
419

Parallel Integer Sorting Is ,More Efficient than Parallel
Exclusive Write PRAMS

Comparison Sorting on

Abstract

Yijie Han* and

We present a significant improvement on parallel integer
sorting. Our EREW PRAM algorithm sorts n integers in

the range {O,l, m - 1) in time O(log n) with O(n
d-

log n T)

operations using word length klog(m + n), where 1 5 k 5

log n. ‘When k = log n this algorithm sorts 71 integers in
O(log n) time with linear operations. When k = 1 this

algorithm sorts n integers in O(log n) time with O(nm

operations.

1 Introduction

Sorting is a classical problem which has been studied by
many researchers. For elements in an ordered set com-
parison sorting can be used to sort the elements. It is
well known that comparison sorting has time complex-
ity fJ(nlogn). In the case when a set contains only in-
tegers both comparison sorting and integer sorting can
be used to sort the elements. Since elements of a set
are usually represented by binary numbers in a digital
computer, integer sorting can, in many cases, replace
comparison sorting. The only time lower bound for in-
teger sorting is the trivial linear bound of Q(n). Radix
sorting does demonstrate O(n) upper bound for sorting
n integers in the range {O,l,...,n’ - l}, where t is a
constant. Researchers worked hard trying to show that
for integers in any range integer sorting can outperform
comparison sorting[4][12][18][20]. Fredman and Willard
first showed [12] that n integers in any range can be
sorted in O(na time, thereby demonstrating that
in the sequential case integer sorting is more efficient
than comparison sorting. However, prior to this pa-
per no deterministic parallel integer sorting algorithm
outperformed the lower bound for parallel comparison
sorting on any parallel computation models. We show,
for the first time, that parallel integer sorting is more ef-
ficient than parallel comparison sorting on the exclusive

‘Electronic Data Systems, Inc., 750 Tower Drive, CPS,
Mail Stop 7121, Troy, MI 48098. yhauOl&ps.plnin.gmeds.com,
http://welcome.to/yijiehan

tcomputer Science Telecommunications Program, University
of Missouri - Kansas City, 5100 b&hill Fbad Kansas City, MO
64110. xshen&stp.umkc.edu

Xiaojun Shent

write PRAMS.
The parallel computation model we use is the

EREW PRAM model[l9]. Parallel algorithms can
be measured by their time complexity and operation
complexity which is the time processor product. The
operation complexity of a parallel algorithm can also
be compared with the time complexity of the best
sequential algorithm for the same problem. Let Ti be
the time complexity of the best sequential algorithm
for a problem, TP be the time complexity of a parallel
algorithm using p processors for the same problem.
Then TP . p 2 Tl. That is, Ti is a lower bound for
the operation complexity of any parallel algorithm for
the problem. A parallel algorithm is said to be opitmal
if its operation complexity matches the time complexity
of the best sequential algorithm, i.e. TP .p = O(Tl).

In order to outperform parallel comparison sorting
on the exclusive PRAM models (i.e. CREW PRAM
and EREW PRAM) one has to exhibit a parallel algo
rithm which matches the time lower bound for paral-
lel comparison sorting and outperforms the operation
lower bound for parallel comparison sorting. Note that
we cannot outperform the time lower bound (only to
match it) because on the CREW and EREW PRAMS
the time lower bounds for parallel comparison sorting
and for parallel integer sorting are the same, namely
Q(log n)[lO]. The operation lower bound for parallel
comparsion sorting is Q(nlogn) due to the time lower
bound for sequential comparison sorting. Known par-
allel algorithms failed to outperform the lower bound
for parallel comparison sorting because of the following
reasons.
1. Parallel algorithms are known [2][4][11][18][24] to
have operation complexity of o(n log n) when they are
running slower than the time lower bound for parallel
comparison sorting. But they failed to have o(n logn)
operations when made to run at the time lower bound.
For example, the CREW algorithm given in [2] (the
best prior to this paper) has operation complexity
O(nm when running at time O(logn log log n).
But the time lower bound for comparison sorting on
the CREW PRAM is R(logn)[lO]. It is not clear how
to make the algorithm in [2] to run in O(logn) time.

420

Also the CRCW algorithm in [4][18] has operation com-
plexity O(n log log n) when running at time O(logn).
But the time lower bound for comparison sorting on the
CRCW PRAM using polynomial number of processors
is Q(log n/ log log n)[6].
2. Parallel algorithms are known [2][8][26] that have
operation complexity o(n log n) and time which matches
the time lower bound for parallel comparison sorting
when sorting on small integers. These results fail to
outperform parallel comparison sorting when sorting
on large integers. For example, the previous best
results in [2][11] h s owed that n integers in the range

{O,l,2%=)) can be sorted in O(log n) time and
linear operations. No previous deterministic algorithms

showed that integers larger than 2 0(&G) can be
sorted in O(log n) time with o(n log ra) operations on
exclusive write PRAMS.
3. Parallel algorithms are known [4][15] to outperform
parallel comparison sorting by using a nonstandard
word length (word length is the number of bits in each
word). But they fail to outperform on a standard
PRAM where word length is bounded by O(log(m + n)).
For example in [43 it is shown that sorting 7~ integers
in the range {O,l,m - 1) can be done in O(logn)
time with O(n) operations on the EREW PRAM with
a word length of O((logn)2+‘logm). The use of
extra bits in word length in parallel integer sorting is
generally regarded as excess. Note that even in this case
(use nonstandard word length) we improve all previous
results.

