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Parallel Integer Sorting Is ,More Efficient than Parallel 
Exclusive Write PRAMS 

Comparison Sorting on 

Abstract 

Yijie Han* and 

We present a significant improvement on parallel integer 
sorting. Our EREW PRAM algorithm sorts n integers in 

the range {O,l, . . . . m - 1) in time O(log n) with O(n 
d- 

log n T) 

operations using word length klog(m + n), where 1 5 k 5 

log n. ‘When k = log n this algorithm sorts 71 integers in 
O(log n) time with linear operations. When k = 1 this 

algorithm sorts n integers in O(log n) time with O(nm 

operations. 

1 Introduction 

Sorting is a classical problem which has been studied by 
many researchers. For elements in an ordered set com- 
parison sorting can be used to sort the elements. It is 
well known that comparison sorting has time complex- 
ity fJ(nlogn). In the case when a set contains only in- 
tegers both comparison sorting and integer sorting can 
be used to sort the elements. Since elements of a set 
are usually represented by binary numbers in a digital 
computer, integer sorting can, in many cases, replace 
comparison sorting. The only time lower bound for in- 
teger sorting is the trivial linear bound of Q(n). Radix 
sorting does demonstrate O(n) upper bound for sorting 
n integers in the range {O,l,...,n’ - l}, where t is a 
constant. Researchers worked hard trying to show that 
for integers in any range integer sorting can outperform 
comparison sorting[4][12][18][20]. Fredman and Willard 
first showed [12] that n integers in any range can be 
sorted in O(na time, thereby demonstrating that 
in the sequential case integer sorting is more efficient 
than comparison sorting. However, prior to this pa- 
per no deterministic parallel integer sorting algorithm 
outperformed the lower bound for parallel comparison 
sorting on any parallel computation models. We show, 
for the first time, that parallel integer sorting is more ef- 
ficient than parallel comparison sorting on the exclusive 
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write PRAMS. 
The parallel computation model we use is the 

EREW PRAM model[l9]. Parallel algorithms can 
be measured by their time complexity and operation 
complexity which is the time processor product. The 
operation complexity of a parallel algorithm can also 
be compared with the time complexity of the best 
sequential algorithm for the same problem. Let Ti be 
the time complexity of the best sequential algorithm 
for a problem, TP be the time complexity of a parallel 
algorithm using p processors for the same problem. 
Then TP . p 2 Tl. That is, Ti is a lower bound for 
the operation complexity of any parallel algorithm for 
the problem. A parallel algorithm is said to be opitmal 
if its operation complexity matches the time complexity 
of the best sequential algorithm, i.e. TP .p = O(Tl). 

In order to outperform parallel comparison sorting 
on the exclusive PRAM models (i.e. CREW PRAM 
and EREW PRAM) one has to exhibit a parallel algo 
rithm which matches the time lower bound for paral- 
lel comparison sorting and outperforms the operation 
lower bound for parallel comparison sorting. Note that 
we cannot outperform the time lower bound (only to 
match it) because on the CREW and EREW PRAMS 
the time lower bounds for parallel comparison sorting 
and for parallel integer sorting are the same, namely 
Q(log n)[lO]. The operation lower bound for parallel 
comparsion sorting is Q(nlogn) due to the time lower 
bound for sequential comparison sorting. Known par- 
allel algorithms failed to outperform the lower bound 
for parallel comparison sorting because of the following 
reasons. 
1. Parallel algorithms are known [2][4][11][18][24] to 
have operation complexity of o(n log n) when they are 
running slower than the time lower bound for parallel 
comparison sorting. But they failed to have o(n logn) 
operations when made to run at the time lower bound. 
For example, the CREW algorithm given in [2] (the 
best prior to this paper) has operation complexity 
O(nm when running at time O(logn log log n). 
But the time lower bound for comparison sorting on 
the CREW PRAM is R(logn)[lO]. It is not clear how 
to make the algorithm in [2] to run in O(logn) time. 
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Also the CRCW algorithm in [4][18] has operation com- 
plexity O(n log log n) when running at time O(logn). 
But the time lower bound for comparison sorting on the 
CRCW PRAM using polynomial number of processors 
is Q(log n/ log log n)[6]. 
2. Parallel algorithms are known [2][8][26] that have 
operation complexity o(n log n) and time which matches 
the time lower bound for parallel comparison sorting 
when sorting on small integers. These results fail to 
outperform parallel comparison sorting when sorting 
on large integers. For example, the previous best 
results in [2][11] h s owed that n integers in the range 

{O,l, . ...2%=)) can be sorted in O(log n) time and 
linear operations. No previous deterministic algorithms 

showed that integers larger than 2 0(&G) can be 
sorted in O(log n) time with o(n log ra) operations on 
exclusive write PRAMS. 
3. Parallel algorithms are known [4][15] to outperform 
parallel comparison sorting by using a nonstandard 
word length (word length is the number of bits in each 
word). But they fail to outperform on a standard 
PRAM where word length is bounded by O(log( m + n)). 
For example in [43 it is shown that sorting 7~ integers 
in the range {O,l, . . ..m - 1) can be done in O(logn) 
time with O(n) operations on the EREW PRAM with 
a word length of O((logn)2+‘logm). The use of 
extra bits in word length in parallel integer sorting is 
generally regarded as excess. Note that even in this case 
(use nonstandard word length) we improve all previous 
results. 

