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Abstract--In this paper, a novel particle swarm optimization 
algorithm based on the Gaussian probability distribution is 

’ proposed. The standard Particle Swarm optimization (PSO) 
algorithm has some parameters that need to be specified before 
using the algorithm, e.g., the accclerating constants cI and c2, the 
inertia weight w, the maximum velocity Vmnr, and the number of 
particles of the swarm. The purpose of this work is the 
development of an algorithm based on the Gaussian distribution, 
which improves the convergence ability of PSO without the 
necessity of tuning thcsc parameters. The only parameter to be 
specified by the user is the number of particles. The Gaussian 
PSO algorithm was tested on a suite of well-known benchmark 
functions and thc results were compared with the results of the 
standard PSO algorithm. The simulation results shows that the 
Gaussian Swarm outpcrforms the standard one. 

’ 
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1. INTRODUCTION 

Particle Swarm Optimization (PSO) originally developed 
by Kennedy and Eberhart [l], [2] is a population-based 
algorithm. PSO is initialized with a population of candidate 
solutions. Each candidate solution in PSO, called particle, has 
associated a randomized vclocity, moves through the search 
space. Each particle keeps track of its coordinates in the 
search space, which are associated with the best solution 

’ (fitness) it has achieved so far, pbest. Another “best’ value 
tracked by the global version of the particle swarm optimizer 
is the overall best value, gbesf, and its location, obtained so far 
by any particle in the population. The PSO has been found to 
be robust and fast in solving nonlinear, non-differentiable, 
multimodal optimization problems. 

In the last few years, there is a growing interest in PSO; 
several heuristics have been developed to improve the 
convergence performance of the algorithm and set up the 
optimal parameters of PSO [3], [4]. Initially, the PSO 
parameters, e.g., the acceleration constants cJ and cz was set to 
2.0 for almost all applications. The maximum velocity Vmax 
was often set to about IO-20% of the dynamic range of the 
variable along each dimension. Like other evolutionary 
algorithms, the population size selected is problem-dependent. 
Population sizes of 20-50 were quite most common. Most 
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approaches use a uniform probability distribution to generate 
random numbers. However the difficulty to obtain tine tuning 
of the solution and cscape from local minima using a uniform 
distribution was made evident in 151, [6]  where it was 
proposed the use of Cauchy and the Gaussian distributions to 
generate random numbers to updating the velocity equation of 
PSO, which was motivated by studies of mutation operators in 
fast evolutionary programming [7], [XI. In [9] was used a 
mutation operator in PSO, where the position of the particles 
are mutated using a Gaussian distribution. In [lo] was 
developed a new approach based on Gaussian swarm but for 
visualization purpose. 

Following a more theoretical line, Clerc and Kennedy [l 11 
have introduced a consiriction fucfor, which may be necessary 
to ensure convergence of the PSO, whereas the parameters cI 
and c-, was set to I .49. Recently, in [ 121 was prescnted new 
results about the Convergence of PSO, where it was analyzed 
the trajectory of a deterministic particle in one dimension 
using dynamic systems theory. However, the deterministic 
approach proposed in 1121 might not be straightforward 
generalized for the analysis of trajectory of stochastic particles 
in multi-dimensional search space. 

In this paper, a novel approach to updating the velocity 
equation based on the Gaussian distribution in PSO algorithm 
is proposed. The inertia weight, the maximum velocity of the 
particles and the accelerating constants cI and c2 are not more 
necessary to be specified. The approach was empirically 
examined with a suite of well-known functions that are 
frequently used for tcsting evolutionary algorithms, and also 
for testing PSO as well. The numerical simulation results 
demonstrate that the strategy can significantly improve the 
PSO convergence perfarmance. The rest of the paper is 
organized as follows: In section 2, the standard €50 is 
described. in section 3, the novel Gaussian swarm is 
presented. Section 4 gives the simulation results for some 
benchmarks optimization problems followed by conclusions in 
section 5. 