In this paper we show for the first time that on
the exclusive write PRAMS parallel integer sorting is
more efficient than parallel comparison sorting. For
sorting n integers in the range (O,l,m - 1) our
results demonstrate the curve for operation complexity

O(n J-
!t$ h w en using word length k Iog(m + n),

where 1 <, k < log n, while our algorithm runs in
O(logn) time. When I = 1 our algorithm uses standard
word length log(m + n) and runs in O(log n) time with
O(nJTo’;gfi) operations. This algorithm outperforms
parallel comparison sorting on the CREW and EREW
PRAMS. Note also that the integer sorting algorithms
presented in this paper are stable sorting algorithms.

There are many previous results on parallel inte-
ger sorting [2][4][8][11][14][15][18][21][23][24][25][26]. We
give a brief comparison of our results with the previous
results.

An important parameter in integer sorting is the
word length w which is the number of bits in a word.
Much effort has been spent toward finding good in&
ger sorting algorithms which are conservative in the
sense that they do not use extra bits. According to

Kirkpatrick and Reisch[20] an integer sorting algorithm
sorting n integers in the range {O,l, . ..?m - 1) is said
to be conservative if the word length is bounded by
O(log(m + n)). Significant progress has been made re-
cently in this regard. Andersson et al [4] and Han and
Shen[l8] showed conservative integer sorting algorithms
which sorts n integers in the range (0, 1,2, m - 11
in O(logn) time with O(n loglogn) operations on the
CRCW PRAM. This also implies a conservative sequen-
tial algorithm with O(rz log log n) time. Although much
progress has been made on parallel integer sorting on
the CRCW PRAM[4][8][14][18] which allows simultane-
ous read and write to shared memory cells, significant
difficulties exist when parallel integer sorting algorithms
are to be designed on PRAMS which do not allow si-
multaneous write. In fact, for sorting n integers in the
range {O,l,n- 1) which is considered to be the most
important and standard case, previous best conserva-
tive parallel algorithms running in O(logn) time on
CREW and EREW PRAM use O(nlog n) operations.
Rajasekaran and Sen[24], Albers and Hagerup[2] and
Dessmark and Lingas[ll] were able to reduce the num-
ber of operations to o(nlogn) on the CREW PRAM
and EREW PRAM when the running time is enlarged
to over O(logn). Currently the best result due to
Albers and Hagerup[2] sorts in O(Iog n log log n) time
with O(nfi) operations on the CREW PRAM.
On the EREW PRAM the algorithms in [2][24] sort
in O(log n log log n) time with O(n log n/ log log n) op-
erations. Very recently Dessmark and Lingas pre-
sented an improved EREW algorithm[ll] which sorts in
o(log3’2 n) time with O(nm operations. Thus in
regard to the best previous results one cannot sort bet-
ter than the comparison sorting algorithm[l][9] (which
uses O(n log n) operations) if he is to sort as fast as the
comparison sorting algorithm (using O(logn) time) on
the CREW and EREW PRAMS.

In this paper we significantly improve on this situa-
tion. Our EREW PRAM algorithm sorts in O(logn)
time with O(nm operations. Thus our algo-
rithm uses the same number of operations (O(n&j%))
as the algorithm by Albers and Hagerup[P] and by
Dessmark and Lingas[ll] while our algorithm runs
faster (in O(logn) time) than their algorithms (in
O(lognloglogn) time on the CREW PRAM and in
O(log3’2 n) time on the EREW PRAM).

For the interger sorting problem of sorting n interg-
ers in the range (0, 1,2, m - l}, all previous EREW
and CREW conservative algorithms[2][11][21][24][26] re-
quire O(n log n) operations when m is large, even when
the time complexity is enlarged to polylogarithmic of
n. Actually the number of opearations of best previous
results is larger than O(n log n), however, we could as-

421

sume that these algorithms switch to comparison sorting
when m is at certain threshold value. Our result is the
first which sorts arbitrarily large integers with o(n log n)
operations. Our EREW integer sorting algorithm sorts
in O(logn) time with O(nm operations. This is
for arbitrarily large values of m.

Note that the best sequential integer sorting algo-
rithm using linear space is due to Andersson[3]. Its
worst case running time is O(nw). We present
an algorithm (Theorem 4.1.) with O(10g~‘~ n) time
and O(nm) operations and it runs in linear space.
Therefore the operation complexity of our parallel algo-
rithm matches the worst case time complexity of An-
dersson’s sequential algorithm.

We now turn to nonconservative integer sorting.
Consider the problem of sorting n integers in the
range {0,1,2,m - 1) on a computer with word
length w. Hagerup and Shen[lS] showed that if

= O(n logn log m) the sorting can be done in
z(n) sequential time or in O(logn) time on a EREW
PRAM with O(n/ logn) processors. Later Albers and
Hagerup[2] and Andersson et al. [4] improved on the
word length. Albers and Hagerup[P] showed that with
w = 0 log n log logn logm) the sorting can be done

1 in O(log n) time with O(n) operations on the EREW
PRAM. The result of Andersson et ai.[4] show that the
sorting can be done in O(logn) time with O(n) op-
erations on the EREW PRAM with a word length of
0((log n)2+E log m). Dessmark and Lingas showed that
the sorting can be done in O(lognloglogn) time and
O(n) operations with a word length of O(log m log n).
In this paper we improve on all these previous results.
We show that the sorting can be done in O(logn) time

with O(n
\r

y) operations on the EREW PRAM

with a word length of O(k log m), where k is a parameter
satisfying 15 Ic 5 log n. When t = log n our algorithm
shows that the sorting can be done in O(log n) time with
O(n) operations. We note that the main focus of this
paper is to present conservative EREW algorithms for
integer sorting. The nonconservative algorithm we de-
signed is to be used as a subroutine in our conservative
algorithms, although our nonconservative algorithm im-
proves on best previous results.