In this paper we show for the first time that on 
the exclusive write PRAMS parallel integer sorting is 
more efficient than parallel comparison sorting. For 
sorting n integers in the range (O,l, . . ..m - 1) our 
results demonstrate the curve for operation complexity 

O(n J- 
!t$ h w en using word length k Iog(m + n), 

where 1 <, k < log n, while our algorithm runs in 
O(logn) time. When I = 1 our algorithm uses standard 
word length log(m + n) and runs in O(log n) time with 
O(nJTo’;gfi) operations. This algorithm outperforms 
parallel comparison sorting on the CREW and EREW 
PRAMS. Note also that the integer sorting algorithms 
presented in this paper are stable sorting algorithms. 

There are many previous results on parallel inte- 
ger sorting [2][4][8][11][14][15][18][21][23][24][25][26]. We 
give a brief comparison of our results with the previous 
results. 

An important parameter in integer sorting is the 
word length w which is the number of bits in a word. 
Much effort has been spent toward finding good in& 
ger sorting algorithms which are conservative in the 
sense that they do not use extra bits. According to 

Kirkpatrick and Reisch[20] an integer sorting algorithm 
sorting n integers in the range {O,l, . ..?m - 1) is said 
to be conservative if the word length is bounded by 
O(log(m + n)). Significant progress has been made re- 
cently in this regard. Andersson et al [4] and Han and 
Shen[l8] showed conservative integer sorting algorithms 
which sorts n integers in the range (0, 1,2, . . . . m - 11 
in O(logn) time with O(n loglogn) operations on the 
CRCW PRAM. This also implies a conservative sequen- 
tial algorithm with O(rz log log n) time. Although much 
progress has been made on parallel integer sorting on 
the CRCW PRAM[4][8][14][18] which allows simultane- 
ous read and write to shared memory cells, significant 
difficulties exist when parallel integer sorting algorithms 
are to be designed on PRAMS which do not allow si- 
multaneous write. In fact, for sorting n integers in the 
range {O,l, . . ..n- 1) which is considered to be the most 
important and standard case, previous best conserva- 
tive parallel algorithms running in O(logn) time on 
CREW and EREW PRAM use O(nlog n) operations. 
Rajasekaran and Sen[24], Albers and Hagerup[2] and 
Dessmark and Lingas[ll] were able to reduce the num- 
ber of operations to o(nlogn) on the CREW PRAM 
and EREW PRAM when the running time is enlarged 
to over O(logn). Currently the best result due to 
Albers and Hagerup[2] sorts in O(Iog n log log n) time 
with O(nfi) operations on the CREW PRAM. 
On the EREW PRAM the algorithms in [2][24] sort 
in O(log n log log n) time with O(n log n/ log log n) op- 
erations. Very recently Dessmark and Lingas pre- 
sented an improved EREW algorithm[ll] which sorts in 
o(log3’2 n) time with O(nm operations. Thus in 
regard to the best previous results one cannot sort bet- 
ter than the comparison sorting algorithm[l][9] (which 
uses O(n log n) operations) if he is to sort as fast as the 
comparison sorting algorithm (using O(logn) time) on 
the CREW and EREW PRAMS. 

In this paper we significantly improve on this situa- 
tion. Our EREW PRAM algorithm sorts in O(logn) 
time with O(nm operations. Thus our algo- 
rithm uses the same number of operations (O(n&j%)) 
as the algorithm by Albers and Hagerup[P] and by 
Dessmark and Lingas[ll] while our algorithm runs 
faster (in O(logn) time) than their algorithms (in 
O(lognloglogn) time on the CREW PRAM and in 
O(log3’2 n) time on the EREW PRAM). 

For the interger sorting problem of sorting n interg- 
ers in the range (0, 1,2, . . . . m - l}, all previous EREW 
and CREW conservative algorithms[2][11][21][24][26] re- 
quire O(n log n) operations when m is large, even when 
the time complexity is enlarged to polylogarithmic of 
n. Actually the number of opearations of best previous 
results is larger than O(n log n), however, we could as- 
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sume that these algorithms switch to comparison sorting 
when m is at certain threshold value. Our result is the 
first which sorts arbitrarily large integers with o(n log n) 
operations. Our EREW integer sorting algorithm sorts 
in O(logn) time with O(nm operations. This is 
for arbitrarily large values of m. 

Note that the best sequential integer sorting algo- 
rithm using linear space is due to Andersson[3]. Its 
worst case running time is O(nw). We present 
an algorithm (Theorem 4.1.) with O(10g~‘~ n) time 
and O(nm) operations and it runs in linear space. 
Therefore the operation complexity of our parallel algo- 
rithm matches the worst case time complexity of An- 
dersson’s sequential algorithm. 

