RRT 2011). The paper argues for a control-theoretic, requirements-oriented view of adaptive systems
and outlines our vision for this long-term research proposal for the development of adaptive systems;

• Requirements-driven Qualitative Adaptation [Souza et al., 2012b]: paper submitted to a conference,
currently under review. The paper describes a framework for qualitative adaptation based on the infor-
mation modeled during System Identification, supporting different levels of precision of this qualitative
information;

• (Requirement) Evolution Requirements for Adaptive Systems [Souza et al., 2012a]: full paper accepted
for publication at the 7th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2012, to appear). The paper introduces a new family of requirements,
which allow analysts to specify adaptation strategies in terms of changes on the requirements model
itself.

For a complete understanding of the approach we suggest the reader starts with the RRT 2011 position
paper [Souza and Mylopoulos, 2011], which provides an overview of the proposal, and then go deeper into
the Awareness Requirements proposal by reading the extended version of the SEAMS 2011 paper [Souza et
al., 2011c] followed by the ER 2011 paper on System Identification [Souza et al., 2011a] and the two 2012
papers which detail alternatives when adapting the system [Souza et al., 2012b,a]. The qualifying paper
[Souza, 2010] is recommended only if the reader is interested in an overview of the state-of-the-art at the
beginning of this research or the reasons that have motivated us to pursue it.

1.2 Report structure

This report has been divided in the following chapters:

§2: talks about the LAS-CAD system and presents requirements models for a computer-aided ambulance
dispatch (CAD) system-to-be based on the description of the actual system as presented in the existing
documentation about the case study. These models serve as the basis for the application of our approach
for the development of adaptive systems;
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§3: identifies Awareness Requirements in the CAD system-to-be, based on information about critical re-
quirements and possible risks and hazards identified by analyzing the LAS-CAD case study. This
constitutes one of the components of the adaptation requirements specification for the Adaptive CAD
(A-CAD);

§4: presents the result of System Identification conducted on the models created thus far to recognize
parameters that could be manipulated by the adaptation framework in order to adapt the target
system, complementing the adaptation requirements specification of the A-CAD;

§5 complements the information elicited during System Identification with more precise details on the
relation between system parameters and its outcome, specifying which adaptation algorithms should
be used for which system failure by the adaptation framework;

§6: concludes the requirements elicitation phase with the A-CAD’s Evolution Requirements, which repre-
sent precise stakeholder requirements for system adaptation (as opposed as the algorithms selected in
the previous chapter), also associated to the possible system failures;

§7: provides an overview and some technical details about the framework that was implemented in order
to conduct simulations that show that our approach could work in practice, i.e., the final product of
the lab demo;

§8: summarizes our conclusions after conducting this experiment.

Furthermore, as mentioned before, appendix A shows the final, complete requirement models for the
A-CAD.
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Chapter 2

The Computer-aided Ambulance
Dispatch System

The failure of the London Ambulance Service Computer-Aided Despatch (LAS-CAD) system in the fall of
1992 became a well known case study in the area of Software Engineering. Following the report on the
inquiry published by the South West Thames Regional Health Authority [swt, 1993], papers on the subject
were published in different communications, such as the proceedings of the 8th International Workshop
on Software Specification and Design (IWSSD) [Finkelstein and Dowell, 1996], the European Journal of
Information Systems [Beynon-Davies, 1995], the Journal of the Brazilian Computer Society [Breitman et al.,
1999], ACM SIGSOFT Software Engineering Notes [Kramer and Wolf, 1996], amongst others.

Being a real system and having so much available information — due to its failure and subsequent inquiry
— makes the LAS-CAD a good choice for validation of new research proposals. In effect, the focus of the
discussions in the 8th IWSSD was on which methods/techniques/tools should be applied in dealing with
systems such as the LAS-CAD, and what research should be conducted to help in the development of such
applications in the future [Kramer and Wolf, 1996]. Other examples of this use can be seen, for instance, in
Letier’s PhD thesis [2001] and You’s masters dissertation [2004].

In particular, the LAS-CAD failure report [swt, 1993] states the following in paragraph 3024:

It should be said that in an ideal world it would be difficult to fault the concept of the design. It
was ambitious but, if it could be achieved, there is little doubt that major efficiency gains could
be made. However, its success would depend on the near 100% accuracy and reliability of the
technology in its totality. Anything less could result in serious disruption to LAS operations.

Thus, the high criticality of many of the components of the LAS-CAD make it a good case for adaptive
systems, because self-adapting to failures — which invariably occur in a system that depends on near 100%
reliability — is one way to avoid the aforementioned serious disruption to LAS operations. Take, for instance,
the requirement of getting an ambulance to the scene of the incident as quickly as possible. In the case of
the LAS, a set of standards (called ORCON) had been devised to indicate what percentage of ambulances
should arrive in 3 minutes, 10 minutes and so on. There is no way to simply put that table into the system
and guarantee that the standards will be followed [Kramer and Wolf, 1996]. Instead, adaptation actions can
be taken whenever the system does not satisfy such requirements.

Note, however, that is not our intention to prove that the LAS would not have failed if it had been built
as an adaptive system using our proposal. Many of the analyses conducted over the failure indicate that the
procurement and the development processes were flawed, producing a bad quality system in general. Hence,
if adaptation mechanisms had been developed to work with the LAS, there is no guarantee these would have
been properly developed and have good quality and would therefore also be prone to failure. Our objectives
here are to learn from the problems detected in the LAS in order to identify critical requirements and use
those to develop a new system which would, in theory, be designed properly and have good quality in general.
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As mentioned before, this report details the development of an Adaptive Computer-aided Ambulance
Dispatch (A-CAD) based on the information available about the LAS-CAD system. In this chapter we
present “vanilla” — i.e., non-adaptive — requirements for a CAD system-to-be, which will then be used
as the basis for the application of our approach for the design and development of the A-CAD in the next
chapters. We do this in three steps:

§2.1: provides an overview of the problem solved by the CAD, describing the problem domain, determining
its scope and presenting general stakeholder requirements for a CAD system-to-be;

§2.2: complements the previous section by presenting goal models taken from a report on the experience of
applying the i⋆ framework to the LAS-CAD system [You, 2001];

§2.3: based on the information from the previous sections, shows the system-level goal models for the CAD
system-to-be, which are needed by our approach for the design of adaptive systems.

2.1 Overview

In this section we describe the domain, the scope and general stakeholder requirements for a CAD system-
to-be. The information on this section will then be used as source for the elicitation of early and late
requirements in the subsequent sections of this chapter. This information was taken from the aforemen-
tioned publications about the LAS-CAD case study [swt, 1993; Beynon-Davies, 1995; Breitman et al., 1999;
Finkelstein and Dowell, 1996; Kramer and Wolf, 1996], especially the system requirements description by
Daniel Jackson in the appendix of [Kramer and Wolf, 1996]. Note that these descriptions and require-
ments are loosely based on the LAS-CAD and do not represent its actual requirements, because technical
information about that system was not supplied by London authorities.

A CAD is basically a resource management system. Finite resources (ambulances, paramedics, drivers,
equipments, etc.) have to be dispatched to locations of incidents happening unpredictably around a specific
region (e.g., in the case of the LAS-CAD it is the city of London). The main goal of the CAD is to generate
dispatching instructions regarding these resources in an optimized way in response to incidents. To do this,
the system needs to keep track of each resource’s status and interface with different human and software
actors.

2.1.1 Domain Entities

The following list provides definitions and information on different elements pertaining to the CAD domain,
mostly adapted from [Kramer and Wolf, 1996]. Italicized words refer to other entities which are also in the
list:

• Emergency Service: a service provided by the public authorities of a specific region (e.g., the London
Ambulance Service for the city of London) to the citizens of that region which consists in the dispatching
of ambulances and their crews and equipments to incidents. The purpose of the CAD is to automate
parts of this service;

• Serviced Region: the physical region (i.e. a set of locations) to which the emergency service may
dispatch ambulances (can be a city, a state or province, etc.);

• Call: a telephone call to the emergency service (e.g., 999 in the UK, 911 in the USA, 190 in Brazil,
118 in Italy, etc.), identified by the caller’s phone number and the starting time of the call;

• Incident: some kind of accident or emergency that triggers a call to the emergency service and requires
assistance from one or more ambulances (e.g., a car accident that requires an ambulance to aid injured
people). There is no precise definition of what is and what is not an incident, so each call is analyzed
by the emergency service’s staff and may be dismissed as a non-emergency. An incident occurs at some
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location and has a description (provided by the caller) and a status (to keep track if it is resolved).
Incidents are associated with one or more calls (multiple calls about the same incident also have to be
identified by the staff );

• Location: a physical location in the serviced region. A location is composed of an address and,
optionally, more precise indications within the given address (e.g., the floor, in case of buildings);

• Sector: the serviced region is partitioned into sectors for the purpose of dispatching. Therefore a
sector is also a set of locations, which is a subset of the serviced region. Each sector is associated to a
list of preferred hospitals and stations to help the CAD generate optimized dispatching instructions.
Sectors are likely to be physically contiguous, but this is not mandatory;

• Station: a place in which ambulances and crews wait for dispatching instructions. Each station has
a location in the serviced region and they are likely to be spread around it for faster arrival at the
locations of incidents ;

• Hospital: public hospitals that have emergency rooms capable of receiving people brought by ambu-
lances from the locations of the incidents. As stations, hospitals have their locations in the serviced
region and are likely to be spread around it;

• Ambulance: any vehicle used by the emergency service to aid citizens in case of incidents (e.g.,
ambulance cars, emergency trucks, fire engines, motorcycle response units, helicopter, etc.). Vehicles
are identified by their license plate numbers (or similar in case of helicopters), assigned to a station
and can have their current (i.e., most recent) location registered in the system;

• Equipment: any device that is useful for aiding citizens in case of incidents (e.g., crash kits, stretcher,
etc.). Equipments of different types are assigned to ambulances and are uniquely identified by an ID
code;

• Crew member: human resources that work in ambulances and provide aid to citizens in case of
incidents (e.g., drivers, paramedics, firemen, etc.). Crew members are usually referred to by the
acronym EMT, which means Emergency Medical Technician. They are identified by their ID numbers
and assigned to a specific ambulance;

• Ambulance configuration: refers to the type of vehicle, the roles of crew members and the present
equipment in an ambulance. This information is important when dispatching, as some incidents might
need a specific crew member or equipment for the aid to be successful. For example, one ambulance
with two paramedics can be enough in a common car crash, but if the cars are on fire a fire truck and
a firemen might also be needed at the location;

• Staff : people that work in the emergency service’s dispatching function, i.e., employees of the emer-
gency service that are not part of a crew (e.g., telephone operators, resource allocators, dispatchers,
etc.).

2.1.2 Scope

A real CAD system is very large and complex. For our experiments, we will focus on the core functions
of a CAD software. We assume, therefore, that there are other systems which produce a series of events
related to the ambulances managed by the CAD and which are monitored by the core CAD software to know
which are available and where they are located (the dependencies between the CAD software and these other
systems is shown in section 2.2).

Figure 2.1 shows the states an ambulance can assume during its life-cycle and the events that trigger the
transitions. Below we describe these events, which are adapted from [Kramer and Wolf, 1996]. The CAD
software is supposed to be aware of all such events.

8



Figure 2.1: Statemachine diagram for Ambulances.