2 Nonconservative Sorting

We present an EREW algorithm using word length
O(log n logm) to sort n integers in the range
{O,l,m - 1) in O(logn) time with O(n) operations.
This EREW algorithm is based on the AKS sorting
network[l], Leighton’s column sort[22] and Benes per-
mutation network[7].

Since the word length is O(lognlogm) we can

store logn integers in a word. Using the test bit
technique[2][4] we can do pair-wise comparison of the
log n integers in a word with the logn integers in
another word in constant time using one processor.
Moreover, using the result of the comparison the log n
larger integers in all pairs can be extracted into one
word and the log n smaller intergers in all pairs can be
extracted into another word and this can also be done
in constant time using one processor[2][4]. Without
loss of generality we may also assume that logn is a
power of 2. We first pack n input integers into nllogn
words with each word containing logn integers. We
then imagine an AKS sorting network being built on
these n/ log n words. On the AKS sorting network we
compare two words at each internal node of the network.
Thus each node of the AKS sorting network can be used
to compare the log n integers in the word in parallel. At
the output of the AKS sorting network we have sorted
log n sets with the i-th set containing i-th integers in all
n/log n words. In terms of Leighton’s column sort[22]
we can view that we place II integers in log n columns
with each column containing n/logn integers. At the
output of the AKS sorting network, every column is
sorted. The principle of Leighton’s column sort says
that to sort n integers we need only sort logn columns
for a constant number of times and perform a fixed
permutation among the n integers between each sort
(of columns). Besides these fixed permutations are
simple permutations such as shuffle, unshuffle and shift.
Applying this principle, we perform a fixed permutation
among the n integers after they are output from the
AKS sorting network. The permutation can be done
by disassembling the integers from the words, applying
the permutation and then reassembling the integers into
words. Thus each sorting on columns and permutation
can be done in O(logn) time. According to Leighton’s
column sort we need only a constant number of passes of
sorting and permutation. Thus the sorting of n integers
can be done in O(log n) time. The operations consumed
by our algorithm is O(n). Puote also that the sorting
can be made stable by appending address bits to each
integer.

For our purpose we also need the following scheme
to accomplish the permutation mentioned above. The
permutation can also be done by routing the integers
through a network N which is the butterfly network in
conjunction with a reverse butterfly network(see Fig.
1.). For permutations N can be used to emulate the
Benes permutation network[7]. Each stage of the but-
terfly network emulates the processor connection along
a dimension on the hypercube and switches integers be-
tween words or within words (this is where we need log n
to be a power of 2). Therefore each stage of the but-

422

terfly network can be done in constant time. Because
butterfly network has O(logn) stages, the permutaion
can be done in O(logn) time. Note that since the per-
mutations we performed here are fixed permutations the
setting of the switches in the butterfly network can be
precomputed.

Figure 1: A permutation network.

THEOREM 2.1. n intergers in the range { 0, 1, m- 1)
can be sorted on the EREW PRAM with word length
O(log n log m) bn O(log n.) to‘me using O(n) operations
and O(n) space.

The principle of Theorem 2.1 can be applied to
the case where we can pack more than logn integers
into one word. However, in order to apply a recursive
version of Leighton’s column sort[22] to sort n integers
in constant number of passes (of sorting columns and
permuting), the number of columns cannot be greater
than n’ for a constant 0 < c < 1. Therefore we cannot
pack more than nf integers into one word and then
apply the principle of Theorem 2.1. Also we may use
more columns than the number of integers packed in one
word. For example we may use log2 n columns in the
column sort even when the number of integers packed
in a word is logn.

The following corollary can now be easily shown.

COROLLARY 2.1. n integers in the range (0, 1, rn -
1) can be sorted on the EREW PRAM with word length
O(k log m), 1 5 k 5 logn, in O(logn) time using

O(y) operations and O(n) space.

3 Sorting Integers in (0, 1, R - 1)

We first consider sorting with word length O(log n). For
our purpose we assume that e is a power of 2.

3.1 Outline
If input integers with the same value are linked

in a linked list according to the order they appear in
the input, then an additional O(logn) time and O(n)
operations suffice for the sorting. This is because we
can use linked list contraction[5] to group integers of
the same value together. Because we are sorting integers
from (0, 1,2, R - l}, the first integer in each linked
list can put themselves into buckets. Because there are
only n buckets integers dropped into the buckets can be
collected in O(logn) time and O(n) operations.

Our goal, therefore, is to link integers of the same
value into a linked list. Initially we put all input integers
into one linked list. As the computation proceeds, each
linked list is split into several linked lists. When the
computation ends, all integers with the same value will
be linked into a linked list and integers with different
values are in different linked lists.

The basic idea of the sorting algorithm is linked list
splitting. Let ao, al, an-1 be the input integers. The
algorithm has *stages. In each stage we examine
-bits (we say that we reveal mbits). Initially
no bits are revealed. In the first stage we revea1 the most
significant &$i bits. In the second stage we reveal the
next e bits, and so on. We maintain the property
that all intgers are linked in a linked list if their revealed
bits are the same(of the same value). If the revealed bits
for two integers are different then the two integers are
in different linked lists. Initially all integers are linked
into one linked list with ai+l following ai in the linked
list. After the first stage, the input linked list is split

into at most 2*linked lists because e bits are
revealed. After the second stage each linked list further

splits itself into at most 2Glinked lists. And so on.
Now we discuss how each linked list is split in each

stage. A linked list is very short if it contains no more
than log n elements(integers), is short if it contains less

than 24G elements, is long if it contains at least

24fi elements. We first group every consecutive S
elements(integers) in the linked list into one group. For
a short linked list S is the number of total elements
in the linked list. For a long linked list S varies from

group to group but is at least 24s and no more

than 2’fi We shall discuss further how to do
this grouping later. For the moment we can consider
grouping as contracting the S elements into one node
and/or as ranking the S elements along the linked list