We now turn to nonconservative integer sorting. 
Consider the problem of sorting n integers in the 
range {0,1,2, . . ..m - 1) on a computer with word 
length w. Hagerup and Shen[lS] showed that if 

= O(n logn log m) the sorting can be done in 
z(n) sequential time or in O(logn) time on a EREW 
PRAM with O(n/ logn) processors. Later Albers and 
Hagerup[2] and Andersson et al. [4] improved on the 
word length. Albers and Hagerup[P] showed that with 
w = 0 log n log logn logm) the sorting can be done 

1 in O(log n) time with O(n) operations on the EREW 
PRAM. The result of Andersson et ai.[4] show that the 
sorting can be done in O(logn) time with O(n) op- 
erations on the EREW PRAM with a word length of 
0( (log n)2+E log m). Dessmark and Lingas showed that 
the sorting can be done in O(lognloglogn) time and 
O(n) operations with a word length of O(log m log n). 
In this paper we improve on all these previous results. 
We show that the sorting can be done in O(logn) time 

with O(n 
\r 

y) operations on the EREW PRAM 

with a word length of O(k log m), where k is a parameter 
satisfying 15 Ic 5 log n. When t = log n our algorithm 
shows that the sorting can be done in O(log n) time with 
O(n) operations. We note that the main focus of this 
paper is to present conservative EREW algorithms for 
integer sorting. The nonconservative algorithm we de- 
signed is to be used as a subroutine in our conservative 
algorithms, although our nonconservative algorithm im- 
proves on best previous results. 

2 Nonconservative Sorting 

We present an EREW algorithm using word length 
O(log n logm) to sort n integers in the range 
{O,l, . . ..m - 1) in O(logn) time with O(n) operations. 
This EREW algorithm is based on the AKS sorting 
network[l], Leighton’s column sort[22] and Benes per- 
mutation network[7]. 

Since the word length is O(lognlogm) we can 

store logn integers in a word. Using the test bit 
technique[2][4] we can do pair-wise comparison of the 
log n integers in a word with the logn integers in 
another word in constant time using one processor. 
Moreover, using the result of the comparison the log n 
larger integers in all pairs can be extracted into one 
word and the log n smaller intergers in all pairs can be 
extracted into another word and this can also be done 
in constant time using one processor[2][4]. Without 
loss of generality we may also assume that logn is a 
power of 2. We first pack n input integers into nllogn 
words with each word containing logn integers. We 
then imagine an AKS sorting network being built on 
these n/ log n words. On the AKS sorting network we 
compare two words at each internal node of the network. 
Thus each node of the AKS sorting network can be used 
to compare the log n integers in the word in parallel. At 
the output of the AKS sorting network we have sorted 
log n sets with the i-th set containing i-th integers in all 
n/log n words. In terms of Leighton’s column sort[22] 
we can view that we place II integers in log n columns 
with each column containing n/logn integers. At the 
output of the AKS sorting network, every column is 
sorted. The principle of Leighton’s column sort says 
that to sort n integers we need only sort logn columns 
for a constant number of times and perform a fixed 
permutation among the n integers between each sort 
(of columns). Besides these fixed permutations are 
simple permutations such as shuffle, unshuffle and shift. 
Applying this principle, we perform a fixed permutation 
among the n integers after they are output from the 
AKS sorting network. The permutation can be done 
by disassembling the integers from the words, applying 
the permutation and then reassembling the integers into 
words. Thus each sorting on columns and permutation 
can be done in O(logn) time. According to Leighton’s 
column sort we need only a constant number of passes of 
sorting and permutation. Thus the sorting of n integers 
can be done in O(log n) time. The operations consumed 
by our algorithm is O(n). Puote also that the sorting 
can be made stable by appending address bits to each 
integer. 

For our purpose we also need the following scheme 
to accomplish the permutation mentioned above. The 
permutation can also be done by routing the integers 
through a network N which is the butterfly network in 
conjunction with a reverse butterfly network(see Fig. 
1.). For permutations N can be used to emulate the 
Benes permutation network[7]. Each stage of the but- 
terfly network emulates the processor connection along 
a dimension on the hypercube and switches integers be- 
tween words or within words (this is where we need log n 
to be a power of 2). Therefore each stage of the but- 
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terfly network can be done in constant time. Because 
butterfly network has O(logn) stages, the permutaion 
can be done in O(logn) time. Note that since the per- 
mutations we performed here are fixed permutations the 
setting of the switches in the butterfly network can be 
precomputed. 

Figure 1: A permutation network. 

THEOREM 2.1. n intergers in the range { 0, 1, . . . . m- 1) 
can be sorted on the EREW PRAM with word length 
O(log n log m) bn O(log n.) to‘me using O(n) operations 
and O(n) space. 

The principle of Theorem 2.1 can be applied to 
the case where we can pack more than logn integers 
into one word. However, in order to apply a recursive 
version of Leighton’s column sort[22] to sort n integers 
in constant number of passes (of sorting columns and 
permuting), the number of columns cannot be greater 
than n’ for a constant 0 < c < 1. Therefore we cannot 
pack more than nf integers into one word and then 
apply the principle of Theorem 2.1. Also we may use 
more columns than the number of integers packed in one 
word. For example we may use log2 n columns in the 
column sort even when the number of integers packed 
in a word is logn. 

The following corollary can now be easily shown. 

COROLLARY 2.1. n integers in the range (0, 1, . . . . rn - 
1) can be sorted on the EREW PRAM with word length 
O(k log m), 1 5 k 5 logn, in O(logn) time using 

O( y) operations and O(n) space. 

3 Sorting Integers in (0, 1, . . . . R - 1) 

We first consider sorting with word length O(log n). For 
our purpose we assume that e is a power of 2. 

3.1 Outline 
If input integers with the same value are linked 

in a linked list according to the order they appear in 
the input, then an additional O(logn) time and O(n) 
operations suffice for the sorting. This is because we 
can use linked list contraction[5] to group integers of 
the same value together. Because we are sorting integers 
from (0, 1,2, . . . . R - l}, the first integer in each linked 
list can put themselves into buckets. Because there are 
only n buckets integers dropped into the buckets can be 
collected in O(logn) time and O(n) operations. 