• Creation: ambulance has been registered within the system;

• Comissioning: ambulance has been assigned to a station. This assignment can change over time in
case of need;

• Activation and deactivation: ambulances can be deactivated during certain periods of time (e.g.,
when they need to be repaired, refueled, etc.). Deactivated ambulances cannot be dispatched;

• Arrival and departure: ambulance has arrived or has left a given location. This location can belong
to a station, a hospital or an incident;

• En-route location: periodical reporting of location during the mobilization of ambulances to a target
location. This event is monitored only for ambulances that are active and outside their stations. Each
ambulance in this condition is supposed to send location updates every 13 seconds;

• Dispatch, timeout, confirmation and release: when an ambulance is dispatched to an incident (by
the core CAD software), it should be confirmed (by its crew) so it is considered engaged to resolving the
incident. This has to occur in a timely fashion, otherwise the CAD will search for another ambulance to
dispatch and the first one will go back to being idle. When the incident is resolved (e.g., injured people
are dropped off at the hospital) the ambulance is released and becomes idle. Only idle ambulances can
be dispatched.

Furthermore, events of comissioning and deactivation should also be monitored for crew members and
equipment in order to know, at any given time, what is the configuration of each ambulance. For example, a
crash kit could break and be sent to repair, leaving an ambulance without it; or an EMT could take a lunch
break for one hour leaving his ambulance with one less crew member for a while.

Finally, some entities and situations are considered out of the scope of the CAD system. The following
is a list of assumptions with respect to the requirements of the CAD software:

• Caller information: information about the caller and the phone used to report an emergency is added
to the incident’s report by the telephone operator for logging purposes only. The CAD software will
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not consider this information when dispatching resources and there will be no support for identifying
a thread of calls from the same person;

• Incident category: in real CAD systems, incidents are categorized by importance. For instance,
the LAS has three main categories — A (red), B (amber) and C (green) — divided in two or three
subcategories each [Reynolds, a]. Different categories can have different standards regarding levels of
service, for example. We assume, however, that all calls are of the same category;

• Treatment: it is not the responibility of the CAD to follow the treatment of injured parties. In fact,
the people affected by an incident are not monitored at all by the CAD, which expects only to receive
a release event when ambulances are done with an incident. It is the responsibility of the dispatched
crew to conclude when an incident is resolved and inform the CAD;

• Dispatching to emergencies only: ambulances only get allocated in the CAD in response to
incidents. In case the service is provided by the public authorities, a separate system should manage
these situations and deactivate ambulances whenever they get dispatched to non-emergencies;

• Initial data is given: the information required by the CAD to dispatch resources is assumed to be
given: the limits of the serviced region, its division in sectors, location of hospitals and stations, list of
preferred hospitals/stations for each sector, ambulances per station, ambulance crews and equipments,
etc. In a real system, such information is presumably calculated and periodically modified after an-
alyzing statistics on the amount and nature of incidents in each sector of the serviced region in the
past.

2.1.3 Stakeholder Requirements

Given the above description of entities and the scope of the problem, the following is a list of general
requirements for the CAD software:

Incident Response

GR-1. The system shall allow staff to register calls they receive from citizens;

GR-2. The system shall, whenever possible, detect the location of the caller and associate it with the call
registry (public phones have associated locations, cell phones might be triangulated, etc.);

GR-3. The system shall allow staff to dismiss calls as non-emergencies;

GR-4. The system shall assist staff in identifying, through the information from the call, if it refers to an open
incident in the system;

GR-5. The system shall allow staff to assign calls to open incidents as duplicates or create new incidents for
calls;

GR-6. The system shall allow staff to indicate the number of ambulances needed and their respective con-
figurations (e.g., ambulance with paramedics, fire truck and firemen, motorcycle response unit, etc.);

GR-7. The system shall allow staff to confirm the information related to new incidents, clearing them for
dispatch by the system;

GR-8. The system shall, upon confirmation of an incident, determine the best ambulance to be dispatched to
the incident’s location, given the required configuration;

GR-9. The system shall inform stations of dispatched ambulances about the dispatching instructions, if the
ambulance is in the station, or inform the ambulance itself, if it is not in the station;
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GR-10. The system shall close incidents when all resources related to it are released (see GR-13);

GR-11. The system shall, in case of deactivation of an ambulance that is busy, determine the best ambulance
to be dispatched in replacement of the one that has been deactivated, given the required configuration.
GR-9 should follow accordingly;

GR-12. The system shall perform in such a way that at least 75% of the ambulances arrive within 8 minutes to
the location of the incident once dispatching instructions have been sent (see GR-9). This constraint
is based in the LAS-CAD standard for Category A calls [Reynolds, b].

Resource Monitoring

GR-13. The system shall monitor for ambulance-related events (see §2.1.2) and keep the status of each ambu-
lance up-to-date, including ambulance configuration;

GR-14. The system shall show accurate and up-to-date information about on-going incidents, including status,
configuration and position of engaged ambulances;

GR-15. The system shall generate messages whenever ambulances arrive at the location of incidents, leave the
location of incidents (to go to the hospital) and when they are released (incident resolved).

Exception Messages

GR-16. The system shall generate exception messages if the dispatching process does not conclude within 3
minutes. The process is considered concluded after the number of ambulances and their configurations
have been assigned (see GR-6), the system has dispatched ambulances that fit the configuration (see
GR-8 and GR-9) and all ambulances have confirmed the dispatch (see GR-13);

GR-17. The system shall generate exception messages if ambulances engaged to incidents are not released
within 15 minutes of their confirmation (see GR-13) – in other words, incidents should be resolved
within 15 minutes of dispatch;

GR-18. The system shall generate exception messages if ambulances seem to be going to the wrong direction
with respect to the location they are supposed to go (see GR-13).

In the remainder of the chapter, the overview of the problem the CAD system intends to solve given by
this section is regarded as information provided by the stakeholders and used as source for the requirements
models presented in section 2.1.3. Next, we present i⋆ diagrams that illustrate the dependencies among
actors involved in an ambulance dispatch system and the role of the CAD in this context.

2.2 An i ⋆ Analysis of the LAS-CAD System

Complementing the information provided by the previous section, this section presents i⋆ [Yu et al., 2011]
diagrams that depict the dependencies among the actors involved in an ambulance dispatch activity before
and after the development of a software system that automates some of its steps.

These diagrams were taken from the report “Experiences with applying the i⋆ framework to a real-life
system” [You, 2001], an assignment delivered by Jane You for a Requirements Engineering course in the
University of Toronto, Canada. The goal of the report was to evaluate the proficiency of i⋆ as a technique
for RE by applying it to the LAS-CAD case. It uses mostly the same sources of information as this report
(namely, [swt, 1993; Breitman et al., 1999; Finkelstein and Dowell, 1996; Kramer and Wolf, 1996]).

Considering the manual system that was used by the LAS before the introduction of the CAD system,
after an analysis of the report on the inquiry into the LAS-CAD failure [swt, 1993], You identified the
involved actors and modeled the dependencies amongst them in the i⋆ strategic dependency diagram of
figure 2.2 (page 13). In her diagram, Service Consumer represents citizens of the serviced region, whereas
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Call Reviewer, Resource Allocator, Radio Operator, Dispatcher and Operator at Ambulance Station are all
members of staff.

The way the manual dispatch process works, service consumers depend on ambulance crews to provide
ambulance services when incidents occur. More specifically, they depend on call takers to take the information
on the incident. On the other hand, call takers depend on service consumers to correctly report the incident.

Once incidents have been taken, they are described in an AS form and sent to review. Thus, call
reviewers depend on call takers to effectively provide the incident information in this form. Analogously,
the next member of the staff in the chain of activities, the resource allocator, depends on the call reviewer
to effectively review the incident and pass along the reviewed information in the same AS form.

At this point, the job of the resource allocator is to select the best ambulances for the incident. To do
this job well, they depend on radio operators, which are constantly in contact with ambulances via radio,
to effectively provide status and location of ambulances. Thus, the chain of dependency reaches also the
ambulance crew, which should effectively provide the radio operator with their status and location. All this
is very important, as ambulance crews depend on resource allocators for optimized instructions, i.e., they do
not want to travel long distances and far from their usual working section.

Mobilization instructions are then sent to dispatchers, which means they depend on resource allocators
to effectively make decisions and provide these instructions. Then, the dispatcher ’s job is to effectively
send these instructions to the radio operator or the operator at ambulance station, which is represented
by a dependency of these two actors on the dispatcher. The choice between radio operator or operator at
ambulance station depends if the ambulance is on the streets or at the ambulance station, respectively.

Finally, it is the responsibility of either the radio operator or the operator at ambulance station to
effectively communicate these instructions to the ambulance crew and we can also see that dependency
depicted in the figure. The cycle completes with the dependency between service consumer and ambulance
crew, mentioned at the beginning of this description.

The diagram also depicts the LAS management actor, whose dependencies basically indicate non-functional
requirements (call answering time, emergency response time) of this non-computerized system. Obviously
emergency services are not brought about for free and are performed in exchange for taxes paid by service
consumers, but this dependency is not shown in the diagram for simplicity.

By analyzing this model, You concludes that the manual process is insufficient to meet time performance
standards specified by ORCON to the LAS. Therefore, she proceeds to investigate alternative solutions to
the problem. One that is of particular interest to our experiments is the use of a fully automated CAD
system. Its i⋆ strategic dependency diagram is shown in figure 2.3 (page 14). Some of the acronyms in the
figure might need explanation:

• RIFS: the Radio InterFace System is a sub-system of the Radio System used to communicate with
ambulances;

• AVLS: the Automatic Vehicle Location System provides geographic coordinates of the current location
of ambulances;

• BT PSTN: the British Telecom Public Switched Telephone Network is the means through which the
RIFS sub-system sends mobilization instructions to pritners at ambulance stations ;

• MDT: Mobile Data Terminals consist of devices installed in ambulances which are used by their crews
to input status and location;

• LAS/CAD: as previously mentioned in this report, LAS means London Ambulance Service and CAD
is Computer-Aided Dispatch (Despatch in British English).

Back to the scenario represented in the figure, the call taker inputs the incident information in the
CAD software, which provides functionalities similar to the ones described by the general requirements in
section 2.1.3, i.e., generates mobilization instructions to ambulance crews. The diagram also depicts some of
the assumptions made in section 2.1.2, by representing dependencies between the CAD software and other
elements. This is the information we are mostly interested here.
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Figure 2.2: i⋆ Strategic Dependency model for the LAS staff, without the CAD system [You, 2001].
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Figure 2.3: i⋆ Strategic Dependency model for a fully automated CAD system [You, 2001].

1
4



The following list ellaborates on these dependencies, showing how they were handled in the fully au-
tomated LAS-CAD scenario according to You’s analysis and how they could be implemented in our CAD
experiment, complementing the information previously shown in section 2.1.2:

• Ambulance (de)activation, confirmation and release: we assume the CAD is aware (i.e., gets
notified, monitors for, or any other means of knowing these events) when an ambulance gets deactivated
(e.g., for repairs), reactivated, when the ambulance’s crew confirms they will respond to an incident
and when they are done with this response and are, thus, released.

– In figure 2.3, these notifications are done by the ambulance crew through the MDT, which depends
on the radio system for transmission;

– For our experiments, we assume ambulances have MDTs installed and that they are capable of
communicating with the CAD software through a transmission medium to be chosen during the
design stage of the software development process (e.g., GSM network).

• Ambulance location: ambulances are supposed to inform their location to the CAD at periodic
intervals.

– For the LAS-CAD this is done by the AVLS sub-system which, like the MDT, depends on the
radio system for transmission;

– For our CAD system-to-be we assume ambulances are also equiped with GPS devices that inform
the MDTs about their location. The MDTs, then, should transmit this data back to the CAD
software the same way as (de)activation, confirmation and release events are transmitted.

