Por que virtualizar?

- Descentralização de recursos computacionais
- Cloud computing
- Plena utilização de recursos físicos
- "Do more with less"
- Reaproveitamento de recursos
- Diferentes SOs no mesmo hardware
- Isolamento de aplicações
- Segurança
- Redução no número de máquinas físicas
- Economia de energia, espaço, dinheiro
Por que virtualizar?

Funcionamento com falha
Introdução a Virtualização
Sergio Roberto Charpinel Junior
Profa. Roberta Lima Gomes
Por que virtualizar?
- Facilidade para restauração e recuperação de serviços
Maior disponibilidade
Tolerância a falhas
- Etc...

Conceitos

- "Uma máquina virtual é uma cópia eficiente e isolada da máquina real" (POPEK; GOLD-BERG, 1974).
- Existem duas categorias de máquinas

Conceitos - MMV

- Definições de Popek e Goldberg:

- O MMV deve fornecer aos programas um ambiente idêntico ao da máquina original.
- Os programas nesse ambiente devem apresentar como perda apenas uma diminuição de sua velocidade de
O MMV deve possuir controle completo sobre os recursos do sistema
- O MMV deve interpretar e emular o conjunto de
instruções entre as máquinas virtuais e a máquina real
- Necessidade de economia de recursos
- Virtualização ganha espaço novamente
- Surgiu na década de 60 na IBM
Soluções combinadas em hardware e software (desempenho!)
Dividir logicamente o mainframe
- Recurso caro, necessário utiliização completa
- Popularização do $x 86$ no final da década de 80 - Desktops
- Vopularização da Internet
- Popularização da Internet a partir da década de 90
Alta disponibilidade

Conceitos - MMV

Hypervisor

Tipos de Máquinas Virtuais

- Máquinas virtuais clássicas ou de Tipo I

O monitor é impleme
Executa com a maior prioridade sobre os sistemas

- Pode interceptar e emular todas de

Microsoft Hyper-V,
Citrix/Xen Server

- Provê uma completa simulação da subcamada de hardware para os sistemas convidados

Todos os SOs que são capazes de executar diretamente em um hardware também podem executar em uma máquina virtual

- Não há necessidade de modificações nos sistemas operacionais convidados

Aplicações
Sistema opeacaional
Máquina Virtual 1

e os sistemas convidados em modo usuário

- O Monitor roda em modo kernel,

Todas as instruções são "testadas"
 capturadas e emuladas na VM - trap-and-emulate

Conceitos - MMV

Definir o ambiente de máquinas virtuais.
Alterar o modo de execução do sistema operacional
convidado de privilegiado para não privilegiado, e viceversa.
Emular as instruções e escalonar o uso da CPU para as

- Muitas instruções do processador virtual devem ser executadas diretamente pelo processador real, sem que haja intervenção do monitor (eficiência!)
Tipos de Máquinas Virtuais
Máquinas virtuais Hospedadas ou de Tipo II
O monitor é implementado como um processo de um sistema operacional "real"
Gerenciar acesso aos blocos de memória e disco
Intermediar as chamadas de sistema e controlar acesso a outros dispositivos como CD-ROM, drives de disquete, dispositivos de rede, dispositivos USB.
O monitor simula todas as operações que o sistema
anfitrião controlaria
- VMware Workstation
Microsoft Virtual PC
Oracle Virtual Box

- Instruções sensíveis
Podem ser executadas somente em modo kernel - Instruções privilegiadas
- Geram trap quando executadas em modo usuário
- Segundo Popek e Goldberg, uma máquina é virtualizável se: Instruções sensíveis formarem um subconjunto de instruções privilegiadas
- Intel 386 não é estritamente virtualizável
Algumas instruções têm comportamentos diferentes no modo usuário e no
modo supervisor
Ex: Instruçõ̃s de leitura de estado privilegiado e instruções que alteram tabela
de páginas não geram trap.
Resolvido em 2005 com Intel VT e AMD SVM
- Implementam o modo hypervisor (entre o HW e o modo kernel)
- Instruções sensíveis geram trap

Virtualização no x86 (Hipervisor 1)

- Tradução binária dinâmica

O monitor analisa, reorganiza e traduz as sequências de instruções
emitidas pelo sistema convidado em novas sequências de instruções emitidas pelo sistema convidado em novas sequências de instruções,
on-the-fly
O código é dividido em blocos e estes são então verificados
Visa-se com isso
(a) Adaptar as instruções geradas pelo sistema convidado à interface ISA do
sistema real, caso nã́o sejam idênticas;
(b) Detectar e tratar instruções sensíveis não-privilegiadas (que não geram traps ao serem invocadas pelo sistema convidado); ou
(c) analisar, reorganizar e otimizar as sequências de instruções geradas pelo
sistema convidado, para melhorar o desempenho .
Blocos de instruções muito frequentes podem ter suas traduções mantidas em cache
Instruções privilegiadas são substituídas por chamadas de rotina do MMV - MMV emula instruções
 Monitor é extremamente elevado

- Para resolver... uso de dispositivos genéricos - Instruções executadas pelo SO visitante devem ser testadas pelo Monitor - Ter que contornar alguns problemas gerados pela implementação dos SOs
- SOs foram projetados para serem executados como instância única nas máquinas físicas
oчuədməsəp әр epənb \leftarrow sOS ełnds!̣a \leftarrow oex̧eu! Virtualização no x86 (Hipervisor 1)

Solução Trap-and-emulate

- Nas CPUs VT e SVM instruções sensíveis geram
trap
- MMV é alocado no anel 0

SO virtualizado no nível 1 (ou 3)
Tradução binária...

Paravirtualização

- Desacoplamento maior da máquina física
- Virtualização total
Ex.: Hipervisor 1 e Hipervisor 2
- Paravirtualização
MMV fornece uma API para MVs
- SO virtual é modificado
- Instruções sensíveis são substituídos por chamadas ao MMV
Ganho de desempenho
- Paravirt ops - API da MMV padronizada
Virtualização de memória

Virtualização no x86 (Hipervisor 2)
- MMV é um programa de usuário
- Instruções privilegiadas são substituídas por
chamadas de rotina do MMV
Outras técnicas
Emulação
- simula o hardware do sistema para a execução do
sistema convidado
- "Traduz" instruções do sistema convidado para
equivalentes no sistema anfitrião e vice-versa

Virtualização de memória

Virtualização de memória
- Tabela de páginas de sombra (Shadow page tables)

- Virtualização de disco
- Arquivos, partições LVM, partições físicas, etc.
Pode expor disco diferente do real para MV e traduzir chamadas - DMA
Hardwares atuais possuem MMU para E/S - Solução Xen:
Uma MV (dom0) executa SO padrão e demais MVs (domUs) direcionam suas chamadas de E/S para ela

$$
\begin{aligned}
& \text { VMWare } \\
& \text { - Desktop } \\
& \text { - VMware Workstation } \\
& \text { - VMware Fusion } \\
& \text { - VMware Player (free) } \\
& \text { - Server } \\
& \text { - VMware ESX e VMWare ESXi (free) } \\
& \text { - Cloud } \\
& \text { - VMware vCloud } \\
& \text { - Gerenciamento }
\end{aligned}
$$

Xen

[^0]
[^0]: - DomU PV
 - E/S com memória compartilhada
 pleta
 - E/S emulada pelo QEMU
 - HVM-PV

 HVM com drivers PV - Suporte a live migration - Discos compartilhados