423

within the group. We then sort integers in each group in
parallel. Because revealed bits for the previous stages
for integers in the linked list is identical and because
we reveal additional fi bits in this stage, we are in

fact sorting no more than 2’6 e-bit integers in
each group. By our nonconservative sorting algorithm
presented in the previous section, the sorting can be
done in O(m time and O(S) operations for the
group (or O(n) operations for all linked lists). Note
that if a short linked list contains too few integers
the column sort cannot be applied (see the paragraph
immediately after Theorem 2.1). If a linked list is very
short we simply sort the revealed bits on the list by a
comparison sorting algorithm[l][9]. Since there are at

most n/ 2G very short linked lists at the beginning
of the last stage (this is where we reallocate processors
for the last time) we can allocate one processor for each
integer in such linked lists according to revealed bit
patterns of each such linked list. At the beginning of

other stages there are much less than n/2* very
short linked lists.

If the linked list is short there is only one group in
the linked list. The sorting will then enable us to split

the linked list into t 5 2* linked lists such that each
linked list split contains all integers whose revealed bits
are the same, where t is the number of bit patterns for
the revealed bits. Here we note that for short linked list
t could be less than 2 * (for example if the revealed
bits for all integers are the same t will be equal to 1).

If the linked list is long we will always split the

linked list into exactly 2* linked lists no matter how
many different bit patterns are revealed by the revealed
bits. After sorting in each group, integers in each group

are split into 2* linked lists. If a bit pattern among

the 2G bit patterns does not exist in the revealed
bits we create a linked list containing only one dummy
element representing this pattern. Note that no more

than 26 dummy elements will be created for each
group. For consecutive (neighboring) groups on a long
linked list we then join the split linked lists in the groups
such that linked lists with the same revealed bits are
joined together. With the help of those dummy elements

we now have split a long linked list into exactly 26
linked lists.

With the existense of dummy elements in the linked
list, the splitting process should be modified a little bit.
For a short linked list, after the grouping all dummy
elements will be eliminated. For a long linked list, the
dummy elements will also be eliminated after grouping,
but new dummy elements could be created.

Since each group on a long linked list has at least

24* elements and since each such a group creates

at most 2 G dummy elements, the total number
of dummy elements created in a stage is at most

7~/2~4=. D ummy elements generated in a stage are
eliminated in the next stage and new dummy elements
are generated for the next stage. For a total of m
stages the total number of dummy elements generated

is no more than cr~&/2~& for a constant c.
Let us estimate the complexity. Since each stage

takes O(m time and O(n) operations, for a total
of m stages the time complexity of the algorithm is
O(log n) with O(nm operations.

3.2 Implementation
The subtlety of our algorithm is at how to do

grouping, where to place dummy elements and how to
maintain the space complexity within O(n). Grouping
should be done with linked list contraction. However,
we can not apply any existing linked list contraction
algorithms directly to obtain O(m time and O(n)
operations for a stage because we need an algorithm to
do partial linked list contraction. The dummy elements
generated need to be placed within O(n) space so that
processors can be allocated to them. For the space
complexity consideration, after grouping we need sort
integers within each group and this may seem requiring
that we place the integers in a group in consecutive
memory locations. If we allocate O(n) memory for
placing all integers such that all integers in a group
occupy consecutive memory locations, then it would
need @log n) time while we can expend only O(m
time in each stage. What we could do instead is to

allocate a two dimension array with 25* rows and
n columns. We place the linked lists in the first row.
For each group, we could put the integers in the group
in the j-th column of the array if the first integer in the
group is in column j. Thisscheme facilitates sorting.
The only shortcoming of the scheme is that it uses more
than O(n) space. We give schemes from which all the
problems mentioned above can be resolved.

For implementation purpose we reveal e bits
in each stage except the last stage which revegls 4fi
bits. A linked list is very short if it contains no more

than 22* integers, is short if it contains less than

26fi integers, is long if it contains at least 26Jl;pn
integers. A group on a short linked list contains all
integers in the list. A group on a long linked list contains

at least 26* but less than 27G integers.
We modify our linked list construction. Instead

of linking elements(integers) from memory location to

memory location, we require that every 2 2G elc+

424

ments in a linked list occupy consecutive memory lo

cations and the first element among these 2 2dF elc+

ments is at a memory cell j where j mod 22G = 0.

We call such 22G elements a block. Thus if we
walk down the linked list, we visit 2 2&z consecu-
tive memory locations, then follow the pointer to an-

other memory location, then visit another 2’s con-
secutive memory locations, and so on. We call such a
linked list a blocked linked list. For all the linked lists
split we maintain this property (except the linked lists
split at the end of last stage). This property facilitates
linked list contraction. The condition on memory cell
j m& z2G = 0 ensures that processors can be al-
located to the elements in the linked lists. Because we
use n/m processors, one processor is allocated for
m elements or integers.

Now consider grouping. Because linked lists are
blocked, the linked list contraction for the bottom

22* elements are automatically done. That is,
for a linked list II of length S, we can view it as
being already contracted to a linked list 12 of length
spJ=, For the further contraction of 12, we
can allocate one processor for each node in 12. We
then repeatedly apply symmetry breaking schemes by
Han[16][17] and B eame[l3] to break 1s into lists of length
no more than log(‘) n (c is a constant, log(r) R = log R,
log(‘) n = log log(‘-‘I n) and pointer jumping technique
of Wyllie[27] to contract 11 until at least S elements are
contracted into one node, where for a short linked list
S is the number of elements on the linked list and for
a long linked list S is at lease 26fi but no more

than 27Ji0gn. The contraction can thus be done in
O(m time with O(S) operations for the linked list
(O(n) operations for all linked lists).