• Comissioning and deactivation of ambulance resources: in order to dispatch ambulances with
the proper configuration to incidents it is important for the CAD software to know when crew members
and equipment get comissioned to any given ambulance (i.e., they become part of the ambulance
configuration) and when they get (de)activated (e.g., crew members can take time off work, equipment
can go to repair).

– You’s i⋆ analysis did not consider this as a dependency, which probably means this is directly
handled by the CAD software or it is not considered at all (maybe ambulances in London always
have the same configuration);

– For our CAD system-to-be this would be yet another functionality present in the ambulance’s
MDTs. Crew members could check in/out of work and equipment could be (de)activated directly
at the ambulance, which would transmit the data back to the CAD software in the same fashion
as before.

• Support functions: section 2.1.2 also mentions assumptions on the initial data about the existing
domain entities being given and events of ambulance creation and comissioning (to a station) being
received. While figure 2.3 does not contain dependencies to represent these assumptions either, in our
experiments we assume the existence of a CAD support software component that allows the emergency
service’s managers to input the initial data and further create and comission ambulances;

• Serviced region’s map: many of the CAD functions, such as displaying the location of ambulances
and identifying if they are going on the right direction, depend on a up-to-date map of the serviced
region’s streets and buildings. The report on the inquiry into the LAS [swt, 1993] lists “gazetteer and
mapping software” as part of the LAS-CAD system. In our experiments we also assume the existence
of such software.

Using the information from this and the previous section as stakeholder requirements for a CAD system-
to-be, the next section presents goal models for this system. Such models are required by our proposal for
the design of adaptive systems and are extended according to our approach in the following chapters.
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2.3 Goal Models for the CAD

Based on the requirements that have been elicited in the previous sections, along with complimentary
information about the activity of computer-aided dispatch, this section finally presents the goal model that
will be used as basis for the development of the Adaptive CAD (A-CAD) software. Figure 2.4 (page 17)
shows the system-level goal model for the CAD system-to-be.

This model is loosely based on the i⋆ strategic rationale model [Yu et al., 2011] and uses the same
concepts as many Goal-Oriented Requirements Engineering (GORE) approaches: goals, softgoals, quality
constraints (QCs) and domain assumptions (DAs) [Jureta et al., 2008]. However, note that we represent
AND/OR refinement relations, avoiding the term decomposition as it usually carries a part-whole semantic
which would constrain its use among elements of the same kind1 (i.e., goal to goal, task to task, etc.). A
refinement relation, on the other hand, can be applied between a goal and a task or a goal and a domain
assumption and indicate how to satisfy the parent element: the goal is satisfied if all (AND refinement)
or any (OR refinement) of its children are satisfied. In their turns, tasks are satisfied if they are executed
successfully and domain assumptions are satisfied if they hold (the affirmation is true) while the user is
pursuing its parent goal.

The model, thus, represents the requirements of the CAD software in a hierarchical goal-based structure
of satisfiability with obvious Boolean semantics. For example, we have previously mentioned in this report
that the main objective of a CAD system is to generate optimized dispatching instructions. To satisfy this
goal, the CAD software must satisfy all of its subgoals, namely: call taking, resource identification, resource
mobilization and incident update. Domain assumptions, such as those described in section 2.2, are also
shown in the model and should be true in order to satisfy their parent goals. For instance, it is assumed that
resource data and the gazetteer (map data) are up-to-date and provided by their respective support systems
in order for the CAD software to satisfy its main objective.

Furthermore, goals and tasks in the figure were modeled using different border thickness to indicate those
that are initiated by the staff member — thin border — and those that are pursued automatically by the
CAD system itself — thick border. For instance, a staff member should open the appropriate form in the
system to register the call. However, once the address of the call has been registered, the CAD system can
autonomously search for duplicates.

In the following paragraphs, we describe the goal model of figure 2.4, associating its elements with the
requirements that were described back in section 2.1.3. The requirements IDs are shown between square
brackets (e.g., [GR-1]). Not by chance, these requirements are associated with the tasks in the model, as
they represent a sequence of steps an actor (human or system) can perform to fulfill them. Moreover, all
tasks in the model are associated with a requirement, showing that there are no tasks without purpose here.

Call taking, an activity performed mostly by staff members, consists on responding calls to the emergency
service (task performed outside the system and, thus, not shown in the model), registering them in the CAD
system, confirming that they are indeed emergency calls [GR-3] and assigning them to an incident. During
registration, the system should try to detect the caller’s location [GR-2] to help staff expedite the activity
of inputting emergency information [GR-1]. Analogously, the system should search for duplicates [GR-4] to
help staff decide if they should create new incident or assign as duplicate to an existing one [GR-5].

Once a call has been taken and the incident registered, resource identification and mobilization are
conducted for each incident. The former, performed by staff, consists on specifying the configuration of
ambulances [GR-6] — i.e., indicate how many ambulances should be dispatched to the incident’s location
and what kinds of resources (human and equipment) are needed — and confirming the incident [GR-7] for
dispatch by the system. Resource mobilization is then conducted by the system itself, determining the best
ambulance [GR-8] from those available and based on the provided configuration and informing stations /
ambulances about dispatch instructions [GR-9].

While call taking should be achieved for each call and resource identification andmobilization achieved for
each incident, incident update is a goal that should be constantly maintained by the system. Categorization

1One could argue that it makes no sense to consider a task or a domain assumption a part of a goal. In effect, we have
received such criticism in the past, in more than one occasion.
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Figure 2.4: System-level goals for the CAD system-to-be.
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of goals into achieve and maintain goals have been proposed in previous works in the area of agents and
multi-agent systems [Dastani et al., 2006; Morandini et al., 2009]. This means that the CAD system should
attempt to satisfy this goal sub-tree periodically, at every t units of time (t to be specified during design).

To satisfy incident update, then, the CAD system should monitor resources, close incidents [GR-10] when
the ambulances are released and replace ambulances [GR-11] that break down during service. Monitoring
resources consists on monitoring the status of ambulances [GR-13] — including all events described in section
2.1.2 — and displaying the status of ambulances [GR-14], departure/arrival messages [GR-15] and eventual
exception messages [GR-16, GR-17, GR-18].

For resource monitoring to work, the CAD system depends on a couple of assumptions being true. First,
MDTs [should] communicate position of busy (engaged) ambulances at regular intervals of time (at every 13
seconds, as specified in section 2.1.2). Second, it is assumed that crew members use MDTs properly to notify
about events in the ambulance statechart (also see section 2.1.2) that cannot be triggered automatically by
the ambulance’s position, namely: comissioning, activation, deactivation, confirmation and release. Position
and status of ambulances are needed in order to calculate the best ambulance to be assigned at any given
time.

Finally, figure 2.4 also shows three softgoals and their respective quality constraints (QCs) that refer to
time-related requirements that have been elicited from the different publications about the LAS-CAD case
study:

• Dispatching, the process that starts when a call is responded and ends when ambulances acknowledge
the dispatching instructions, should be done in up to 3 minutes [GR-16];

• Once ambulances have acknowledged dispatching instructions, they should arrive at the incident’s
location in up to 8 minutes [GR-12];

• The total time of assistance, which starts when an ambulance acknowledges dispatching instructions
and ends when they are released from the incident, should not take more than 15 minutes [GR-17].

It is important to note that the goal model of figure 2.4 does not use i⋆ contribution links to indicate
goals that contribute positively or negatively to softgoals. While contribution links are very useful in many
situations (e.g., deciding the best alternatives in OR-refinements using the NFR framework [Chung et al.,
1999]), they are not required thus far by our approach and, therefore, have been omitted. In effect, we
have modeled the system requirements so far with no variability whatsoever: there are no OR-refinements
in figure 2.4! This has been done on purpose to keep the model simpler at this stage and variability will be
added to the requirements later during our approach.

In the next chapter, Awareness Requirements for the CAD system are elicited, modeled and formalized
to indicate what are the things that should be monitored by the feedback loop in order to adapt to failures.
In the sequence, chapter 4 shows the result of System Identification on the very same model, which will
extend the model of figure 2.4 with OR-refinements to add variability.
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Chapter 3

Awareness Requirements for the
A-CAD

In the previous chapter, we have presented “vanilla” requirements for a Computer-aided Ambulance Dispatch
(CAD) system. By “vanilla” we mean the requirements of the system-to-be that are not related to its desired
adaptation capabilities. In other words, so far we have modeled the requirements of a CAD system that
cannot adapt to any failures.

In this chapter, we start applying our approach for the development of adaptive systems to the CAD
with the objective of developing an Adaptive CAD, or A-CAD. We start with the identification of Awareness
Requirements (AwReqs) [Souza et al., 2011b], which will later indicate to an adaptation framework what to
monitor for in order to adapt [Souza and Mylopoulos, 2011].

It is important to point out, however, that we do not prescribe any specific order in the design of
adaptive systems with respect to the activities proposed by our work. In some cases systems might have
already been modeled with high variability in mind while in others it might make sense to perform System
Identification before anything else. In this particular experiment, we started from a requirements model for
the CAD system with no variability and proceeded to identifying AwReqs and, later on, performing System
Identification (chapter 4), selection of adaptation algorithms (chapter 5) and further elicitation of Evolution
Requirements (section 6). New AwReqs will be presented later in these chapter, showing that the approach
can also be applied in an iterative fashion.

Therefore, in this chapter, we: analyze — again using the available publications on the LAS-CAD case
as source [swt, 1993; Beynon-Davies, 1995; Breitman et al., 1999; Finkelstein and Dowell, 1996; Kramer and
Wolf, 1996] — what are some possible situations to which a CAD software might have to adapt (§3.1); then
we model and formalize AwReqs to some of these situations as part of our experiment (§3.2).

3.1 Situations that Require Adaptation

The main aspect of the LAS-CAD system analyzed by the aforementioned publications [swt, 1993; Beynon-
Davies, 1995; Breitman et al., 1999; Finkelstein and Dowell, 1996; Kramer and Wolf, 1996] is its failure. In
[Kramer and Wolf, 1996], for example, the focus of the analysis was to point out methods/techniques/tools
that should be applied in dealing with systems such as the LAS-CAD, and what research should be conducted
to help in the development of such applications in the future in order to avoid its failures.

Our approach in this report is to use self-adaptation to avoid the problems caused by failures such as
those that afflicted the LAS-CAD. This chapter identifies requirements and assumptions that are critical to
the success of the system in order to, in a later step, attach to them certain adaptation actions that would
be taken whenever the system does not satisfy such requirements.

The list below contains some CAD-related failures which were considered as possible causes for the
LAS-CAD demise:

19



• Misusage: lack of cooperation from staff and crew, ranging from wilful misusage to direct sabotage of
the system; staff/crew members unfamiliar with the system or improperly trained to use it. This could
cause crew members to use different ambulances or equipment than those specified in the dispatching
instructions, crew members not pressing the appropriate buttons to confirm/release the dispatch, etc.;

• Transmission problems: delays or corruption of data during transmission from ambulances to the
central CAD software caused by excess load on the communication infrastructure, interference with
other equipment, bad coverage by the communication network in some areas (black spots), etc.;

• Unreliable software: errors or incorrect information produced by any of the softwares associated
with the CAD system (see section 2.2);

• Unfamiliar territory: dispatching of crews to parts of the serviced region they were not familiar
with, which also made them drive longer to go back to the station at the end of the shift. Can cause
discontentment, which triggers misusage; and longer times to resolve the incident, which could trigger
exception messages;

• Stale ambulance information: caused by transmission problems and/or system misusage can cause
the system to generate dispatching instructions which are not optimal, causing other problems such as
sending crews to unfamiliar territory;

• MDT problems: mobile data terminals that lock up, are not readable or malfunction due to poor
installation or maintenance can cause transmission problems, misusage or stale information;

• Slow response speed: ambulances take too long to arrive due to other problems that were already
cited. This could cause citizens to call the emergency service again, increasing the number of calls.
This could also cause a flood of exception messages;

• Flood of calls: an average amount of calls is expected everyday, but for some reason this number can
significantly increase at any given day (e.g., the LAS worked with an average of 1300-1600 emergency
calls and received more than 1900 calls at the day of the failure);

• Flood of exception messages: exception messages should be generated when dispatching does not
finish in 3 minutes [GR-16], ambulances are not released in 15 minutes [GR-17] or go the wrong way
to the incident’s location [GR-18]. Other errors, such as transmission problems, misusage and MDT
problems could cause a flood of exceptions which hinder the work of the staff.

