mútua pode não ser atingida. Hoare (1974) e Brinch Hansen (1975), são estruturas de

- Sugeridos por Dijkstra (1971) e desenvolvidos por sincronização de alto nível, que têm por objetivo impor (forçar) uma boa estruturação para programas concorrentes.
Motivação:
- Sistemas baseados em algoritmos de exclusão mútua ou semáforos estão sujeitos a erros de programação. Embora estes devam estar inseridos no código do processo, não existe nenhuma reivindicação formal da sua presença. Assim, erros e omissões (deliberadas ou não) podem existir e a exclusão
Monitores (1)
Monitores (3)
Um monitor pode ser visto como um bloco que
contém internamente dados para serem
compartilhados e procedimentos para manipular
esses dados.
Os dados declarados dentro do monitor são
compartilhados por todos os processos, mas só
podem ser acessados por meio dos procedimentos
do monitor, isto é, a única maneira pela qual um
processo pode acessar os dados compartilhados é
indiretamente, por meio das procedure entries.
LPRmidufes
Monitores (2)
- Solução:
= Tornar obrigatória a exclusão mútua. Uma maneira de se
fazer isso é colocar as seções críticas em uma área acessível
somente a um processo de cada vez.
- Idéia central:
= Em vez de codificar as seções críticas dentro de cada
\quad processo, podemos codificá-las como procedimentos
(procedure entries) do monitor. Assim, quando um processo
precisa referenciar dados compartilhados, ele simplesmente
chama um procedimento do monitor.
" Resultado: o código da seção crítica não é mais duplicado em
cada processo.

MONITOR <NomedoMonitor>;
Declaração dos dados a serem compartilhados pelos processos (isto é,
das variáveis globais acessíveis a todos procedimentos do monitor);
das variaveis globais acessíveis a todos procedimentos do monitor),
Exemplos:

- As procedure entries são executadas de forma
Monitores (4)

mutuamente exclusiva. A forma de
 muanente exclusiva. A forma der

 implementação do monitor já garante a exclusão mútua na manipulação dos seusdados internos.
Monitor é um conceito incluído em algumas linguagens de programação:

- Módula, Pascal Concorrente, Euclid
\square
Formato de
um Monitor

End
$\begin{aligned} & \text { Entry Procedimento_N(Argumentos_do_Procedimento_N) } \\ & \quad \text { Declaração das variáveis locais do Procedimento_N } \\ & \text { Begin } \\ & \text { Código do Procedimento_N (ex: Y:=2; signal(C)) } \\ & \text { End }\end{aligned}$
BEGIN
Iniciação das variáveis globais do Monitor
…
END
Concorrente,Java.

cwait(c1) Procedure 1 initialization code Variáveis de Condição (3) que acontece após um Signal (condition)? Fila de Sinalizadores Visão da Estrutura de um Monitor em curso, uma vez que já estava em execução no monitor qual o processo Q estava esperando pode não ser mais - Simplificação: o comando signal só pode aparecer como a - Hoare propôs deixar o processo Q recentemente acordado executar, bloqueando o processo P sinalizador. P deve esperar em uma fila pelo término da operação de monitor realizada por Q. - Brinch Hansen propôs que o processo P conclua a operação (i.e., Q deve esperar). Neste caso, a condição lógica pela verdadeira quando Q for reiniciado. declaração final em um procedimento do monitor.	

- Signal (ou Continue)

Variáveis de Condição (1)

reativação de processos. Permitem, portanto,

 sincronizações do tipo sleep-wakeup.- Só podem ser declaradas dentro do monitor e são sempre usadas como argumentos de dois comandos especiais:
Wait (ou Delay)
- São variáveis que estão associadas a

condições que provocam a suspensão e a

 Variáveis de Condição (2)
Exemplo (Abordagem de Hoare)

	N 0 0 0 0	
	ص 0 0 0 0 0 0	∞ U 0 0 0 0 0
		\pm

LPRM/DI/UFES

Sprim

> Implementando Monitores usando Semáforos (cont.) semaphore x -sem; $/ /($ inicialmente $=0)$
int x -count $=0$;

图

[^0]
[^0]: Referências

 - A. S. Tanenbaum, "Sistemas Operacionais Modernos", 3a. Edição,
 - Deitel H. M.; Deitel P. J.; Choffnes D. R.; "Sistemas Operacionais", 3ą. Edição, Editora Prentice-Hall, 2005