11. PARTICLE SWARM OPTlMlZATlON 
The PSO algorithm is described in the following [I],  [ 2 ] :  
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Initialize a population of particles with random 
positions and velocities in the n-dimensional problem 
space. 
For each particle, evaluate its fitness value. 
Compare each particle’s fitness evaluation with the 
current particle’s pbest. If current value is better than 
pbesi, sct its pbest value to the current value and the 
pbest location to the current location in n-dimensional 
space. 
Compare fitness evaluation with the population’s 
overall previous best. If current value is better than 
gbest, then reset gbest to the current particle’s array 
index and value. 
Changc the velocity and position of the particle 

according ( I )  and (2), respectively: 

Loop to step (ii) until a stopping critcrion is met, 
usually a maximum number of itcrations (generations). 

The vector xi =[X;~,XQ, ..., xjf stands for the position of 

the i-th particle, vi = [ v ~ I ,  vi2 ,..., vjnp  stands for the velocity of 

the i-th particle and pi = b,l, pi2 ,..., pi,F represents the best 
previous position (the position giving the best fitness value) of 
the i-th particle. The index g represents the index of the best 
particle among all the particles in thc swarm. Variable w is the 
inertia weight, q a n d  c2 are positive constants; rand and 
Rond are random numbers in the range [O, l ]  generated 
according to a uniform probability distribution. Particles’ 
velocities along each dimension are clamped to a maximum 
velocity Vmar. If the sum of accelerations causes the velocity 
on that dimcnsion to exceed Vmux, which is a parameter 
specified by the user, then the velocity on that dimension is 
limited to Vmux. 

The inertia weight w represents the degree of the 
momentum of the particles. The second part is the “cognition” 
part, which represents the independent behaviour of the 
particle itself. The third part is the “social” part, which 
represents the collaboration among the particles. The constants 
c1 and c2 represent: the weighting of the “cognition” and 
“social” parts that pull each particle toward pbesst and gbest 
positions. 

In [ I  I ]  a constriction factor K was introduced, and the 
velocity updating (1) has been substituted by 

(4) 
2 K =  

12 - P- 

where p = cl + c2, Q > 4 and K is a hnction of cI and e,. 
A detailed discussion of the constriction factor is beyond the 
scope of this paper. For more details, the reader is referred to 
[ I  I]. Usually, when the constriction factor is used, ‘p is set to 
4.1 ( c1 = c2 = 2.051, and the constriction factor K is 0.729. 
Each of the two coefficients of the (pi -xi) terms is calculated 
by multiplying 0.729*2.05=1.49445 (times a random number 
between 0 and I )  with expected value equal 0.5, provides a 
mean value 0.729. 

New results presented in [I21 based on the theory of 
dynamic systems for analysis of a particle trajectory have been 
carried out with a different parameter set (M-0.6, and cI = c2 
= 1.7). The expectcd value for each of the two bi -xi) terms 
is calculated by multiplying 1.7*0.5=O.85, since the expected 
value of a uniform random number between 0 and I is 0.5. 
The results compared to that proposed in [I l l  showed a 
slightly superior performancc. in the next section, we present 
a simplified swarm without momentum term, where the 
coefficients of the two (pi -xj) terms do not need to be 
specified, but are generated automaticaHy according to the 
Gaussian distribution. 