In the next section, AwReqs are modeled in order to identify, through monitoring of the CAD system,
some of these problems.

3.2 Awareness Requirements

The first step to tackling the problems identified in the previous subsection is to be aware when they happen.
We have thus identified 12 AwReqs for the A-CAD, covering most of these problems. It is important to note,
however, that this list is not meant to be exhaustive. The purpose of this experiment is to demonstrate that
AwReqs can help avoiding a complete system failure by adapting to some of the situations that contributed
to the LAS-CAD demise. To develop an Adaptive CAD that would be used in practice in a big city like
London would most certainly require a lot more effort and elicit many other AwReqs in the process.

Figure 3.1 (page 21) shows the goal model for the CAD previouly presented in figure 2.4 (page 17), with
added AwReqs. Moreover, a new task — Get feedback, under goal Resource mobilization — was also added
to cope with the unfamiliar territory problem, as will be discussed next. Table 3.1 (page 22) summarizes
the elicited AwReqs and shows, for each of them, a short description, the CAD problem from which they
originated and the pattern that represents them, as proposed in [Souza et al., 2011b].
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Figure 3.1: Goal model for the A-CAD system-to-be, with the elicited AwReqs.
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Table 3.1: Summary of the AwReqs elicited for the A-CAD.
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In the following paragraphs, we justify the elicitation of each AwReq, explaining the rationale for its
elicitation based on the CAD problems listed in the previous section.

Flood of calls: the proposed solution for the CAD represented earlier by the goal model of figure 2.4
assumes that up to 1500 calls are received per day. If much more calls than that are received in any given
day, something must be done so this flood of calls does not hinder the whole system, hence AwReqs AR1 and
AR2 were elicited. The former indicates the domain assumption Up to 1500 calls received per day should
not fail at any given day and could trigger adaptation actions to deal with a flood of calls in a particular day.
The latter, by its turn, says that AwReq AR1 should succeed 90% of the time considering month periods.
This meta-AwReq raises awareness to the possibility that the average number of calls per day is raising and
the system should evolve to normally support a bigger number of daily calls.

It is interesting to note that an aggregate AwReq MaxFailure(D MaxCalls, 0, 1d) was used instead of
a simple NeverFail(D MaxCalls). The reason for this is the following: failure of the former is registered
once for the given period (1 day), whereas the latter is checked for every instance of the domain assumption
verification, which would most likely be implemented at every call. Having the meta-AwReq applied to the
aggregate AwReq conveys the intended meaning of AR2 : in 90% of the days in a month, the number of calls
did not overcome the 1500 threshold. If AR1 were not aggregate, AR2 ’s percentage would be applied to the
number of calls, not the number of days!

ORCON standard: this is not one of the problems listed in section 3.1, but a standard the LAS is
supposed to follow, which we have mentioned in the beginning of section 2. Based on [Reynolds, b], we have
elicited general requirement GR-12, which says that 75% of the ambulances should arrive within 8 minutes
to the location of the incident. That is precisely what AwReq AR3 imposes over the quality constraint
Ambulances arrive in 8 min. Furthermore, AwReq AR4 alerts staff about a decreasing trend in the success
rate of the quality constraint, which could allow management to fix the causes of this problem before it goes
lower the threshold imposed by ORCON.

Unreliable software: the CAD system depends on other software to work properly and if these are
not reliable, problems are bound to arise. The standard CAD goal model (figure 2.4) thus assumes that
the support system that provides data about resources and the gazetteer that provides maps of the serviced
region are working properly. An AwReq was modeled for each of these systems: AR5 imposes a never fail
constraint on Resource data is up-to-date, whereas AR6 tolerates one failure per week for the gazetteer.

Slow response: we divide the response of the ambulance service in two parts: dispatching, done by the
staff at the central, and resolution, done by the crews in their ambulances. A constraint on the first part is
depicted in the CAD model by quality constraint Dispatching occurs in 3 min and to indicate the criticality
of this constraint, AwReq AR11 indicates the constraint should never fail. For the second part, delta AwReq
AR7 was added to the A-CAD goal model. This AwReq does not have a pattern, as its definition is too
specific to fit into one. It prescribes that, for each incident, the time between the ambulance or station
being informed about the incident and the ambulance being released from the same incident should be no
longer than 12 minutes. Counting the 3 minutes of dispatching, that gives a total of 15 minutes for incident
response, as prescribed by quality constraint Incidents resolved in 15 min.

Transmission problems: the CAD goal model of figure 2.4 includes the domain assumption MDTs
communicate position, because current position of each ambulance is essential to a proper ambulance dis-
patch. AwReq AR8 establishes, then, that this assumption can fail at most once per minute.

Misusage: for the CAD to work properly, it is also assumed that Crew members use MDTs properly.
The criticality of this domain assumption is the reason for AwReq AR9, which prescribes a 99% success rate
for it.

Flood of messages: task Display exception messages adds to the CAD the capability of alerting the
staff in case of different problems in the ambulance service. To cope with a possible flood of such alerts that
hinders staff work, an AwReq was added to the amount of time this tasks succeeds in its execution. AR10
indicates that the task should succeed at most 10 times per minute.

Unfamiliar territory: to be aware if ambulance crews are operating outside of their usual sector, a new
task was added to the goal model of the CAD. Get good feedback, under goal Resource mobilization, succeeds
if the crew indicates that the incident was correctly dispatched to them. Then, AwReq AR12 establishes a
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90% success rate for this task, which would alert management if more than 10% of the incidents were judged
to be badly dispatched.

We can see in table 3.1 that almost half of the AwReqs elicited for the A-CAD impose constraints on
domain assumptions being true, which denotes the importance of adapting to changes in the environment in
which the A-CAD operates. Checking if a domain assumption is true, however, may not be a trivial thing.
Therefore, the following lists specifies how each of the domain assumptions should be checked:

• Up to 1500 calls received per day: this is the simplest assumption to be checked, as it refers to
calls, which is one of the domain entities of the CAD. There are many ways of keeping the count of
how many calls there have been during each 24 hour period (e.g., a query on a database of calls);

• Resource data is up-to-date: this assumption is deemed false if any crew or staff member reports
inconsistencies between the information shown by the system and reality;

• Gazetteer working and up-to-date: this is checked in the same fashion as the previous assumption
(data is up-to-date), plus it should be verified that the gazetteer system responds whenever it is queried;

• MDTs communicate position: the CAD should check that all busy (engaged) ambulances report
their position at every 13 seconds;

• Crew members use MDTs properly: the MDT should detect and warn the CAD when things
are done in violation of the proper protocol. For instance, an ambulance should not leave the station
without confirmation (an incident has been assigned to it) or deactivation (for repair, etc.).

Finally, in order to avoid possible ambiguity from reading the AwReqs ’ descriptions in table 3.1, each
AwReq has been formalized in OCLTM , as proposed in [Souza et al., 2011b]. This formalization, shown in
listing 3.1, is intended to be a formal documentation of each AwReq for the developers and later will have
to be adapted to work with the monitoring framework (this is also discussed in [Souza et al., 2011b]). Last
but not least, the formalization assumes the existance of a class DateUtil which is capable of comparing a
given timestamp to the current one or with another timestamp.

Listing 3.1: Formalization of the A-CAD’s AwReqs in OCLTM .
✞ ☎

1 package acad
2
3 -- AwReq AR1: domain assumption ‘Up to 1500 calls received per day ’ should always

be true.
4 context D_MaxCalls
5 inv AR1: never(self. oclInState (Failed))
6
7 -- AwReq AR2: AwReq ‘AR1 ’ should succeed 95% of the time considering month periods

.
8 context AR1
9 def: all : Set = AR1.allInstances ()

10 def: month : Set = all ->select(x | DateUtil .diff (x.time , DateUtil .DAYS ) <= 30)
11 def: monthSuccess : Set = month ->select(x | x. oclInState (Succeeded ))
12 inv AR2: always(monthSuccess ->size () / month ->size () >= 0.95)
13
14 -- AwReq AR3: quality constraint ‘Ambulances arrive in 8 min ’ should have 75%

success rate .
15 context Q_AmbArriv
16 def: all : Set = Q_AmbArriv .allInstances ()
17 def: success : Set = all ->select(x | x.oclInState (Succeeded ))
18 inv AR3: always(success ->size () / all ->size () >= 0.75)
19
20 -- AwReq AR4: the success rate of quality constraint ‘Ambulances arrive in 8 min ’

should not decrease 2 months in a row.
21 context Q_AmbArriv
22 def: all : Set = Q_AmbArriv .allInstances ()
23 def: m1 : Set = all ->select(x | DateUtil .diff (x.time , DateUtil .DAYS ) <= 30)
24 def: m2 : Set = all ->select(x | ( DateUtil .diff(x.time , DateUtil .DAYS ) > 30) and

(DateUtil .diff (x.time , DateUtil .DAYS ) <= 60))
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25 def: m3 : Set = all ->select(x | ( DateUtil .diff(x.time , DateUtil .DAYS ) > 60) and
(DateUtil .diff (x.time , DateUtil .DAYS ) <= 90))

26 def: success1 : Set = m1 ->select(x | x.oclInState (Succeeded ))
27 def: success2 : Set = m2 ->select(x | x.oclInState (Succeeded ))
28 def: success3 : Set = m3 ->select(x | x.oclInState (Succeeded ))
29 def: rate1 : Double = success1 ->size () / m1 ->size ()
30 def: rate2 : Double = success2 ->size () / m2 ->size ()
31 def: rate3 : Double = success3 ->size () / m3 ->size ()
32 inv AR4: never(( rate1 < rate2) and (rate2 < rate3))
33
34 -- AwReq AR5: domain assumption ‘Resource data is up -to -date ’ should always be

true .
35 context D_DataUpd
36 inv AR5: never(self. oclInState (Failed))
37
38 -- AwReq AR6: domain assumption ‘Gazetteer working and up -to -date ’ should not be

false more than once per week .
39 context D_GazetUpd
40 def: all : Set = D_GazetUpd .allInstances ()
41 def: week : Set = all ->select(x | DateUtil .diff (x.time , DateUtil .DAYS ) <= 7)
42 def: weekFail : Set = week ->select(x | x.oclInState (Failed))
43 inv AR6: always(weekFail .size () <= 1)
44
45 -- AwReq AR7: task ‘Monitor status of ambulances ’ should be successfully executed

with status ‘released ’ within 12 minutes of the successful execution of task ‘
Inform stations /ambulances ’, for the same incident .