Our goal, therefore, is to link integers of the same 
value into a linked list. Initially we put all input integers 
into one linked list. As the computation proceeds, each 
linked list is split into several linked lists. When the 
computation ends, all integers with the same value will 
be linked into a linked list and integers with different 
values are in different linked lists. 

The basic idea of the sorting algorithm is linked list 
splitting. Let ao, al, . . . . an-1 be the input integers. The 
algorithm has *stages. In each stage we examine 
-bits (we say that we reveal mbits). Initially 
no bits are revealed. In the first stage we revea1 the most 
significant &$i bits. In the second stage we reveal the 
next e bits, and so on. We maintain the property 
that all intgers are linked in a linked list if their revealed 
bits are the same(of the same value). If the revealed bits 
for two integers are different then the two integers are 
in different linked lists. Initially all integers are linked 
into one linked list with ai+l following ai in the linked 
list. After the first stage, the input linked list is split 

into at most 2*linked lists because e bits are 
revealed. After the second stage each linked list further 

splits itself into at most 2Glinked lists. And so on. 
Now we discuss how each linked list is split in each 

stage. A linked list is very short if it contains no more 
than log n elements(integers), is short if it contains less 

than 24G elements, is long if it contains at least 

24fi elements. We first group every consecutive S 
elements(integers) in the linked list into one group. For 
a short linked list S is the number of total elements 
in the linked list. For a long linked list S varies from 

group to group but is at least 24s and no more 

than 2’fi We shall discuss further how to do 
this grouping later. For the moment we can consider 
grouping as contracting the S elements into one node 
and/or as ranking the S elements along the linked list 
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within the group. We then sort integers in each group in 
parallel. Because revealed bits for the previous stages 
for integers in the linked list is identical and because 
we reveal additional fi bits in this stage, we are in 

fact sorting no more than 2’6 e-bit integers in 
each group. By our nonconservative sorting algorithm 
presented in the previous section, the sorting can be 
done in O(m time and O(S) operations for the 
group (or O(n) operations for all linked lists). Note 
that if a short linked list contains too few integers 
the column sort cannot be applied (see the paragraph 
immediately after Theorem 2.1). If a linked list is very 
short we simply sort the revealed bits on the list by a 
comparison sorting algorithm[l][9]. Since there are at 

most n/ 2G very short linked lists at the beginning 
of the last stage (this is where we reallocate processors 
for the last time) we can allocate one processor for each 
integer in such linked lists according to revealed bit 
patterns of each such linked list. At the beginning of 

other stages there are much less than n/2* very 
short linked lists. 

If the linked list is short there is only one group in 
the linked list. The sorting will then enable us to split 

the linked list into t 5 2* linked lists such that each 
linked list split contains all integers whose revealed bits 
are the same, where t is the number of bit patterns for 
the revealed bits. Here we note that for short linked list 
t could be less than 2 * (for example if the revealed 
bits for all integers are the same t will be equal to 1). 

If the linked list is long we will always split the 

linked list into exactly 2* linked lists no matter how 
many different bit patterns are revealed by the revealed 
bits. After sorting in each group, integers in each group 

are split into 2* linked lists. If a bit pattern among 

the 2G bit patterns does not exist in the revealed 
bits we create a linked list containing only one dummy 
element representing this pattern. Note that no more 

than 26 dummy elements will be created for each 
group. For consecutive (neighboring) groups on a long 
linked list we then join the split linked lists in the groups 
such that linked lists with the same revealed bits are 
joined together. With the help of those dummy elements 

we now have split a long linked list into exactly 26 
linked lists. 

With the existense of dummy elements in the linked 
list, the splitting process should be modified a little bit. 
For a short linked list, after the grouping all dummy 
elements will be eliminated. For a long linked list, the 
dummy elements will also be eliminated after grouping, 
but new dummy elements could be created. 

Since each group on a long linked list has at least 

24* elements and since each such a group creates 

at most 2 G dummy elements, the total number 
of dummy elements created in a stage is at most 

7~/2~4=. D ummy elements generated in a stage are 
eliminated in the next stage and new dummy elements 
are generated for the next stage. For a total of m 
stages the total number of dummy elements generated 

is no more than cr~&/2~& for a constant c. 
Let us estimate the complexity. Since each stage 

takes O(m time and O(n) operations, for a total 
of m stages the time complexity of the algorithm is 
O(log n) with O(nm operations. 

3.2 Implementation 
The subtlety of our algorithm is at how to do 

grouping, where to place dummy elements and how to 
maintain the space complexity within O(n). Grouping 
should be done with linked list contraction. However, 
we can not apply any existing linked list contraction 
algorithms directly to obtain O(m time and O(n) 
operations for a stage because we need an algorithm to 
do partial linked list contraction. The dummy elements 
generated need to be placed within O(n) space so that 
processors can be allocated to them. For the space 
complexity consideration, after grouping we need sort 
integers within each group and this may seem requiring 
that we place the integers in a group in consecutive 
memory locations. If we allocate O(n) memory for 
placing all integers such that all integers in a group 
occupy consecutive memory locations, then it would 
need @log n) time while we can expend only O(m 
time in each stage. What we could do instead is to 

allocate a two dimension array with 25* rows and 
n columns. We place the linked lists in the first row. 
For each group, we could put the integers in the group 
in the j-th column of the array if the first integer in the 
group is in column j. Thisscheme facilitates sorting. 
The only shortcoming of the scheme is that it uses more 
than O(n) space. We give schemes from which all the 
problems mentioned above can be resolved. 