After sorting integers in a group, integers with the
same revealed bits (bit pattern) are consecutive on the
linked list. However, the number of integers with the

same revealed bits may not be a multiple of 2”G.
To maintain the blocking property of the linked list, we
add minimum number of dummy elements for each bit
pattern so that the number of integers within each group

with the same bit pattern become a mutiple of 22G.
For a short linked lit, if the number of different bit
patterns for the integers in the list is B we add at

most B22G dummy elements. There are ,at most

n/246 diff erent bit patterns (this is the maximum
number of different bit patters at the beginning of the
last stage and we do not maintain blocking property at
the end of the last stage). Therefore the totol number
of dummy elements added for all short linked lists for

all stages is bounded by ,7~/2~*. For a group in

a long linked list, we add at most 23s dummy
elements. Note that, if a bit pattern does not exists
among the revealed bits for the integers in the group,
22& du mmy elements will be added to keep the

blocking property. Since ea.ch group has at least 26*
integers the total number of dummy elements added
for all long linked lists for all stages is bounded by

n&Y-l/234=.

As dummy elements are created! where should them
be stored? We need a scheme such that all input
integers as well as dummy elements created are stored
in O(n) space so that processors can be allocated to
them. We use an array of 3 rows and n columns.
The input integers and their links are stored in the

first row. A block of 22G elements (containing
dummy elements) for integers on each short linked list
is stored at the second row. There is one such block
for each revealed bit pattern. Therefore memory at the
second row can be allocated according to the revealed
bits. The third row is used for storing some integers
in long linked lists. In each stage we sort integers
in a group on a long linked list. Let us assume this
sorting is done. Let Si be the number of integers
(within the group) with the same revealed bit pattern pi
(these integers are now consecutive on the linked list).

For every 2 4* integers along the linked list among
these Si integers we move the last 22G integers
from the first row to the third row, storing them in

columns where the first 22fi integers are stored in
the first row. This placement ensures that there is at

most 22G integers stored on the third row for every

2’G integers along the linked list at the first row.

We call the 24G ’ t m egers with the same revealed bit
pattern along the linked list at the first row a segment.
What we did is essentially place a block on the third
row for each segment on the first row. Because the

group has at least 2”G integers and only 2*
revealed bit patterns, roughly speaking there are at

least (26* - 25G)/24* segments. Thus we

have placed at least ft3* integers on the third row.

Therefore we have at least 23* empty positions

(Zfiblocks) at the first row where we can store newly
created dummy elements. After linked list in a group
is split and joined with linked lists in the neighboring

groups, there are at most 22G integers stored in the

third row for 2’Ji0gn consecutive integers on a linked
list in the first row. For the next stage, there will be
integers stored in the third row which is carried over

425

from previous stages and there will be new integers
to be stored in the third row. In each stage we first
“remove” integers from the third row (and may place
them in the first row after sorting the integers in the
group). After sorting within the group we place new
integers on the third row. Suppose there were at most

t2’G integers on the third row for every 2 4&G

integers (a segment) on a linked list at the first row. Let
S be the number of integers within the group of a long

linked list. Then there were at most St22&/24G
integers at the third row. Roughly speaking there are at

lease (S - 25+)/24fi < S/(C~~=) seqments,
where c < 1.5 is a constant. Distribute these integers

among these segments, there will be ~t2~fi integers

per segment. Plus we will add 22G integer to the
third row for each segement in the current stage, the
number of integers stored at the third row per segement

will be < 2t22s. Th ese 2t22* integers have the

same revealed bit pattern as that of the 24* integers
stored in the first row (note that integers stored in the
third row in the previous stage are “removed” and in
the current stage they may be placed in the first row
(or third row)). Aft er a total of m- 4 stages, there

are at most 23* integers stored in the third row for
every segment on the linked list at the first row. The
scheme given here ensures that all integers and dummy
elements are stored in O(n) space.

Due to page limit we omit the presentation on how
to sort each group in linear space.

Before the beginning of the last stage (which reveals
4e bits) we use linked list ranking[5] to move
all integers in a linked list into consecutive memory
locations. Therefore in the last stage the integers to
be sorted are based on arrays instead of linked list.

THEOREM 3.1. n integers in the range {0,1,2,n-1)
can be sorted in O(logn) time and O(n) space with
O(nm operations on the EREW PRAM with word
length O(logn).

4 Sorting Integers in {O,l,m - 1)

Consider the problem of sorting integers in the range
{O,l, m - 1). All known conservative CREW
and EREW parallel algorithms[2][1 I] [24], even allow-
ing polylogarithmic running time, will eventually use
O(n log n) operations when m is sufficiently large. What
we have achieved is an algorithm which sorts in O(log n)
time with O(nm operation. The presentation of
this algorithm will take too much space. However, this
algorithm is a speeded-up version of a slower but sim-
pler algorithm which captures the main ideas of the fast
algorithm. Here we present the details of this simpler al-

gorithm. This algorithm runs in O(log3’2 n) time with
O(nJiZjjZ) operations. We note that the linked list
splitting idea presented in the previous section does not
apply here and therefore new ideas are needed.