46 context T_MonitorStatus
47 def: related : Set = T-InformAmbs . allInstances () ->select(x | x.argument ("

incident ") = self .argument (" incident "))
48 inv AR7: eventually (self .argument (" status ") = " released ") and never(related ->

exists(x | DateUtil .diff (x.time , self .time , DateUtils .MINUTES ) > 12))
49
50 -- AwReq AR8: domain assumption ‘MDTs communicate position ’ should not be false

more than once per minute.
51 context D_MDTPos
52 def: all : Set = D_MDTPos .allInstances ()
53 def: minute : Set = all ->select(x | DateUtil .diff (x.time , DateUtil .SECONDS) <=

60)
54 def: minuteFail : Set = minute ->select(x | x. oclInState (Failed))
55 inv AR8: always(minuteFail .size () <= 1)
56
57 -- AwReq AR9: domain assumption ‘Crew members use MDTs properly ’ should be true

99% of the time .
58 context D_MDTUse
59 def: all : Set = D_MDTUse .allInstances ()
60 def: success : Set = all ->select(x | x.oclInState (Succeeded ))
61 inv AR9: always(success ->size () / all ->size () >= 0.99)
62
63 -- AwReq AR10 : task ‘Display exception messages ’ should successfully execute no

more than 10 times per minute.
64 context T_Except
65 def: all : Set = T_Except .allInstances ()
66 def: minute : Set = all ->select(x | DateUtil .diff (x.time , DateUtil .SECONDS) <=

60)
67 def: minuteSuccess : Set = minute ->select(x | x.oclInState ( Succeeded ))
68 inv AR10 : always( minuteSuccess .size () <= 10)
69
70 -- AwReq AR11 : quality constraint ‘Dispatching occurs in 3 min ’ should never fail .
71 context Q_Dispatch
72 inv AR11 : never(self .oclInState (Failed))
73
74 -- AwReq AR12 : task ‘Get good feedback ’ should succeed 90% of the time .
75 context T_Feedback
76 def: all : Set = T_Feedback .allInstances ()
77 def: success : Set = all ->select(x | x.oclInState (Succeeded ))
78 inv AR12 : always(success ->size () / all ->size () >= 0.9)
79 endpackage

✝ ✆

The AwReqs presented in this chapter allow a monitoring infrastructure to be aware of situations in
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which the system would have to adapt in order to avoid overall failures. The next chapter presents the result
of System Identification [Souza et al., 2011a] on the A-CAD, which recognizes system parameters that can
be changed and how this change affects the success of the system in meeting its requirements. With these
results available, adaptation algorithms are selected to deal with the failure of some of the elicited AwReqs
in chapter 5, whereas some other AwReqs can only be handled by Evolution Requirements (chapter 6).
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Chapter 4

System Identification for the A-CAD

The first step in a feedback-loop-based adaptation cycle is to monitor for the conditions to which the system
has to adapt. The Awareness Requirements (AwReqs) elicited in the previous chapter represent a solution to
that step. Then, once the system (or a framework around the system) knows a situation requiring adaptation
has taken place, there are many different ways of performing the actual adaptation.

One possibility is to reconfigure the system, i.e., change one or more system parameters that could help
reconcile the system with its requirements. There exist previous works on using parameters for run-time
reconciliation (e.g., [Feather et al., 1998]) and exploring variability at requirements (i.e., OR-refinements in
the goal model) for system reconfiguration (e.g., [Lapouchnian et al., 2007; Wang and Mylopoulos, 2009]).
However, goal models lack an important piece of information when performing such activities: how do
changes on system parameters (including OR-refinements) affect the system output and its ability to meet
its requirements?

In [Souza et al., 2011a] we propose a language and a systematic process to conduct System Identification
for adaptive systems. This activity is commonly performed for control systems with the purpose of answering
the previous question. We have conducted System Identification for the A-CAD and, in this chapter, we
provide the results for the last three of the four steps of the proposed systematic process: identify parameters
(§4.1), identify differential relations (§4.2) and refine relations (§4.3).

The first step of the process — identify indicators — was conducted in the previous chapter, where
AwReqs were elicited and added to the model. We use AwReqs as indicators in our approach in order to
focus on the important values that the adaptive system should strive to achieve. Therefore, in this chapter
we start with goal model G (which has been shown in figure 3.1) and the set of indicators I (the AwReqs
that have been listed in table 3.1) as inputs. At the end of the process, we should have a parametrized
specification of the system behavior S = {G, I, P,R (I, P )}, where P is the set of parameters, and R (I, P )
is the set of relations between indicators and parameters.

4.1 Parameters

As noted at the end of chapter 2, the goal model that has been elicited for the A-CAD has no variability
whatsoever. We can see, in effect, that neither figure 2.4 nor figure 3.1 (same model with added AwReqs)
have any variation points (i.e., OR-refinements) or control variables. Therefore, at this step of the process,
system parameters could not be identified, but, instead, they actually had to be elicited.

We have, thus, analyzed the AwReqs elicited in the previous chapter (the set of indicators I) and tried
to come up with possible variability scenarios that could help in case of AwReq failure. During this process,
goal model G has been changed to accommodate eight new parameters: control variables NoC, NoSM and
LoA and variation points VP1 through VP5. For presentation reasons, we show the new goal model in four
different figures, each of which focusing on a section of the model that has been changed to introduce new
system parameters. Furthermore, the name of the AwReqs shown in these figures has been added next to
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Figure 4.1: New parametersNoC (maximum Number of Calls that can be handled daily) andNoSM (Number
of Staff Members working on the present day).

their graphical representation for an easier reference.

4.1.1 NoC and NoSM

Figure 4.1 shows control variables NoC — maximum Number of Calls that can be handled daily — and
NoSM — Number of Staff Members working on the present day. The domain assumption Up to 1500 calls
per day has also been changed and now reads Up to 〈NoC〉 calls per day, meaning the assumption is checked
against the NoC parameter and is no longer fixed at 1500 calls.

However, parameter NoC is a special kind of parameter that cannot be set directly. Instead, it is declared
as a direct function of another parameter, namely NoSM. The maximum number of calls the service can
take in a day is then calculated based on the number of staff members working on that specific day. Hence,
by changing the number of staff members on duty one can affect positively or negatively the success rate of
the domain assumption, affecting, thus, indicators (AwReqs) AR1 and AR2.

This case is particularly interesting because it is one kind of chain reaction among parameters. This is
a particular kind, in which a parameter (e.g., NoC ) can be defined by a precise function of another (e.g.,
NoSM ). Other types of chain reaction could also be qualitative. For instance, we might want to denote that
a specific parameter (e.g., number of servers) affects the performance of the system, which in turn affects
client satisfaction. In this case, we cannot define one parameter as a function of the other, but just indicate
there is a qualitative relation between them. Chain reactions were not analyzed in depth in [Souza et al.,
2011a] and, therefore, can be subject of a future technical paper.

4.1.2 LoA and VP1

Figure 4.2 shows control variable LoA — Level of Automation of the dispatch procedure — and variation
point VP1. As noted in the figure, LoA is an enumerated parameter that can assume one of three values:
manual (dispatch will be done completely manually by staff members, communicating with ambulances and
stations via radio), automatic with confirmation (dispatch orders are suggested by the A-CAD but are sent
only if a staff member confirms that is indeed the best choice) or automatic (the A-CAD autonomously
generates dispatch orders and send them to ambulances/stations).
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Figure 4.2: New parameters LoA (Level of Automation) and VP1.

Changing the value of this parameter can affect indicators AR3, AR4, AR9 and AR12. The rationale
behind this effect is that switching to a more manual process helps solve problems that are too complicated for
the A-CAD’s reasoning capabilities. The interaction between the staff member in charge of the dispatch and
crew members in ambulances and stations can make sure the crew agrees with the dispatching instructions
(increasing the success rate of Get good feedback), allows for the staff member to assist the crew about
the use of the MDT (increasing the success rate of Crew members use MDTs properly) and ultimately aid
in achieving the ORCON standards (higher success rates for Ambulances arrive in 8 min). Obviously the
benefits do not come for free: the more manual the process is, the more time each staff member spends on
each incident, which allows them to take less calls a day and makes dispatching more time-consuming.

The parameter VP1, by its turn, was elicited to provide alternatives for improving indicator AR7, which
talks about the time crews take to resolve an incident once the dispatching information has been received
by them. One way the A-CAD can help in this matter is to provide route assistance to ambulance drivers,
so they can reach the incident’s location and, whenever needed, take injured people to the hospital as fast
as possible. Therefore the goal Provide route assistance has been added to Resource mobilization’s AND-
refinement. This new sub-goal can be satisfied in three different ways: (a) assuming that the Driver knows
the way and, thus, doing nothing; (b) having the A-CAD assist via navigator ; or (c) having the Staff member
assist via radio. Again, here there is a trade-off between how personalized this assistance is and how much
time it takes from staff members.

Indicator AR7 could also be affected by changes in LoA. Once again, having a more direct communication
between staff member and ambulance crew can help determine the best way to reach the incident’s location
and resolve it.

4.1.3 VP2 and VP3

Figure 4.3 shows variation points VP2 and VP3, which have been elicited along with a new subtree of the
main goal of the system in order to include an alternative to the gazetteer for map provision, therefore
affecting indicator AR6. The goal Obtain map information was added to the model where the domain
assumption Gazetteer working and up-to-date used to be, making the assumption one of its children in
OR-refinement VP2.

The other child — goal Obtain map info manually — is, in effect, the alternative to using the gazetteer
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Figure 4.3: New parameters VP2 and VP3.

automatically. When this alternative is selected, a staff member is supposed to check the map to determine
the exact location of the incident and the best ambulances to be dispatched. This goal is further refined into
two tasks in VP3 : the staff member can either Check the gazetteer itself or, in extreme cases, Check paper
map.

Like in previous parameters, the alternatives range from highly automated to highly manual, providing
a trade-off between avoiding software mistakes and the time taken by staff members for each dispatch.

4.1.4 VP4 and VP5

Finally, figure 4.4 shows variation points VP4 and VP5. In the former, a new goal — Update position of
engaged ambulances — has replaced domain assumption MDTs communicate position, making it one of its
children in an OR-refinement. The other child is task Crew updates position via radio, which consists on
a manual fallback for when MDTs are not working properly, thus affecting indicator AR8. Radio contact
between crew and staff also allows crew members to avoid using the MDT altogether, passing all information
directly via voice. Therefore, this parameter also affects indicator AR9.

Parameter VP5 provides a simple solution to the flood of exception messages, monitored by indicator
AR10 : add messages to a message queue instead of showing them directly. To this end, the task Display
exception messages has been replaced by a homonymous goal, which is now its parent, having on the other
side of the OR-refinement the task Add to message queue.

4.2 Differential Relations

In the previous step of the systematic System Identification process, we have identified parameters of the
system that can be modified at runtime in order to improve some of the system’s indicators that were
elicited earlier. In this step, we formalize the qualitative effect between parameters and indicators through
differential relations presented in table 4.1.

For the relations that refer to enumerated control variable LoA to make any sense, it is required that a
total order of the parameter’s enumerated values be provided. This order shall be as follows: 〈manual〉 ≺
〈auto with confirmation〉 ≺ 〈automatic〉. Variation points assume their default order, i.e., ascending from
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Figure 4.4: New parameters VP4 and VP5.

