

IEEE Symposium on Computers and Communications

25-28 June 2018 – Natal, Brazil

ShareFile: Sharing Content Through Device-to-Device Communication

Daniel M. Reis Theo S. Lins José Marcos S. Nogueira **Vinícius F. S. Mota**

Outline

- → Introduction
- → Motivation
- \rightarrow Goals
- \rightarrow Related work
- → ShareFile: Content Sharing
- → Performance Evaluation
 - Methodology
 - Results
- \rightarrow Conclusion and Future works

Smart devices have become popular

- + Devices
- + Mobile applications

Cisco visual networking index: Global mobile data traffic forecast update 2017

= Exponential data consumption growing

Devices

+

+

Device-to-Device network applications allow communication among them in infrastructure less scenarios.

Closer users could communicate directly

Infrastructure network X Device-to-Device

Motivation

- → Dozens of D2D solutions only evaluated through simulations
- → Few real world D2D applications;
- → Limits of D2D communication using Wi-Fi Direct;
- → Content sharing:

D2D communication versus infrastructure network?

Goals

- → Share content through multiples network interfaces
- → Compare D2D communication performance against traditional
- → Discuss limitations of D2D communication in devices already available in the market

Related work

Reference	Description	Results
(Camps-Mur; Garcia-Saavedra; Serrano, 2013)	2 laptops Linux. Log wpa_supplicant.	Delay for detection and formation of groups <5s; Discovery phase = higher energy consumption; - Bandwidth = + power consumption.
(Yao; Zhang; Song, 2015)	Wi-Fi Multihop: 6 smartphones - Android. Each device has a routing table (neighbors that it sees).	Proof of concept without performance evaluation.
(Asadi; Mancuso, 2017)	Hybrid architecture : Network infrastructure creates groups of devices and devices from each group communicate via Wi-Fi Direct.	Small groups achieve higher data rate and lower delays.
(Mao et al., 2017)	Social network mobile for devices Android. 3 devices Android.	Wi-Fi Direct can achieve a data rate of up to 4MB/s on average.

ShareFile

- → A tool for content sharing based on three communications mode
- → It logs all network events
- → friendly user interface (GUI)
- → Available on Google PlayStore goo.gl/gwEC3d

ShareFile: Communication modes

ShareFile: D2D -WiFi Direct

ShareFile: GUI Snapshots

ShareFile: Event LOG

Timestamp and log all network events

- → Searching
- → Connection request
- → Disconnection
- → Device type (GO, CLIENT), address and name;
- → Number of devices found in the search;
- → Size of the file being transmitted.
- → Send/receive files

Performance Evaluation

- → Evaluate content sharing in the three communication modes
 → D2D Metrics
 - Search time for nearby GO devices
 - Time to establish a connection (pairing)

- → D2D and Infrastructure metrics
 - Throughput

Performance Evaluation: Setup

- → D2D: Two smartphones Motorola XT1069 16GB;
- → Local server: One notebook Core I3 with 8GB of DDR3 RAM
- → External server: Brazilian Web hosting service (LocaWeb) 15Mbps fiber optics Internet access One modem Wi-Fi ZTE F660.

Evaluation: Methodology

- \rightarrow Send files 10x for each scenario: [0, 1, 3, 5, 10, 15] metros.
 - 2200 transmissions in D2D (total = 55,21GB)

370 transmissions for each distance;

- ◆ 370 transmissions on the local server (total = 9.2GB);
- 370 transmissions on external server (total = 9.2GB);
 Average RTT (servers) Pings for 30s before each file transfer.

→ 60 D2D connections -> 10 for each distance;

Evaluation: file set

Total = 37 files (942,3MB)

Туре	Size	
Image (png)	42.6KB; 59.2KB; 60.8KB; 60.9KB; 68KB; 76.5KB; 79.8KB; 84.5KB; 121.2KB; 828.9	KB
Music (mp3)	3.2MB; 4.6MB; 4.7MB; 4.9MB; 5.7MB; 6.6MB; 7.2MB; 7.3MB; 7.6MB; 9.5MB	
Doc (pdf)	104.5KB; 314.2KB; 396.2KB; 452.8KB; 560.4KB; 985.4KB; 1MB; 2.3MB; 3.3MB; 6.6MB	
Video (mp4)	467.7KB; 589.4KB; 2.1MB; 7.6MB; 7.9MB	
Disc (iso)	227MB; 617.8MB	18

D2D: Searching time - Client to GO Device

D2D: Searching time - Client to GO Device

D2D: Searching time - Client to GO Device

D2D: Connection Time

D2D: Connection Time 0.9 F 0.8 Client Connection Time > 10m 15m 0.7 0.6 Up to **3m of distance** all connections 0.5 0.4 were established up to 1.5s 0.3 0.2 0.1 2000 7000 1000 3000 4000 5000 6000 Time(ms)

D2D Throughput

Throughput

Average RTT = 4.59ms 10³ 10⁴ 10⁵ Bandwidth (KB/s) Average Down Link = 14900KBps

Local server

Average = 5008KBps

Throughput

D2D

Average = 5008KBps

Challenges and limitations

- → WiFi Direct must be better explored by developers
- → Searching and connection times introduce delay
- → Groups must be set manually in Android Devices (or users must have root access not default)
- → Privacy is always a concern

Conclusions

- → ShareFile a tool for content sharing
- → ShareFile also a tool to measure network performance
- \rightarrow In the **best case**, closer devices, network established up to **2s**
- \rightarrow In the worst case, network established up to 5s
- → D2D avg. throughput achieves 63% of the cloud throughput
- → Public available on Google PlayStore goo.gl/gwEC3d

IEEE Symposium on Computers and Communications 25-28 June 2018 – Natal, Brazil

Thanks!

Daniel M. Reis Theo S. Lins José Marcos S. Nogueira **Vinícius F. S. Mota** danielmartinsreis@gmail.com theo@decsi.ufop.br jmarcos@dcc.ufmg.br **vinicius.mota@inf.ufes.br**

Supported by