First let us outline our approach. We use
bit [i] to denote bits i logm/e through (i +
1) log m/&j’%- 1 (bits are counted from the least sig-
nificant bit starting at 0). [i : j] is used to denote bits
PI, [i+11, . ..> [A (or empty if j < i). We use aIi] to denote
bits i log m/e through (i+ 1) log m/m- 1 of a.
a[i’jl is used to denote bits afi], aLi+l],abl (or empty
if j < i). To sort n integers with each integer containing
logm bits we could use G passes. The i-th pass,
0 < i < e, sorts bit [e- i - 11. Note that we
are sorting from high order bits to low order bits. At
the beginning of i-th pass the input integers are divided
into a collection C of sets such that integers in one set
have the same value in bits [fi - i : fi - 11. In
the i-th pass we can sort integers in each s E C inde-
pendently and in parallel. We call the sorting problem
formed by integers in an s E C an independent (sort-
ing) problem (or an I-problem for short). The sorting
in the i-th pass further subdivides each s E C into sev-
eral sets with-each set forms an I-problem for the next
pass. Note that if a set sr resulted from the subdivision
(sorting in the i-th pass) of s E C is a singleton, then
the integer a E sr needs not to be passed to the next
pass because a has been distinguished from other inte-
gers and the final rank of a can be determined. When
we say an I-problem p we refer to the integers passed
from the previous pass to the current pass which form
p. When integers in p are sorted in the current pass
some of them will be passed to the next pass and these
integers are no longer in p. After current pass finishes, p
refers to those integers in the singletons which remained
and not passed to the next pass. Because in a pass we
sort logm/m bits only while each word has logm
bits, each pass can be computed with O(nm op-
erations (by Corollary 2.1). This will give us a total of
O(n log n) operations for the algorithm. To reduce the
number of operations, we pipeline all passes. Integers
will be passed from the i-th pass to the (i+ I)-th pass as
soon as enough number of integers with the same bits
[e-i- 1 : e - l] are accumulated instead of
at the end of the i-th pass. The details will be explained
in the following several paragraphs.

In our algorithm the computation is organized into
J&i levels. Each level represents a pass explained in
the above paragraph. There are m stages in each
level and stage ir at level Ii is executed concurrently
with stage i2 at level 12 > ZI, where ii - i2 = 12 - II.
Each stage takes O(logn) time and O(n) operations.
There are a total of 2,/&$ stages in the algorithm.

426

The computation at level i, 0 5 i < &$, is to work
on bits [m - i-l]. We use array I[0 : n-l]
to represent the n input integer and use I[i : j] to
denote l[i], I[i + 11, , I[j]. Although the computation
at each level is similar, to describe the computation at
an arbitrary level will be too complicated. Instead we
describe the computation at levels 0 and 1 and then
generalize it to arbitrary levels.

The computation at level 0 is to sort the n input in-
tegers by their most significant log m/e bits. Each

stage at level 0 is to merge 2 &G- sorted sequences.
That is, the sorting at level 0 is guided by a complete

2*-ary tree. Each level of the tree represents the

2*-way merge in a stage. After stage s and before

stage s+ 1 there are n/2’* sorted sequences. Sup-

pose integer alJl’ogn-ll is in the sorted sequence S. a
will remain in level 0 of the algorithm as long as there

are less than 2* integers bl*-‘l in S such that
el&%il = @G-l1 (note that all these integers
are now consecutive in memory). Once this condition is
not satisfied a will be moved to level 1. Thus one func-
tion of level 0 is to group integers a [*-ll and once
there are enough integers of the same value grouped to-
gether they are sent to level 1. When enough integers

of the same value u[G-~~ are grouped together in a
sorted sequence S and are sent to level 1 we create a

dummy with value aI=-11 and place this dummy in
S in level 0 to replace the integers sent to level 1. If
in a subsequent merge some integers of the same value

u[~-~] are grouped together with the dummy, all
these integers (no matter how many) are sent to level
1 and we need only one dummy to represent these in-
tegers at level 0. Of course when dummies with same
value a[dGell are grouped together by the merge only
one dummy needs to remain while others can be dis-
carded. After the sorting(i.e. all ,&Z stages) in level
0 finishes, integers a remain in level 0 are those that do

not have 2G or more input integers with the same
ar&=a al v ue. For integers with the same a #G-l1

value in level 0 (there are less than 2* of them)
we sort them by their whole integer value (not just the
most log m/m bits) by comparison sorting [1][9].
Because each such comparison sorting is on no more

than 26 1 e ements, the number of operations will be
bounded by O(nm. After this comparison sorting
all integers and dummies at level 0 are sorted. Level 0
has divided integers passed to level 1 into I-problems.

Integers a with the same al=-11 value which are
passed to level 1 are in one such I-problem. Now we
need to sort integers in each I-problem independently

and in parallel.
Now consider the computation at level 1. We con-

sider only one I-problem. The problem is to sort inte-

ger a’s by a[*-21 value, where the value alfi-il
for all a’s are identical. The sorting at level 1 also
has e stages and is also guided by a conceptual

2=-ary tree. However, many of the leaves may be
empty because no integer is passed from level 0. Stage
s at level 0 and stage s - 1 at level 1 (and stage s - i
at level i) are executed concurrently. Immediately after

stage 0 at level 0 all integers a with the same a [Jiopn- 11

values in 1[i2& : (i + 1)2* - l] are grouped to

gether, where 0 < i < n/2&. If there are integers a

in I[~‘26 : (i + 1)2& - l] which have the same
ar~-rl lu va e and are passed down to level 1 in stage
0 of level 0, these integers are merged (sorted) by the

26-way merge on the a 1+K21 value in stage 0 at
level 1. In stage 1 at level 0 all integers a with the same
a[Gvll values in I[i22fi : (i + 1)226 - I] are

grouped together, where 0 5 i < n/22&, Consider

integers a with the same af&-rl value in I[i2’6 :