∆ (AR1/NoSM) [0,maxSM ] > 0 (4.1)

∆ (AR2/NoSM) [0,maxSM ] > 0 (4.2)

∆ (AR3/LoA) < 0 (4.3)

∆ (AR4/LoA) < 0 (4.4)

∆ (AR9/LoA) < 0 (4.5)

∆ (AR11/LoA) > 0 (4.6)

∆ (AR12/LoA) < 0 (4.7)

∆ (AR3/V P1) > 0 (4.8)

∆ (AR4/V P1) > 0 (4.9)

∆ (AR7/V P1) > 0∆ (AR11/V P1) < 0 (4.10)

(4.11)

∆ (AR6/V P2) > 0 (4.12)

∆ (AR11/V P2) < 0 (4.13)

∆ (AR12/V P2) > 0 (4.14)

∆ (AR6/V P3) > 0 (4.15)

∆ (AR11/V P3) < 0 (4.16)

∆ (AR12/V P3) > 0 (4.17)

∆ (AR8/V P4) > 0 (4.18)

∆ (AR9/V P4) > 0 (4.19)

∆ (AR11/V P4) < 0 (4.20)

∆ (AR10/V P5) > 0 (4.21)

Table 4.1: Differential relations added to the model during System Identification.
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left to right according to their position in the model.
Most of the effects formalized by the relations were discussed in the previous step because they motivated

the very elicitation of the parameters. However, at this step of the process each of the elicited parameters
were again analyzed and compared to each system indicator to make sure all effects were identified and
modeled. This analysis resulted in the identification of the following new relations:

• All parameters, with the exception of VP5 and NoSM, have an effect on indicator AR11, which says
that quality constraint Dispatching occurs in 3 min should never fail. A higher level of automation
(LoA) improves it (cf. 4.6), whereas choosing to do tasks manually with the involvement of a staff
member (LoA and VP1 through VP4 ) has a negative effect on it (cf. 4.6, 4.10, 4.13, 4.16, 4.20);

• Variation points VP2 and VP3 also have an effect on indicator AR12, which states that task Get good
feedback (for the dispatch choice) should succeed 90% of the time (cf. 4.14, 4.17). The rationale is
that obtaining map information manually may help in the process of choosing the best ambulance to
dispatch;

• Parameter VP1, which indicates the kind of route assistance to give ambulance drivers, also affects
indicators AR3 and AR4, which refer to quality constraint Ambulances arrive in 8 min (cf. 4.8, 4.9).
Providing route assistance may help satisfy ORCON standards.

Another activity of this step is the identification of landmark values for numeric control variables, that
establish intervals in which the identified relations can be applied. The only applicable numeric parameter
is NoSM and all of its relations (cf. 4.1, 4.2, ??) are valid in the interval [0,maxSM ], maxSM being a
qualitative value that represents the maximum number of staff members the ambulance service infrastructure
can hold. NoC is also numeric, but it is not applicable as cannot be directly modified (it is a function of
NoSM ). Hence, no differential relation or landmark value were identified for it.

4.2.1 Trade-offs

Given the relations in table 4.1 and assuming each of the parameters has been assigned an initial value
it is possible to use the information of how parameters affect indicators at runtime to change their values
whenever there is a system failure, i.e., when there are indications of requirements divergence. This change,
however, may require some kind of trade-off analysis at runtime. For instance, as stated before, choosing to
do dispatching tasks manually (LoA and VP1 through VP4 ) might improve several different indicators, but
at the cost of having a negative impact over AR11.

A careful analysis of these relations, however, will indicate that there are some indicators missing in our
model of the A-CAD. After all, AR11 is the only indicator that receives a negative impact from some of
the parameter changes and this impact can be remedied by increasing NoSM. Therefore, why not setting
everything to manual and increasing the number of staff members to the maximum? Also, if switching VP5
to Add to message queue solves the flood of messages problem, why not use it exclusively?

The answer to these questions relies on some implicit quality indicators, i.e., non-functional requirements
that have not been explicitly elicited. Clearly, increasing the number of staff members also increases the cost
of the overall system, whereas the use of a message queue might be avoided unless strictly necessary because
of user friendliness concerns. For the purposes of this experiment, we assume the existance of the following
stakeholder requirements:

• We should aim for Low cost (softgoal). In particular, stakeholders would like Montlhy cost below
e〈MaxCost〉 (quality constraint), where MaxCost is a qualitative variable representing the maximum
amount of money that should be spent for the ambulance service at any given month. This requirement
should never fail;

• The A-CAD should have User friendly GUIs (softgoal). In particular, it should be the case that Staff
members see messages in 〈S〉 secs, where S is a qualitative variable representing the maximum amount
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∆(AR13/NoSM) < 0 (4.22)

∆ (AR14/V P5) < 0 (4.23)

Table 4.2: Differential relations for the newly elicited indicators AR13 and AR14.

of seconds between message generation and message display. For this requirement, stakeholders would
like it to fail no more than NoSM per week, meaning that at most there should be, in average, one
failure per staff member working on the ambulance service.

Figure 4.5 (page 34) shows the complete goal model for the A-CAD after System Identification, including
all parameters and the new requirements that have just been elicited. Given the new indicators (AR13 and
AR14 ), new differential relations were also identified and are displayed in table 4.2.

Finally, it is important to note that the resulting model is much simplified if compared with a real
ambulance dispatch system. Taking the London Ambulance System as an example, there were probably
many other softgoals and quality constraints to be elicited from the stakeholders, leading to more indicators
(AwReqs), parameters and, as a consequence, more differential relations between indicators and parameters.
The A-CAD was intentionally simplified for the purposes of this experiment (which is, after all, a lab demo
and not a full-fledged case study with an industrial partner).

4.3 Refinement

The last step of System Identification is to refine the relations that were identified in the previous step
of the process. According to [Souza et al., 2011a], we should analyze indicators that have more than one
relation associated to them and identify: (a) if any parameter has a greater effect over the indicator with
respect to other parameters; and (b) what is the effect of combined parameters on the indicator. With
respect to (a), to be able to compare relations that represent positive effect (> operator) with the ones
that represent negative effect (< operator) we compare their absolute value, which results in comparing the
effect of increasing parameters that have positive effect with the effect of decreasing parameters that have
negative effect. Regarding (b), the default behavior is that homogeneous impact is additive, so unless stated
otherwise, combining two or more parameter changes which contribute positively (negatively) to an indicator
results in an even more positive (negative) effect.

Moreover, when comparing a numeric control variable with other parameters, one should specify the unit
of increment of the variable in order to compare the changes of other parameters to a change of one unit
of the numeric variable. For example, the unit for NoSM is one staff member — specified UNoSM = 1 —,
so when other parameters are compared with NoSM, they are comparing to “hiring or laying off one staff
member”. Enumerated control variables and variation points (which are themselves enumerated) have a
default unit of increment of choosing the next value in their given order.

Table 4.3 shows the result of the refinement step for the A-CAD. Of the fourteen indicators, six had more
than one parameter associated with them: AR3, AR4, AR6, AR9, AR11 and AR12. All of them follow the
default combination rules (homogeneous impact is additive) and no relation was added for AR6 because VP3
is only relevant if VP2 is “increased” to pursue Obtain map info manually instead of assuming Gazetteer
working and up-to-date.

Indicators AR3 and AR4 refer to quality constraint Ambulances arrive in 8 min, which is affected by
parametersVP1 and LoA. Analyzing these two parameters we have concluded that providing route assistance
to drivers has a greater positive effect on this indicator than executing tasks Determine best ambulances and
Inform stations / ambulances using more manual procedures. This is represented in relations 4.24 and 4.25.

Indicator AR6 is affected by variation points VP2 and VP3. Note, however, that VP3 ’s value is only
relevant when VP2 ’s choice is Obtain map info manually. Relation 4.25 represents this fact explicitly,
although this is not strictly necessary, given that it can be inferred by the goal refinements by the runtime
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Figure 4.5: Goal model for the A-CAD system-to-be, after System Identification.
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|∆(AR3/V P1) | > |∆(AR3/LoA) | (4.24)

|∆(AR4/V P1) | > |∆(AR4/LoA) | (4.25)

V P2 6= 〈Obtain map info manually〉 → |∆(AR6/V P3) | = 0 (4.26)

|∆(AR9/V P4) | > |∆(AR9/LoA) | (4.27)

|∆(AR11/V P2) | > |∆(AR11/LoA) | > |∆(AR11/V P3) | > |∆(AR11/V P1) | > |∆(AR11/V P4) | (4.28)

|∆(AR12/V P2) | ≈ |∆(AR12/V P3) | ≈ |∆(AR12/LoA) | (4.29)

Table 4.3: Refinements for the differential relations of the A-CAD

framework. For the same reason, it does not make sense to compare VP2 to VP3, because to change the
latter one needs first to change the former.

AwReq AR9, which refers to domain assumption Crew members use MDTs properly, is affected by VP4
and also LoA. Again, the choice at the variation point has a greter positive effect than changing the value of
the controlled variable, as pointed out by relation 4.27. Having the crew update position via radio is more
effective in helping them use MDTs than decreasing the Level of Automation.

The effects on indicator AR11 are ordered in relation 4.28, showing that assuming the gazetteer works
instead of checking for maps manually is the most time-saving change possible (VP2 ), followed by using
a higher level of automation (LoA), checking the gazetteer instead of using manual maps (VP3 ), assisting
drivers with automatic navigators or not at all (VP1 ) and, finally, reducing the minimum search time by 10
seconds (MST ).

Lastly, relation 4.29 shows that changes in the parameters that affect indicator AR12 are equally effective.
Obviously, to “increase” VP3 the system would have to “increase” VP2 first, and their combined effect is
greater than the effect of isolated parameters, as previously stated.

4.4 Reconfiguration

Wang & Mylopoulos [Wang and Mylopoulos, 2009] provide a GORE-based definition of a system config-
uration: “a set of tasks from a goal model which, when executed successfully in some order, lead to the
satisfaction of the root goal”. We add to this definition the values assigned to each control variable elicited
during System Identification1. Reconfiguration, then, is the act of replacing the current configuration of the
system with a new one with the purpose of overcoming or preventing a system failure (repairing, healing),
or achieving better performance with respect to non-functional requirements (optimization).

Several proposals in the literature provide methods and algorithms that are capable of finding a new
system configuration, given that requirements are represented as goal models. To cite a few:

• Wang and Mylopoulos [2009] propose algorithms that suggest a new configuration without the com-
ponent that has been diagnosed as responsible for the failure;

• Nakagawa et al. [2011] developed a compiler that generates architectural configurations by performing
conflict analysis on KAOS goal models [van Lamsweerde, 2009];

• Fu et al. [2010] use reconfiguration to repair systems based on an elaborate statemachine diagram that
represents the life-cycle of goal instances at runtime;

• Peng et al. [2010] assign preference rankings to softgoals (which can be dynamically changed at runtime)
and determine the best configuration using a SAT solver;

1As discussed in [Souza et al., 2011a], however, control variables are just abstractions over large or repetitive variation points.
Therefore, if each control variable were to be expanded to a variation point, the original definition in [Wang and Mylopoulos,
2009] could be applied, unaltered.
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• Khan et al. [2008] apply Case-Based Reasoning to the problem of determining the best configuration;

• In our research group, Dalpiaz et al. [2012] propose an algorithm that finds all valid variants to satisfy
a goal and compares them based on their cost (to compensate tasks that failed or the ones that already
started and will be canceled) and benefit (e.g., contribution to softgoals). In [Dalpiaz et al., 2010],
reconfiguration is discussed in terms of interaction among autonomous, heterogeneous agents based on
commitments.

Note that different reconfiguration algorithms may require different information from the model. For
instance, Wang and Mylopoulos’ proposal requires a goal model and a diagnosis pointing to the failing
component, whereas Dalpiaz et al.’s framework needs the compensation/reaction costs associated wity tasks
and priorities associated with softgoals.

In our research we have proposed a framework to perform qualitative adaptation [Souza et al., 2012b], i.e.,
find a new configuration for the system using the qualitative information provided by System Identification.
Given that this framework supports adaptation algorithms with different levels of model precision, the choice
of algorithm to use (and the extra precision required by it) for each of the A-CAD’s possible failures should
also be specified. This is covered in the next chapter.
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Chapter 5

Qualitative Adaptation of the A-CAD

The Awareness Requirements modeled in chapter 3, coupled with the parameters and differential relations
elicited in chapter 4 provide us enough information to reason over the goal model to find out, for each of
the A-CAD AwReqs, which (if any) parameters can be changed (and to which direction, i.e., increase or
decrease) in order to try and improve the outcome of the system with respect to its AwReqs. At runtime,
such algorithm could be run when an AwReq failure is detected with the purpose of adapting the system to
this failure.