111. GAUSSIAN SWARM: A PARTICLE SWARM 
OPTIMIZATION USING GAUSSIAN DlSTRIBUTION 
Observing that the expected values for the two (pi - x i )  

terms are 0.729 [ I  I ]  and 0.85 [ I  21, it is proposed a probability 
distribution that generates random number with expected 
values betwcen the limits f0.729 0.851. It shouId be pointed 
out that thc coefficients of the two (pi - x i )  terms must be 
positive for convergence. A candidate distribution is the 
Gaussian probability density function given by 

( 5 )  

A Numerical implementation that provides positive 
random numbers with mean value 0.8 and standard deviation 
0.6 can be generated using a Gaussian distribution N ( 0 , l )  as 
shown in Fig. I .  The goal consists of generating the 
coefficients of the (pi -xi) terms according to the Gaussian 
probability distribution. This can be accomplished by defining 
the velocity equation as 

where Iran&( and (Rand81 are positive random numbers 
generated according to the absolute value of the Gaussian 
probability distribution, i.e., abs[N(O, I)]. For comparison 
purposes only, the standard deviation using a uniform 
distribution, as usually employed in standard PSO, is 0.28. 
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Fig. 1 Histogram of the random numbers generated using abflN(0, I)] 
results in random numbers with approximately expected value 0.8 and 

standard deviation 0.6. 

The larger standard deviation provided by the Gaussian 
distribution compared to the uniform one, improves the ability 
of PSO to escape from local'minima. This novel approach is 
completely different from that proposed in previous works 
presented in [5 ] ,  [ti], where it was used a truncated Gaussian 
distribution to generate random numbers between minus one 
and plus one, and then mapped to [0 11. Additionally, in [SI, 
[6] was used the usual velocity updating (1). Based on 
simulations studies, it was observed that the momentum term 
with inertia weight w could be sct to zero, because it might not 
improve the convergence of the Gaussian PSO. So, it is no 
more necessary to specify the maximum velocity Vmnx of the 
swarm. 

To the best of our knowledge, it is the first time that an 
asymmetric probability distribution has been introduced in the 
context of PSO. For more mathematical details see Appendix. 

IV. SIMULATION RESULTS 

A .  Benchmark funcfions 
The Gaussian PSO has been tested on three different kinds 

of optimization problems: a) unimodal function, b) functions 
with a few local minima and c) functions with many local 
minim a. 

a) UnimodaI function 

The Rosenbrock function f i  (x)  is given by 

f i (x)=loO(x:  - x ~ ) * + ( 1 - X 1 ) z  

with -30 I xi 230, (i=1,2). 

The global minimum is fi (x* ) = 0, and x* = (1,l) . 

b) Functions with a few local minima 
The Six-hump camel back fimction ft (x)  is given by 

with -2 5 xi 5 2, (i=1,2). 

The global minimum is f2 (x* ) = -1.03 16, and the optimal 

solution is x* = (-0.0898,0.7126), and (0.0898,-0.7126). 

The Goldstein-Price function A( x) is given by 

f3 ( X )  = [1+ (x, + x2 + 1) 419- 14x1 + 3 ~ ;  - 14x2 + 6~1x2 + ~ x z ) ]  2 2 

.[30+(2x1 - 3 . 9 )  2 . (18-32x, +12xf +48x2 -36x,x2 +27xi)] 

with -5 5 xi 2 5 ,  (i=l,Z). 

The global minimum is A( x* ) = 3, and x* = (0, - 1). 

c) Functions with many local minima 
The Rastrigin function f 4 (  x) is given by 

I f 4 W = t {  xi - 1 Ocos( 2 T X i )  + 10 
i=l 

with -5.12 I xi 55.12, ( + I ,  ..., n). 
The global minimum is J4( x* ) = 0, and X* = (0, ..., 0). 

The Griewank function f s (  x )  is given by 

with -600 I xi 5600, ( i = l ,  ..., n). 
The global minimum is h( x* ) = 0, and x* = (O,..,,O). This 
function has many local minima, so that it is very difficult to 
find the global minimum. 

B. Results and Discussion 

The PSO algorithms were implemented using Matlab [ 131. 
During the numerical experiments, both the Gaussian and the 
standard PSO algorithm were run with an initial population of 
random values that was created using a uniform probability 
distribution. Such running trials were repeated for each of the 
chosen function for 10 times. Alt the running trials were 
carried out with a population of 30 particles. The accelerating 
constants CI and cz for the standard PSO are chosen as cl = 
c2 = 2. The results for the Rosenbrock function f i  (x), the 
Six-hump camel back fimction f2 (x), the Goldstein-Price 
function (x), the Rastrigin function f4( x), and the 
Griewank function f s ( r ) a r e  shown in Figs. 2, 3, 4, 5, 6 
respectively. 