(i + 1)22fi - 11. These integers are grouped into a

collection C of at most 2* groups in stage 0 of level

0 (one group coming from Ilj2+z” : (j+ 1)2+z” - 11,

i2d”zn < j 5 (i+ 1)2@‘z” - 1). These 2dl”zn groups
are further grouped into one group G in stage 1 of level
0. If some groups in C are passed down to level 1 at
stage 0 of level 0, These passed down groups are sorted
in stage 0 at level 1 (which execute in parallel with stage
1 of level 0). If there is at least one group passed down
to level 1, there will be a dummy at level 0 and there-
fore all integers in G wiIl be passed down at stage 1
of level 0. By using the dummies at level 0 we will be
able to build a linked list to link integers passed down
at stage 0 with integers passed down at stage 1. And
by executing linked list ranking[5] we can then move all
integers in G into consecutive memory locations. Note
that linked list linking and ranking here also maintain
the stable property for sorting. Our intention is to do
a2G -way merge (one way for integers in a group in
C) at stage 1 of level 1. However, for a group g in C
which are passed down at stage 1 of level 0 the integers

a in g are not sorted by ~[JioTg;;-~l and therefore it can-

not participate in the 2=-way merge directly. What
we do is to first sort integers a in g by bit [fi - 21
and then perform the merge. Becuase g contains less

than 2G integers and because sorting is performed
on integers each having logm/&$i bits the sorting
can be done in O(m time and linear operations by

427

Theorem 2.1. The situation where g contains too few
integers can also be treated.

Thus at level 1 we are forming sorted sequences
(sorted by bits [m - 2 : m - 13) and re-
peatedly merge the sorted sequences. Suppose inte-

ger c~lfi-~‘~-il is in the sorted sequence S.
a will remain in level 1 as long as there are less
than 2~ integers b[dGs2:~-lI in S such
that a[&F-2:&Fe11 = bt~-2&%-11 tnote
that all these integers are now consecutive in mem-
ory). Once this condition is not satisfied a will be
moved to level 2 and we will create a dummy with

value c~I~-~‘*-il at level 1 to replace the in-
tegers moved to level 2. As we did in level 0, for in-
tegers a stayed in level 1 and never passed to level

2, there are less than 2G integers with the same
a[~-2:~-1] values and therefore we can sort
them by their whole integer value using parallel com-
parison sorting after the (fi - 1)-th stage at level
1.

The relation of level 2 to level 1 is the same as that
of level 1 to level 0. In general, integers passed to level i
are divided to belong to I-problems with each problem

containing integer a’s with the same a [&gE-i:&Y-z- 11

value. In each such problem at level i integers are either
sorted at level i (by repeated 2G-way merge) or
passed down to level i + 1. Integers passed to level i + 1
are divided at level i into I-problems such that integer

a’s with the same ~l~-~-~:~-rl value are in one
I-problem.

There are a total of 2&$ stages executed in’
our algorithm. After these stages and after we use
parallel comparison sorting to sort integer o’s with the
same oIG-i-l’~-ll value at level i, integers at
all levels are sorted. We can then build a linked list.
For integers and dummies in each I-problem we simply
let each element point to the next element. We then
“insert” integers sorted in each I-problem p at level i
into the position of the corresponding dummy at level
i - 1 by using a pointer from the dummy to pointing
to the first integer in p and using another pointer from
the last integer in p to pointing to the successor of the
dummy. We therefore build a linked list for all the
integers and these integers are in sorted order in the
linked list. After a linked list ranking[5] we have all the
integer sorted.

At the end of each stage of our algorithm we
use linked list ranking[5] and standard parallel prefix
computation[l9] to move integers and dummies belong-
ing to each I-problem in consecutive memory locations
so that next stage can proceed. For example, integers

in an I-problem p at level i need to be packed to consec-
utive memory locations because some integers in p are
passed to level i + 1. When some integers and dummies
in p are grouped into one group by the merging at level i

because they have the same a [-&E-i-1:&-1] value

we build linked list to link the integers at level i with the’
integers already at level i + l(they are represented by
the dummies at level i). We use linked list ranking and
prefix computation to move these integers in one group
into consecutive memory locations. Because linked list
ranking and prefix computation can be done in O(log n)
time and O(n) operations they are within the time and
the number of operations allocated to each stage. Note

here that we generate one dummy for at least 2* in-
tegers in each stage. Thus for all stages the total number

of dummies generated is bounded by 2nG/2=.

Now we discuss the x 5 2*-way merge per-
formed on a collection C of x sorted sequences in each
stage at each level. The integers to be merged are in con-
secutive memory locations and processors can be easily
allocated to them. The integers we are considering here
has only log m/e bits while each word has logm
bits. We have to accomplish the merge in O(log n) time
and linear number of operations. If the total number

of integers to be merged together is N < 22* we
simply sort them by using Theorem 2.1. Otherwise

N 1 22G and we sample every 2*-th integer

from each of the x 5 26 sorted sequence (to be

merged). If a sequence has no more than 2 &G in-
tegers we sample its first and last integers. The total

number of sampled integers is no more than 2N/2=.
We sort all sampled integers into one sequence S using
parallel comparison sorting[I][9]. We make z copies of
S. We then merge one copy of S with one sequence in
C. Suppose sr , ~2, sr 5 ss, are two consecutive integers

in S. Then there are no more than 2* integers in
each sequence in C which are 5 s2 and > sr (for equal
integers their order is determined first by the sequence
they are in and then by the position they are in the
sequence). These integers form a merging subproblem.
Because S is merged with each sequence in C, the orig-
inal merging problem is now transformed into ISI + 1
(IS] is the number of integers in S) merging subprob
lems each of them is to merge z subsequences with each

subsequence containing at most 26 integers (they
come from a sequence in C). For each merging sub
problem we use Theorem 2.1 to sort all integers in the
subproblem. Again the situation where a merging sub-

problem contains too few integers can be treated.