However, the qualitative information modeled during System Identification can come in different levels of
precision. For instance, in 4.3 differential relations of the same indicator were compared amongst themselves
in order to establish an order with respect to the magnitude of the effect parameter changes have on indicators.
For most indicators an order was given, but for AR12, the information elicited was that all parameters have
roughly the same impact on the indicator (relation 4.29). The result is that an adaptation algorithm can
be more precise when dealing with most indicator failures, but when AR12 fails, the choice of parameter to
change will have to be random or arbitrary.

Given that the availability of more precise information can vary from one system to another or even
change in time for the same system, in [Souza et al., 2012b] we propose a framework that performs qualitative
adaptation using the information from the requirements models that is able to accommodate varying levels
of precision by offering different adaptation algorithms. For each AwReq, then, modelers should specify the
adaptation algorithm to use, making sure all the required information for that algorithm are present in the
models.

In section 5.2 we specify the adaptation algorithms for failures of the A-CAD. Before that, however,
section 5.1 extends the A-CAD model produced during System Identification (c.f. figure 4.5, page 34) with
new elements that will help us illustrate some adaptation algorithms.

5.1 Extending the A-CAD Models

To better illustrate some adaptation algorithms in our experiments, we have included a few new elements
in the goal model of the A-CAD, resulting in the model shown in figure 5.1 (page 38). The new elements
are numeric control variable MST (Minimum Search Time), softgoal Unambiguity, quality constraint No
unnecessary extra ambulances dispatched and AwReq AR16 1.

The parameter MST represents the minimum amount of time (in seconds) staff members must dedicate
to the task of searching for duplicates. This parameter is directly related to the new softgoal, Unambiguity:
if staff members are forced to spend some time searching for duplicate calls, this will lower the probability

1Note that the newly added AwReq was called AR16 and not AR15 as it would have been expected. The reason is that
AR16 was defined in [Souza et al., 2012b] (publication referred to by this chapter) whereas AR15, which will be presented later,
was defined in [Souza et al., 2012a] (subject of the next chapter), a publication that was written and submitted first. To keep
the models of this report in sync with these publications, AR16 was presented before AR15 here.
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Figure 5.1: Goal model for the A-CAD system-to-be, extended to illustrate some adaptation algorithms.

3
8



∆(AR12/MST ) [0, 180] > 0 (5.1)

∆ (AR11/MST ) [0, 180] < 0 (5.2)

∆ (AR13/MST ) [0, 180] > 0 (5.3)

∆ (AR16/MST ) [0, 180] > 0 (5.4)

∆ (AR16/LoA) < 0 (5.5)

. . . > |∆(AR11/V P4) | > |∆(AR11/MST ) | (5.6)

|∆(AR12/V P2) | ≈ |∆(AR12/V P3) | ≈ |∆(AR12/LoA) | ≈ |∆(AR12/MST ) | (5.7)

|∆(AR13/NoSM) | > |∆(AR13/MST ) | (5.8)

|∆(AR16/MST ) | > |∆(AR16/LoA) | (5.9)

Table 5.1: New differential relations and refinements, after the inclusion of MST and AR16.

of missing a duplicate and registering a call as a new incident, which would in turn result in duplicate
(ambiguous) dispatch. On the other hand, the trade-off here is that higher values for MST may imply
harming softgoals such as Fast arrival and Fast dispatching.

Table 5.1 shows the new differential relations and new and changed refinements added to the A-CAD
model after the addition of the new elements. The following list describes the new/modified relations:

• Increasing theMinimum Search Time will affect negatively the success of quality constraint Dispatching
occurs in 3 min (AR11 ) for an obvious reason: the time spent searching for duplicates could be spent
with other tasks related to dispatching and incident resolution in order to finish them faster (relation
5.2);

• On the other hand, increasing MST affects positively AR16 — the more time spent searching for
duplicates, the less chance of an ambiguous dispatch (relation 5.4) —, AR12 — duplicate dispatches
will most likely get bad feedback from crew members who will be sent to assist an incident unnecessarily
(relation 5.1) — and AR13 — duplicate dispatches represent waste of resources, and therefore money
(relation 5.3);

• The Level of Automation also affects AR16 (i.e., quality constraint No unnecessary extra ambulances
dispatched): on a more manual setting staff members can check amongst themselves if the dispatch
they are currently doing is ambiguous and cancel one of the dispatches before ambulances are mobilized
(relation 5.5);

• Regarding AwReqs AR11 and AR13, parameter MST is the one with the lowest effect (relations 5.6
and 5.8). On the other hand, when dealing with Unambiguity (i.e., AwReq AR16 ), MST is better
than LoA (relation 5.9). For AR12, all parameters have roughly the same effect, including the new
parameter MST (relation 5.7).

5.2 Algorithm Specification for the A-CAD

Given the new elements and relations introduced in the previous section, we can now proceed to specify
the adaptation algorithm that will be used for each AwReq failure in the A-CAD. Table 5.2 summarizes the
choices of algorithms, whose rationale is explained in the following paragraphs.

AwReqs AR1 and AR2 monitor if the domain assumption Up to 〈NoC〉 calls per day is true and the only
way to improve the success rate of this assumption is by increasing the number of staff members (NoSM ),
which in turn automatically increases the number of calls (NoC ) the service can take per day. Given that
only one parameter is related to these AwReqs the default procedure (represented by ∅) will be used to deal
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Table 5.2: Adaptation algorithms selected for each AwReq failure in the A-CAD.
AwReq Algorithm Attributes
AR1 ∅ MTNoSM = 5 days
AR2 ∅ MTNoSM = 5 days
AR3 {Ordered Effect Parameter Choice} order = descending
AR4 {Ordered Effect Parameter Choice} order = ascending
AR6 ∅ N = 2
AR7 ∅

AR8 ∅ Immediate Resolution
AR9 {Ordered Effect Parameter Choice} order = descending
AR10 ∅ Immediate Resolution
AR11 {Oscillation Value Calculation, Os-

cillation Resolution Check}
{Ordered Effect Parameter Choice} order = descending

AR12 ∅

AR13 {Ordered Effect Parameter Choice} order = ascending
repeat policy = max 2 times

AR14 ∅ Immediate Resolution
AR16 {Ordered Effect Parameter Choice} order = ascending

with their failures. However, it is important to note that the maturation time of parameter NoSM is five
days, meaning it takes that amount of time to see the results of hiring new staff (hiring and training takes
time). The adaptation algorithm will wait for this amount of time before considering new failures of AR1
or AR2.

AR3 and AR4 also refer both to the same element, namely, the quality constraint Ambulances arrive
in 8 min. To increase its success rate, the framework can choose between variation point VP1 or control
variable LoA, the former having a higher effect than the latter. Since AR3 sets the threshold for the success
rate of the quality constraint, it is set to use descending order, choosing to change first the element with
greater effect. On the other hand, AR4 just indicates a trend of decline, but the current rate could still be
well over the threshold and the choice here is to use the parameters with lowest effect first, i.e., ascending
order.

AwReq AR6 imposes a maximum failure constraint on the domain assumption Gazetteer working and
up-to-date and the related parameters are variation points VP2 and VP3 and, as specified in section 4.3,
VP2 has to be changed first, otherwise changing VP3 has no effect. However, we have specified the number
of parameters to choose to be N = 2 and, thus, both parameters will be changed at the same time. This will
make the A-CAD switch always from assuming proper functioning of the gazetteer to using paper maps.

It is also the case for AR7, AR8, AR10 and AR14 that there is just one parameter that has an effect on
the indicator. For this reason, they will all use the default algorithm. With the exception of AR7, however,
these AwReqs have been marked as immediate resolution, which means that the adaptation algorithm will
consider the problem solved immediately after making the parameter change. This makes sense for AR8
and AR10 because changes on their associated parameters, respectively VP4 and VP5, switch the system
to a branch that does not contain the elements to which the AwReq refers. Changing VP5 back to Display
exception messages also makes AR14 irrelevant because messages would be shown immediately to staff
members. The default algorithm is also the choice for AR12, because all of the parameters that can affect
it have roughly the same effect, so one of them will be chosen randomly.

For AR9, AR13 and AR16 the ordered parameter choice was also selected, being used in an ascending
order for the latter two AwReqs. Furthermore, for AR13 the repeat policy was set to max 2 times so we
try to reduce costs by avoiding ambiguous dispatches (increase MST ) a few times first before firing staff
members (reducing NoSM ).
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Finally, AR11 indicates that Dispatching occurs in 3 min should never fail. In case it does, however, two
different algorithms were chosen. The first one is the Oscillation Algorithm, which applies only to MST, as
it is the only numeric variable associated with AR11. If this algorithm is not applicable (e.g., MST is not
incrementable), use descending order and change other related parameters.

Note that Table 5.2 does not include AwReq AR5. The reason is that there are no parameters related
to this indicator and, thus, no reconfiguration algorithm can be used to adapt in this case. In situations
such as these (but which is also possible when there are related parameters), requirements engineers can
use Evolution Requirements to associate specific changes in the goal model to some system failures. The
application of this kind of requirement on the A-CAD is described in the following chapter.
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Chapter 6

Evolution Requirements for the
A-CAD

In the last chapter, we have associated adaptation algorithms to most AwReqs of the A-CAD, in order to
adapt the system to failures of these AwReqs at runtime by analyzing the information added to the goal
model during System Identification. In some cases, however, reconfiguration might not be available or even
the preferred solution by the stakeholders.

For instance, we have mentioned before the case of AR5, which does not have related parameters and,
thus, cannot be associated to a reconfiguration algorithm. Furthermore, other AwReqs such as AR1 or AR2
for instance, could benefit from a more specific adaptation action, one that would manipulate the goal model
itself in a pre-determinate way instead of searching for the best parameter to change.

For this reason, we have proposed an approach that allows requirements engineers to model Evolution
Requirements (or EvoReqs), which specify changes to other requirements when certain conditions apply
[Souza et al., 2012a]. Such changes have an effect on the target system (i.e., the A-CAD) at runtime,
effectively instructing it on how to adapt.

We start from the requirements model for the A-CAD after the new elements added in the previous
chapter (shown in figure 5.1, page 38). However, for the sake of demonstrating a wider variety of EvoReqs,
we have once again added one more AwReq to this model: AR15 — the goal Register call should never
fail (NeverFail(G RegCall)). This requirement represents the fact that this goal is critical to the dispatch
process, for the very simple reason that the A-CAD cannot process an incident that has not been registered
into the system and, thus, the entire process will have to be conducted manually if this goal is not satisfied.
The complete goal model with this last AwReq added is shown in figure 6.1 (page 43). This is the final model
for the A-CAD, as no more elements will be included in the remaining chapters of this report.

In the following sections, we present the EvoReq patterns that form the adaptation strategies used in the
specification of the A-CAD (§6.1) and then complete the A-CAD’s adaptation requirement specification by
associating these strategies to AwReq failures (§6.2).

6.1 Adaptation Strategies (Patterns)

As described in [Souza et al., 2012a], EvoReqs are modeled as a sequence of adaptation instructions that are
sent to the target system in order to coordinate the adaptation procedure according to a specific strategy.
Many of them follow recognizable patterns, therefore a strategy can be defined by a name, a list of argu-
ments (with optional default values) and an algorithm in JavaTM-style pseudocode that uses the adaptation
instructions. Strategies are then associated with AwReqs and are enacted in case they fail at runtime. For
this reason, we can always refer to the failing AwReq in the strategy’s pseudocode using the keyword awreq,
whereas other parameters have to be explicitly declared as arguments. Some of these arguments (including
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Figure 6.1: Final goal model for the A-CAD system-to-be, with new AwReq AR15 added.