For implementation purpose we reveal e bits 
in each stage except the last stage which revegls 4fi 
bits. A linked list is very short if it contains no more 

than 22* integers, is short if it contains less than 

26fi integers, is long if it contains at least 26Jl;pn 
integers. A group on a short linked list contains all 
integers in the list. A group on a long linked list contains 

at least 26* but less than 27G integers. 
We modify our linked list construction. Instead 

of linking elements(integers) from memory location to 

memory location, we require that every 2 2G elc+ 
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ments in a linked list occupy consecutive memory lo 

cations and the first element among these 2 2dF elc+ 

ments is at a memory cell j where j mod 22G = 0. 

We call such 22G elements a block. Thus if we 
walk down the linked list, we visit 2 2&z consecu- 
tive memory locations, then follow the pointer to an- 

other memory location, then visit another 2’s con- 
secutive memory locations, and so on. We call such a 
linked list a blocked linked list. For all the linked lists 
split we maintain this property (except the linked lists 
split at the end of last stage). This property facilitates 
linked list contraction. The condition on memory cell 
j m& z2G = 0 ensures that processors can be al- 
located to the elements in the linked lists. Because we 
use n/m processors, one processor is allocated for 
m elements or integers. 

Now consider grouping. Because linked lists are 
blocked, the linked list contraction for the bottom 

22* elements are automatically done. That is, 
for a linked list II of length S, we can view it as 
being already contracted to a linked list 12 of length 
spJ=, For the further contraction of 12, we 
can allocate one processor for each node in 12. We 
then repeatedly apply symmetry breaking schemes by 
Han[16][17] and B eame[l3] to break 1s into lists of length 
no more than log(‘) n (c is a constant, log(r) R = log R, 
log(‘) n = log log(‘-‘I n) and pointer jumping technique 
of Wyllie[27] to contract 11 until at least S elements are 
contracted into one node, where for a short linked list 
S is the number of elements on the linked list and for 
a long linked list S is at lease 26fi but no more 

than 27Ji0gn. The contraction can thus be done in 
O(m time with O(S) operations for the linked list 
(O(n) operations for all linked lists). 

After sorting integers in a group, integers with the 
same revealed bits (bit pattern) are consecutive on the 
linked list. However, the number of integers with the 

same revealed bits may not be a multiple of 2”G. 
To maintain the blocking property of the linked list, we 
add minimum number of dummy elements for each bit 
pattern so that the number of integers within each group 

with the same bit pattern become a mutiple of 22G. 
For a short linked lit, if the number of different bit 
patterns for the integers in the list is B we add at 

most B22G dummy elements. There are ,at most 

n/246 diff erent bit patterns (this is the maximum 
number of different bit patters at the beginning of the 
last stage and we do not maintain blocking property at 
the end of the last stage). Therefore the totol number 
of dummy elements added for all short linked lists for 

all stages is bounded by ,7~/2~*. For a group in 

a long linked list, we add at most 23s dummy 
elements. Note that, if a bit pattern does not exists 
among the revealed bits for the integers in the group, 
22& du mmy elements will be added to keep the 

blocking property. Since ea.ch group has at least 26* 
integers the total number of dummy elements added 
for all long linked lists for all stages is bounded by 

n&Y-l/234=. 

As dummy elements are created! where should them 
be stored? We need a scheme such that all input 
integers as well as dummy elements created are stored 
in O(n) space so that processors can be allocated to 
them. We use an array of 3 rows and n columns. 
The input integers and their links are stored in the 

first row. A block of 22G elements (containing 
dummy elements) for integers on each short linked list 
is stored at the second row. There is one such block 
for each revealed bit pattern. Therefore memory at the 
second row can be allocated according to the revealed 
bits. The third row is used for storing some integers 
in long linked lists. In each stage we sort integers 
in a group on a long linked list. Let us assume this 
sorting is done. Let Si be the number of integers 
(within the group) with the same revealed bit pattern pi 
(these integers are now consecutive on the linked list). 

For every 2 4* integers along the linked list among 
these Si integers we move the last 22G integers 
from the first row to the third row, storing them in 

columns where the first 22fi integers are stored in 
the first row. This placement ensures that there is at 

most 22G integers stored on the third row for every 

2’G integers along the linked list at the first row. 

We call the 24G ’ t m egers with the same revealed bit 
pattern along the linked list at the first row a segment. 
What we did is essentially place a block on the third 
row for each segment on the first row. Because the 

group has at least 2”G integers and only 2* 
revealed bit patterns, roughly speaking there are at 

least (26* - 25G)/24* segments. Thus we 

have placed at least ft3* integers on the third row. 