It can now be checked that the 2G-way merge

428

in each stage at each level takes O(log n) time and linear
operations. At the end of each stage we use linked
list ranking and parallel prefix computation to move
integers belonging to each I-problem into consecutive
memory locations. These computation takes O(log n)
time and O(n) operations. Therefore each stage takes
O(log n) time and O(n) operations.

THEOREM 4.1. n integers in the range {O,l, m - 1)
can be sorted in O(log3/2 n) time and O(n) space with
O(nJG@L) operations and O(log(m + n)) word length
on the EREW PRAM.

The presentation of the algorithm for the following
theorem takes several pages and will be given in the full
version of the paper.

THEOREM 4.2. n integers in the range (0, 1, m -
1) can be sorted in O(logn) time with O(nm
operations and O(log(m+n)) word length on the ERE W
PRAM.

Note that the algorithm of Theorem 4.2 does use
nonlinear space. This is a disadvantage of our algorithm
which we currently do not know how to overcome.

To sort n integers in the range (0, 1,2, m - 1)
with word length L log m bits we modify our algorithm
to sort O(log m . dm) bits in each levei and

use 2G-way merge at each level. This will give

O(log n) time and O(n d F) operations.

PI

[lOI

P11

WI

031

P41

[I51

[I61

I171

Dl

PI
References

PI

PI

[31

PI

E51

[61

[‘iI

PI

PO1
M. Ajtia, J. Koml&, E. Szemeridi, Sorting in clogn
parallel steps, Combinatorics, 3, l-19(1983).
S. Albers and T. Hagerup, Improved parallel integer Es11
sorting without concurrent writing, Information and
Computation, 136, 25-Sl(1997).
A. Andersson, Fast deterministic sorting and searching [221
in linear space, Proc. 1996 IEEE Symp. on Foundations
of Computer Science, 135-141(1996). P31
A. Andersson, T. Hagerup, S. NiIsson, R. Raman,
Sorting in linear time? Proc. 1995 Symposium on
Theory of Computing, 427-436(1995). 1241
R. Anderson and G. Miller, Deterministic parallel list
ranking, AIgorithmica, 6, 859-868(1991). P51
P. Beame, J. Hastad, Optimal bounds for decision prob-
lems on the CRCW PRAM, Proc. 19th Annual ACM
Symposium on Theory of Computing, 8393(1987).
V. E. Berms, Mathematical Theory of Connecting Net- [261
works and Telephone Tra@c, New York: Academic,
1965.
P. C. P. Bhatt, K. Dike., T. Hagerup, V. C. Prasad,
T. Radzik, S. Saxena, Improued deterministic parallel [271
integer sorting, Information and Computation 94, 29-
47(1991).

R. Cole, Parallel merge sort, SIAM J. Comput.,
17(1988), pp. 770-785.
S. Cook, C. Dwork, R. Reischuk, Upper and lower time
bounds for parallel ra,ndom access machines without
simultaneous writes, SIAM J. Comput., Vol. 15, No.
1, 87-97(Feb. 1986).
A. Dessmark, A. Lingas, Improved Bounds for Integer
Sorting in the EREW PRAM Model, J. Parallel and
Distributed Computing, 48 6470(1998).
M. L. Fredman, D. E. Wihard, Surpassing the infor-
mation theoretic bound with fusion trees, J. Compnt.
System Sci., 47, 424436(1994).
A. V. Goldberg, S. A. Plotkin, G. E. Shannon, Par-
allel symmetry-breaking in sparse graphs, SIAM J. on
Discrete Math., Vol 1, No. 4, 447-471(Nov., 1988).
T. Hagerup, Towards optimal parallel bucket sorting,
Inform. and Comput., 75, 39-Sl(1987).
T. Hagerup and H. Shen, Improved nonconservative
sequential and parallel integer sorting, Infom. Process.
Lett. 36, 57-63(1990).
Y. Han, Matching partition a linked list and its opti-
mization, Proc. 1989 ACM Symposium on Parallel AI-
gorithms and Architectures (SPAA’89), Santa Fe, New
Mexico, 246-253(June 1989).
Y. Han, An optimal linked list prefix algorithm on a
local memory computer, hoc. 1989 Computer Science
Conference (CSC’89), 278-286(Feb., 1989).
Y. Han, X. Shen, Conservative algorithms for paml-

lel and sequential integer sorting Proc. 1995 Interna-
tional Computing and Combinatorics Conference, Lec-
ture Notes in Computer Science 959, 324333(Angust,
1995).
J. JPJ6, An Introduction to Pamllel Algorithms.
Addison-Wesley, 1992.
D. Kirkpatrick and S. Reisch, Upper bounds for sort-
ing integers on random access machines, Theoretical
Computer Science 28, 263276(1984).
C. P. Kruskal, L. Rudolph, M. Snir, A completity the-
ory of eficient parallel algorithms, Theoret. Comput.
Sci., 71, 95-132.
T. Leighton, Tight bounds on the complezity of parallel
sorting, IEEE Trans. Comput. C-34, 344354(1985).
S. Rajaseharan and 3. Reif, Optimal and sublogarithmic
time randomized parallel sorting algorithms, SIAM J.
Compnt. 18, 594607.
S. Rajasekaran and S. Sen, On parallel integer sorting,
Acta Informatica 29, l-15(1992).
R. Vaidyanathan, C. R. P. Hartmann, P. K. Varsh-
ney, Towards optimal parallel radiz sorting, Proc.
7th International ParalIel Processing Symposium, 193
397(1993).
R.A. Wagner and Y. Han, Parallel algorithms for
bucket sorting and the data dependent prefiz problem,
Proc. 1986 International Conf. on ParaIIeI Processing,
924930(1986).
J. C. WyIlie, The completity of pamllel computation,
TR 79-387, Department of Computer Science, Cornell
University, Ithaca, NY, 1979.