From the results obtained, it can be observed that for the 
five benchmark minimization problems, the Gaussian PSO 
algorithm shows considerably better convergence than the 
standard PSO. For the functions studied, the Gaussian PSO 
algorithm converged to the minimum at earlier generations 
than the standard PSO algorithm. The standard PSO algorithm 
may rapidly stagnate, and the solution no longer improves 
anymore, while the Gaussian PSO algorithm can still search 
solution progressively till the global optimum is found. This is 
especially important for fhctions with many local minima, 

374 



Iike the Griewank function, where it was observed that the 
standard PSO get trapped into a local minimum and can not 
escape. The Gaussian PSO algorithm has a higher ability to 
escape from local minima and therefore able to obtain the 
global optimum. But due the high number of Iocal minima of 
the Griewank function the Gaussian PSO might also present 
difficulties and the weight term might help to escape from 
local minima as shown in previous works [3 J, [4]. 

The results presented are still preliminary, but show 
clearly that the Gaussian PSO algorithm is effective to find the 
global optimum of the benchmarks investigated. The proposed 
approach has been applied to solve constrained optimizations 
problems formulated as min-max problems with very good 
results. Work in progress is invcstigating the potential of 
Gaussian PSO applied to optimization problems with many 
local minima in higher dimensions, e.g., the Gricwank 
function and the Rastrigin function. The first results arc very 
promising and will be reported elsewhere in future. 
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V. CONCLUSIONS 
In this paper, a novel Gaussian swarm has been proposed. 

PSO is de Jircto one of the most promising contcmporary 
optimization algorithms in general because its convergence, 
effectiveness, robustness, and simplicity of implementation. 
These features of the algorithm have attractcd its attention to 
solve nonlinear, non-diffcrentiable, multimodal optimization 
problems. However, some parameters of PSO need to be 
specified by the user before using the algorithm. Thc goal of 
this work was to change the velocity updating equation of 
PSO in order that the cocfflcients of the two (pi -xi) terms 
are automatically generatcd by using a Gaussian probability 
distribution. So, therc is no more need to specify the 
parameters accelerating constants CI and cz, Furthermore, 
using the Gaussian PSO thc inertia weight w was set to zero 
and therefore the maximum velocity Vmox is no more 
necessary to be defincd. So, the only paramctcr to be spccified 
by the user is the number of particles. Additionally, the use of 
a Gaussian distribution improves thc convergence ability of 
PSO. The Gaussian PSO algorithm was studied and compared 
with the standard PSO algorithm on a suite of well-known 
benchmark functions. The simulation resutts indicate that the 
proposed algorithm using Gaussian distribution outperforms 
the standard PSO. The results showed that the Gaussian PSO 
algorithm converges rapidly and has more ability to cscape 
from local minima than the standard PSO. On the one hand, 
future investigations are being made on applying the Gaussian 
PSO algorithm to control systems optimization problcms. On 
the other hand, some work has been carried out on stochastic 
convergence of the Gaussian swarm. 

APPENDIX 
Let the Gaussian probability distribution g(x) given by 

with expected valuc 1 and variance 0, i.e. N(0,I). Then the 
expected value E ( x )  of the absolute of N(0,l)can be 
calculated by 

and the variance by 

Therefore, the standard deviation is a=0.60. The 
skewness which is a measure OF the asymmetry of the 
distribution is calculated by (p’ /a’) = 2.37 (positive tail). 
The kurtosis, which is a measure of the peakedness of the 
distribution is calculated by (p4 I 04) - 3 = 0.16. 
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