Therefore we have at least 23* empty positions 

(Zfiblocks) at the first row where we can store newly 
created dummy elements. After linked list in a group 
is split and joined with linked lists in the neighboring 

groups, there are at most 22G integers stored in the 

third row for 2’Ji0gn consecutive integers on a linked 
list in the first row. For the next stage, there will be 
integers stored in the third row which is carried over 
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from previous stages and there will be new integers 
to be stored in the third row. In each stage we first 
“remove” integers from the third row (and may place 
them in the first row after sorting the integers in the 
group). After sorting within the group we place new 
integers on the third row. Suppose there were at most 

t2’G integers on the third row for every 2 4&G 

integers (a segment) on a linked list at the first row. Let 
S be the number of integers within the group of a long 

linked list. Then there were at most St22&/24G 
integers at the third row. Roughly speaking there are at 

lease (S - 25+)/24fi < S/(C~~=) seqments, 
where c < 1.5 is a constant. Distribute these integers 

among these segments, there will be ~t2~fi integers 

per segment. Plus we will add 22G integer to the 
third row for each segement in the current stage, the 
number of integers stored at the third row per segement 

will be < 2t22s. Th ese 2t22* integers have the 

same revealed bit pattern as that of the 24* integers 
stored in the first row (note that integers stored in the 
third row in the previous stage are “removed” and in 
the current stage they may be placed in the first row 
(or third row)). Aft er a total of m- 4 stages, there 

are at most 23* integers stored in the third row for 
every segment on the linked list at the first row. The 
scheme given here ensures that all integers and dummy 
elements are stored in O(n) space. 

Due to page limit we omit the presentation on how 
to sort each group in linear space. 

Before the beginning of the last stage (which reveals 
4e bits) we use linked list ranking[5] to move 
all integers in a linked list into consecutive memory 
locations. Therefore in the last stage the integers to 
be sorted are based on arrays instead of linked list. 

THEOREM 3.1. n integers in the range {0,1,2, . . ..n-1) 
can be sorted in O(logn) time and O(n) space with 
O(nm operations on the EREW PRAM with word 
length O(logn). 

4 Sorting Integers in {O,l, . . ..m - 1) 

Consider the problem of sorting integers in the range 
{O,l, . . . . . m - 1). All known conservative CREW 
and EREW parallel algorithms[2][ 1 I] [24], even allow- 
ing polylogarithmic running time, will eventually use 
O(n log n) operations when m is sufficiently large. What 
we have achieved is an algorithm which sorts in O(log n) 
time with O(nm operation. The presentation of 
this algorithm will take too much space. However, this 
algorithm is a speeded-up version of a slower but sim- 
pler algorithm which captures the main ideas of the fast 
algorithm. Here we present the details of this simpler al- 

gorithm. This algorithm runs in O(log3’2 n) time with 
O(nJiZjjZ) operations. We note that the linked list 
splitting idea presented in the previous section does not 
apply here and therefore new ideas are needed. 

First let us outline our approach. We use 
bit [i] to denote bits i logm/e through (i + 
1) log m/&j’%- 1 (bits are counted from the least sig- 
nificant bit starting at 0). [i : j] is used to denote bits 
PI, [i+11, . ..> [A ( or empty if j < i). We use aIi] to denote 
bits i log m/e through (i+ 1) log m/m- 1 of a. 
a[i’jl is used to denote bits afi], aLi+l], . . ..abl (or empty 
if j < i). To sort n integers with each integer containing 
logm bits we could use G passes. The i-th pass, 
0 < i < e, sorts bit [e- i - 11. Note that we 
are sorting from high order bits to low order bits. At 
the beginning of i-th pass the input integers are divided 
into a collection C of sets such that integers in one set 
have the same value in bits [fi - i : fi - 11. In 
the i-th pass we can sort integers in each s E C inde- 
pendently and in parallel. We call the sorting problem 
formed by integers in an s E C an independent (sort- 
ing) problem (or an I-problem for short). The sorting 
in the i-th pass further subdivides each s E C into sev- 
eral sets with-each set forms an I-problem for the next 
pass. Note that if a set sr resulted from the subdivision 
(sorting in the i-th pass) of s E C is a singleton, then 
the integer a E sr needs not to be passed to the next 
pass because a has been distinguished from other inte- 
gers and the final rank of a can be determined. When 
we say an I-problem p we refer to the integers passed 
from the previous pass to the current pass which form 
p. When integers in p are sorted in the current pass 
some of them will be passed to the next pass and these 
integers are no longer in p. After current pass finishes, p 
refers to those integers in the singletons which remained 
and not passed to the next pass. Because in a pass we 
sort logm/m bits only while each word has logm 
bits, each pass can be computed with O(nm op- 
erations (by Corollary 2.1). This will give us a total of 
O(n log n) operations for the algorithm. To reduce the 
number of operations, we pipeline all passes. Integers 
will be passed from the i-th pass to the (i+ I)-th pass as 
soon as enough number of integers with the same bits 
[e-i- 1 : e - l] are accumulated instead of 
at the end of the i-th pass. The details will be explained 
in the following several paragraphs. 

In our algorithm the computation is organized into 
J&i levels. Each level represents a pass explained in 
the above paragraph. There are m stages in each 
level and stage ir at level Ii is executed concurrently 
with stage i2 at level 12 > ZI, where ii - i2 = 12 - II. 
Each stage takes O(logn) time and O(n) operations. 
There are a total of 2,/&$ stages in the algorithm. 
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The computation at level i, 0 5 i < &$, is to work 
on bits [m - i-l]. We use array I[0 : n-l] 
to represent the n input integer and use I[i : j] to 
denote l[i], I[i + 11, , I[j]. Although the computation 
at each level is similar, to describe the computation at 
an arbitrary level will be too complicated. Instead we 
describe the computation at levels 0 and 1 and then 
generalize it to arbitrary levels. 