4
3



Figure 6.2: Class model for requirements in GORE, adapted from [Souza et al., 2011b].

AwReq themselves) are instances of the classes depicted in figure 6.2, proposed in [Souza et al., 2012a], which
is a modified version of the earlier AwReqs GORE model published in [Souza et al., 2011b].

This section defines all patterns used in the elicitation and modeling of the EvoReqs of the A-CAD. We
start with the Retry strategy, defined in listing 6.1. This strategy obtains a reference to the requirements
instance r that should be tried again, creates a new instance r’ from the same class of r and copies the
data from the execution section of r to r’ (if argument copy is true, which is its default value). Then, it
terminates all components associated with r, rolls back any partial changes that would leave the system in an
inconsistent state, waits the amount of time specified in argument time and finally initiates the components
related to the new requirement instance r’.

Listing 6.1: Definition of the Retry adaptation strategy.
✞ ☎

1 /* Try to satisfy the requirement again after a given period of time (in ms). */
2 Retry(copy : boolean = true ; time : long ) {
3 r = awreq.target;
4 R = r.class;
5 r’ = new -instance (R);
6 if (copy ) copy -data(r, r’);
7 terminate (r);
8 if (R = PerformativeRequirement) rollback (r);
9 wait (time );

10 initiate (r’);
11 }

✝ ✆

A very simple strategy is to tell an actor of the system about the failure so he, she or it (in the case of
non-human actors) becomes aware of the problem and can possibly do something about it. There are two
slightly different strategies based on this notion: Warning, defined in listing 6.2, consists on just sending the
notification and ignoring the failure, whereas Delegation, defined in listing 6.3, has an extra instruction that
tells the target system to wait for the issue to be fixed before proceeding. The former is interesting for the
cases in which it is too difficult or even impossible to check if the problem has been fixed or when the target
system cannot suspend the execution session until the problem is fixed.
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Listing 6.2: Definition of the Warning adaptation strategy.
✞ ☎

1 /* Send a warning to an actor , which can be human or not. */
2 Warning(a : Actor) {
3 send -warning (a, awreq);
4 }

✝ ✆

Listing 6.3: Definition of the Delegate adaptation strategy.
✞ ☎

1 /* Delegate the solution of a failure to an actor , which can be human or not. */
2 Delegate (a : Actor) {
3 send -warning (a, awreq);
4 wait -for -fix(awreq);
5 }

✝ ✆

A more sophisticated strategy consists on relaxing a requirement, which means making it easier to be
satisfied. This strategy has two versions. Relax by Disabling Child assumes the requirement is AND-refined
and disables one of its children, which means there is one less child requirement to satisfy in order to satisfy
the parent. On the other hand, Relax by Replacement assumes there exists another version of the requirement
that is less strict and is currently disabled and replaces the original requirement with the relaxed version of
it. These strategies can be applied to both the class and the instance levels and they have corresponding
Strengthen by Enabling Child and Strengthen by Replacement counterparts.

Listings 6.4 and 6.5 show, respectively, the definitions of strategiesRelax by Disabling Child and Strengthen
by Enabling Child, which are very similar. When the strategies are applied to the class level, they corre-
spond directly to evolution operations disable / enable. When applied to the instance level, the strategy
temporarily suspends the target requirement, locates the instance of the child that has to be disabled (en-
abled), performs a terminate (initiate) rolling back any partial changes (only when disabling), indefinitely
suspends (resumes) the child requirement and resumes the target requirement so its satisfaction can be re-
assessed.

Listing 6.4: Definition of the Relax by Disabling Child adaptation strategy.
✞ ☎

1 /* Relaxes a requirement by disabling one of its enabled children (assuming AND -
refinement ). */

2 RelaxDisableChild (r : Requirement = awreq.target; level : Level = INSTANCE ; child
: Requirement ) {

3 if (( level == CLASS) || (level == BOTH )) {
4 disable (child.class);
5 }
6
7 if (( level == INSTANCE ) || (level == BOTH )) {
8 suspend (r);
9 terminate (child);

10 if (child.class = PerformativeRequirement) rollback (child);
11 suspend (child);
12 resume(r);
13 }
14 }

✝ ✆

Listing 6.5: Definition of the Strengthen by Enabling Child adaptation strategy.
✞ ☎

1 /* Strengthens a requirement by enabling one of its disabled children (assuming
AND -refinement ). */

2 StrengthenEnableChild (r : Requirement = awreq.target; level : Level = INSTANCE ;
child : Requirement ) {

3 if (( level == CLASS) || (level == BOTH )) {
4 enable(child.class);
5 }
6
7 if (( level == INSTANCE ) || (level == BOTH )) {
8 suspend (r);
9 resume(child);

10 initiate (child);
11 resume(r);
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12 }
13 }

✝ ✆

Note that unlike the Retry strategy, the Relax/Strengthen strategies can be applied to a different re-
quirement than the one referred to by the failing AwReq (i.e., awreq.target). Therefore, the requirement
r to be relaxed/strengthened is passed as the first argument of the pattern. However, for the most common
case of relaxing/strengthening the target requirement, awreq.target is the default value for this argument.

Listing 6.6 defines the Relax by Replacement strategy (Strengthen by Replacement is exactly the same,
but with name StrengthenReplace, and therefore it is now shown). When applied at the class level, the
target requirement is disabled and the specified new one is enabled for future executions. When used at
the instance level, the replacement is similar to a Retry, copying data from one requirement to another
if appropriate, terminating, indefinitely suspending and rolling back the target requirement instance and
initiating the new requirement instance.

Listing 6.6: Definition of the Relax by Replacement adaptation strategy.✞ ☎
1 /* Relaxes a requirement by replacing it with a less strict version . */
2 RelaxReplace (r : Requirement = awreq.target; copy : boolean = true ; level : Level

= INSTANCE ; r’ : Requirement ) {
3 R = r.class;
4 R’ = r’.class;
5 if (( level == CLASS) || (level == BOTH )) {
6 disable (R);
7 enable(R’);
8 }
9

10 if (( level == INSTANCE ) || (level == BOTH )) {
11 if (R = PerformativeRequirement) && (R’ = PerformativeRequirement) && (copy )

copy -data (r, r’);
12 terminate (r);
13 if (R = PerformativeRequirement) rollback (r);
14 suspend (r);
15 initiate (r’);
16 }
17 }

✝ ✆

Finally, listing 6.7 shows the simplest strategy of all, Abort, which corresponds directly to the homonimous
evolution operation.

Listing 6.7: Definition of the Abort adaptation strategy.✞ ☎
1 /* Abort. */
2 Abort() {
3 abort(awreq);
4 }

✝ ✆

As we can see from the commands used, the above strategies make changes to the requirements model,
either at the instance or at the class level, which is quite different a solution than the reconfiguration
algorithms presented in the previous chapter. However, as presented in [Souza et al., 2012a], two EvoReq
commands were included in order to allow one to specify the use of reconfiguration as an adaptation strategy.
Listing 6.8, then, shows how these commands can be used in order to activate a reconfiguration algorithm.

Listing 6.8: Definition of the Reconfiguration adaptation strategy.✞ ☎
1 /* Uses a reconfiguration algorithm in order to adapt. */
2 Reconfigure (algo : FindConfigAlgorithm , ar : AwReq , level : Level = INSTANCE ) {
3 C’ = find -config(algo , ar)
4 apply -config(C’, level)
5 }

✝ ✆

Basically, the find-config() command activates the specified adaptation algorithm, which returns a
new configuration for the system. Then, apply-config() instructs the target system to apply the new
configuration at the specified abstraction level. The next section uses this and the other strategies defined
above to specify how the A-CAD should adapt to its AwReqs ’ failures.
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6.2 EvoReqs for the A-CAD

Having defined the strategies, a complete specification of the adaptation rules for the A-CAD can be pro-
vided. Since strategies are executed by an Event-Condition-Action framework (described in [Souza et al.,
2012a]), strategies need to be ordered and will be tried in the given order. Table 6.1 (page 48) presents
the list of strategies associated to each AwReq failure, including the qualitative adaptation algorithms listed
back in table 5.2, integrated through the Reconfigure strategy.

As mentioned in the title page, this is a work in progress. The next steps in writing this report are:

• Determine the level of abstraction (class, instance or both) for the Reconfigure strategy in each of its
uses in table 6.1;

• Associate applicability conditions to each strategy;

• Associate resolution conditions to each AwReq;

• Describe the implementation in chapter 7 and conclude the report (chapter 8).
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Table 6.1: EvoReqs elicited for the A-CAD experiment.

AwReq AwReq Pattern List of EvoReqs

AR1 NeverFail(T InputInfo) 1. Warning(“AS Management”)
2. Reconfigure(∅)

AR2 SuccessRate(AR1, 90%) 1. Warning(“AS Management”)
2. Reconfigure(∅)

AR3 SuccessRate(Q AmbArriv, 75%) 1. Reconfigure({Ordered Effect Parameter Choice} [or-
der = descending])

AR4 not TrendDecrease(Q AmbArriv,

30d, 2)
1. RelaxReplace(AR4, AR4 60Days) + StrengthenRe-

place(AR3, AR3 80Pct)
2. Reconfigure({Ordered Effect Parameter Choice} [or-

der = ascending])

AR5 NeverFail(D DataUpd) 1. Delegate(“Staff Member”)

AR6 MaxFailure(D GazetUpd, 1, 7d) 1. Reconfigure(∅ [n = 2])

AR7 1. Reconfigure(∅)

AR8 MaxFailure(D MDTPos, 1, 1min) 1. RelaxReplace(D MDTPos 20Secs)
2. RelaxReplace(AR8, AR8 45Secs)
3. RelaxReplace(AR8 45Secs, AR8 30Secs)
4. Retry(60000)
5. Reconfigure(∅ [Immediate Resolution])

AR9 SuccessRate(D MDTPos, 1, 1min) 1. Reconfigure({Ordered Effect Parameter Choice} [or-
der = descending])

AR10 MaxSuccess(T Except, 10, 1min) 1. Reconfigure(∅ [Immediate Resolution])

AR11 NeverFail(Q Dispatch) 1. Reconfigure({Oscillation Value Calculation, Oscilla-
tion Resolution Check})

2. Reconfigure({Ordered Effect Parameter Choice} [or-
der = descending])

AR12 SuccessRate(T Feedback, 90%) 1. Reconfigure(∅)

AR13 NeverFail(Q MaxCost) 1. Reconfigure({Ordered Effect Parameter Choice} [or-
der = ascending, repeat policy = max 2 times])

AR14 MaxFailure(Q MsgTime, <NoSM>,

1w)
1. Reconfigure(∅ [Immediate Resolution])

AR15 NeverFail(G RegCall) 1. Retry(5000)
2. RelaxDisableChild(T DetectCaller)

AR16 ComparableDelta(T SpecConfig,

Q NoExtra, numAmb, 0)
1. Reconfigure({Ordered Effect Parameter Choice} [or-

der = ascending])
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Chapter 7

Framework Implementation

As stated in the title page, this report is a work in progress. This section is yet to be written. It will talk
about the Zanshin framework (http://github.com/vitorsouza/Zanshin/), which was implemented in order to
validate the ideas of our research.
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Chapter 8

Conclusions

As stated in the title page, this report is a work in progress. This section is yet to be written.
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Appendix A

A-CAD Final Requirements Model

As stated in the title page, this report is a work in progress. This section is yet to be written.
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