The computation at level 0 is to sort the n input in- 
tegers by their most significant log m/e bits. Each 

stage at level 0 is to merge 2 &G- sorted sequences. 
That is, the sorting at level 0 is guided by a complete 

2*-ary tree. Each level of the tree represents the 

2*-way merge in a stage. After stage s and before 

stage s+ 1 there are n/2’* sorted sequences. Sup- 

pose integer alJl’ogn-ll is in the sorted sequence S. a 
will remain in level 0 of the algorithm as long as there 

are less than 2* integers bl*-‘l in S such that 
el&%il = @G-l1 (note that all these integers 
are now consecutive in memory). Once this condition is 
not satisfied a will be moved to level 1. Thus one func- 
tion of level 0 is to group integers a [*-ll and once 
there are enough integers of the same value grouped to- 
gether they are sent to level 1. When enough integers 

of the same value u[G-~~ are grouped together in a 
sorted sequence S and are sent to level 1 we create a 

dummy with value aI=-11 and place this dummy in 
S in level 0 to replace the integers sent to level 1. If 
in a subsequent merge some integers of the same value 

u[~-~] are grouped together with the dummy, all 
these integers (no matter how many) are sent to level 
1 and we need only one dummy to represent these in- 
tegers at level 0. Of course when dummies with same 
value a[dGell are grouped together by the merge only 
one dummy needs to remain while others can be dis- 
carded. After the sorting(i.e. all ,&Z stages) in level 
0 finishes, integers a remain in level 0 are those that do 

not have 2G or more input integers with the same 
ar&=a al v ue. For integers with the same a #G-l1 

value in level 0 (there are less than 2* of them) 
we sort them by their whole integer value (not just the 
most log m/m bits) by comparison sorting [1][9]. 
Because each such comparison sorting is on no more 

than 26 1 e ements, the number of operations will be 
bounded by O(nm. After this comparison sorting 
all integers and dummies at level 0 are sorted. Level 0 
has divided integers passed to level 1 into I-problems. 

Integers a with the same al=-11 value which are 
passed to level 1 are in one such I-problem. Now we 
need to sort integers in each I-problem independently 

and in parallel. 
Now consider the computation at level 1. We con- 

sider only one I-problem. The problem is to sort inte- 

ger a’s by a[*-21 value, where the value alfi-il 
for all a’s are identical. The sorting at level 1 also 
has e stages and is also guided by a conceptual 

2=-ary tree. However, many of the leaves may be 
empty because no integer is passed from level 0. Stage 
s at level 0 and stage s - 1 at level 1 (and stage s - i 
at level i) are executed concurrently. Immediately after 

stage 0 at level 0 all integers a with the same a [Jiopn- 11 

values in 1[i2& : (i + 1)2* - l] are grouped to 

gether, where 0 < i < n/2&. If there are integers a 

in I[~‘26 : (i + 1)2& - l] which have the same 
ar~-rl lu va e and are passed down to level 1 in stage 
0 of level 0, these integers are merged (sorted) by the 

26-way merge on the a 1+K21 value in stage 0 at 
level 1. In stage 1 at level 0 all integers a with the same 
a[Gvll values in I[i22fi : (i + 1)226 - I] are 

grouped together, where 0 5 i < n/22&, Consider 

integers a with the same af&-rl value in I[i2’6 : 

(i + 1)22fi - 11. These integers are grouped into a 

collection C of at most 2* groups in stage 0 of level 

0 (one group coming from Ilj2+z” : (j+ 1)2+z” - 11, 

i2d”zn < j 5 (i+ 1)2@‘z” - 1). These 2dl”zn groups 
are further grouped into one group G in stage 1 of level 
0. If some groups in C are passed down to level 1 at 
stage 0 of level 0, These passed down groups are sorted 
in stage 0 at level 1 (which execute in parallel with stage 
1 of level 0). If there is at least one group passed down 
to level 1, there will be a dummy at level 0 and there- 
fore all integers in G wiIl be passed down at stage 1 
of level 0. By using the dummies at level 0 we will be 
able to build a linked list to link integers passed down 
at stage 0 with integers passed down at stage 1. And 
by executing linked list ranking[5] we can then move all 
integers in G into consecutive memory locations. Note 
that linked list linking and ranking here also maintain 
the stable property for sorting. Our intention is to do 
a2G -way merge (one way for integers in a group in 
C) at stage 1 of level 1. However, for a group g in C 
which are passed down at stage 1 of level 0 the integers 

a in g are not sorted by ~[JioTg;;-~l and therefore it can- 

not participate in the 2=-way merge directly. What 
we do is to first sort integers a in g by bit [fi - 21 
and then perform the merge. Becuase g contains less 

than 2G integers and because sorting is performed 
on integers each having logm/&$i bits the sorting 
can be done in O(m time and linear operations by 
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Theorem 2.1. The situation where g contains too few 
integers can also be treated. 

Thus at level 1 we are forming sorted sequences 
(sorted by bits [m - 2 : m - 13) and re- 
peatedly merge the sorted sequences. Suppose inte- 

ger c~lfi-~‘~-il is in the sorted sequence S. 
a will remain in level 1 as long as there are less 
than 2~ integers b[dGs2:~-lI in S such 
that a[&F-2:&Fe11 = bt~-2&%-11 tnote 
that all these integers are now consecutive in mem- 
ory). Once this condition is not satisfied a will be 
moved to level 2 and we will create a dummy with 

value c~I~-~‘*-il at level 1 to replace the in- 
tegers moved to level 2. As we did in level 0, for in- 
tegers a stayed in level 1 and never passed to level 

2, there are less than 2G integers with the same 
a[~-2:~-1] values and therefore we can sort 
them by their whole integer value using parallel com- 
parison sorting after the (fi - 1)-th stage at level 
1. 

The relation of level 2 to level 1 is the same as that 
of level 1 to level 0. In general, integers passed to level i 
are divided to belong to I-problems with each problem 

containing integer a’s with the same a [&gE-i:&Y-z- 11 

value. In each such problem at level i integers are either 
sorted at level i (by repeated 2G-way merge) or 
passed down to level i + 1. Integers passed to level i + 1 
are divided at level i into I-problems such that integer 

a’s with the same ~l~-~-~:~-rl value are in one 
I-problem. 

There are a total of 2&$ stages executed in’ 
our algorithm. After these stages and after we use 
parallel comparison sorting to sort integer o’s with the 
same oIG-i-l’~-ll value at level i, integers at 
all levels are sorted. We can then build a linked list. 
For integers and dummies in each I-problem we simply 
let each element point to the next element. We then 
“insert” integers sorted in each I-problem p at level i 
into the position of the corresponding dummy at level 
i - 1 by using a pointer from the dummy to pointing 
to the first integer in p and using another pointer from 
the last integer in p to pointing to the successor of the 
dummy. We therefore build a linked list for all the 
integers and these integers are in sorted order in the 
linked list. After a linked list ranking[5] we have all the 
integer sorted. 

At the end of each stage of our algorithm we 
use linked list ranking[5] and standard parallel prefix 
computation[l9] to move integers and dummies belong- 
ing to each I-problem in consecutive memory locations 
so that next stage can proceed. For example, integers 

in an I-problem p at level i need to be packed to consec- 
utive memory locations because some integers in p are 
passed to level i + 1. When some integers and dummies 
in p are grouped into one group by the merging at level i 

because they have the same a [-&E-i-1:&-1] value 

we build linked list to link the integers at level i with the’ 
integers already at level i + l(they are represented by 
the dummies at level i). We use linked list ranking and 
prefix computation to move these integers in one group 
into consecutive memory locations. Because linked list 
ranking and prefix computation can be done in O(log n) 
time and O(n) operations they are within the time and 
the number of operations allocated to each stage. Note 

here that we generate one dummy for at least 2* in- 
tegers in each stage. Thus for all stages the total number 

of dummies generated is bounded by 2nG/2=. 

Now we discuss the x 5 2*-way merge per- 
formed on a collection C of x sorted sequences in each 
stage at each level. The integers to be merged are in con- 
secutive memory locations and processors can be easily 
allocated to them. The integers we are considering here 
has only log m/e bits while each word has logm 
bits. We have to accomplish the merge in O(log n) time 
and linear number of operations. If the total number 

of integers to be merged together is N < 22* we 
simply sort them by using Theorem 2.1. Otherwise 

N 1 22G and we sample every 2*-th integer 

from each of the x 5 26 sorted sequence (to be 

merged). If a sequence has no more than 2 &G in- 
tegers we sample its first and last integers. The total 

number of sampled integers is no more than 2N/2=. 
We sort all sampled integers into one sequence S using 
parallel comparison sorting[I][9]. We make z copies of 
S. We then merge one copy of S with one sequence in 
C. Suppose sr , ~2, sr 5 ss, are two consecutive integers 

in S. Then there are no more than 2* integers in 
each sequence in C which are 5 s2 and > sr (for equal 
integers their order is determined first by the sequence 
they are in and then by the position they are in the 
sequence). These integers form a merging subproblem. 
Because S is merged with each sequence in C, the orig- 
inal merging problem is now transformed into ISI + 1 
(IS] is the number of integers in S) merging subprob 
lems each of them is to merge z subsequences with each 

subsequence containing at most 26 integers (they 
come from a sequence in C). For each merging sub 
problem we use Theorem 2.1 to sort all integers in the 
subproblem. Again the situation where a merging sub- 

problem contains too few integers can be treated. 

It can now be checked that the 2G-way merge 
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in each stage at each level takes O(log n) time and linear 
operations. At the end of each stage we use linked 
list ranking and parallel prefix computation to move 
integers belonging to each I-problem into consecutive 
memory locations. These computation takes O(log n) 
time and O(n) operations. Therefore each stage takes 
O(log n) time and O(n) operations. 

THEOREM 4.1. n integers in the range {O,l, . . . . m - 1) 
can be sorted in O(log3/2 n) time and O(n) space with 
O(nJG@L) operations and O(log(m + n)) word length 
on the EREW PRAM. 

The presentation of the algorithm for the following 
theorem takes several pages and will be given in the full 
version of the paper. 

THEOREM 4.2. n integers in the range (0, 1, . . . . m - 
1) can be sorted in O(logn) time with O(nm 
operations and O(log(m+n)) word length on the ERE W 
PRAM. 

Note that the algorithm of Theorem 4.2 does use 
nonlinear space. This is a disadvantage of our algorithm 
which we currently do not know how to overcome. 

To sort n integers in the range (0, 1,2, . . . . m - 1) 
with word length L log m bits we modify our algorithm 
to sort O(log m . dm) bits in each levei and 

use 2G-way merge at each level. This will give 

O(log n) time and O(n d F) operations. 
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