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Abstract. In this work we study the behavior of Block ILU preconditioners in distribuited-
memory parallel simulations. Of particulat interest is the resulting preconditioned iterative
solver behavior when adaptive mesh refinement and coarsening (AMR/C) are utilized. Here, we
use a domain decomposition scheme to partition the spatial domain as a collection of subdo-
mains. These subdomains are repartitioned dynamically when the mesh adaptation proceeds.
To build approximate preconditioners, we employ the Block-Jacobi and Additive Schwarz tech-
niques. In both cases, incomplete LU factorizations (ILU) are applied as local preconditioners.
In addition to this, the Reverse Cuthill-McKee (RCM) and Quotient Minimum Degree (QMD)
reodering algorithms are applied in the local ILU preconditioners. Numerical studies are con-
ducted using the object oriented AMR/C software system libMesh linked to the PETSc solver
library in order to compare the efficiency of Block ILU preconditioners. Preliminary results
suggest that Block-Jacobi preconditioners have lower computation cost than Additive Schwarz.

Keywords: Block ILU preconditioner, Krylov subspace methods, Additive Schwarz, Domain
decomposition



1. INTRODUCTION

In general, implicit time integration schemes are used for temporal discretization when mul-
tiple spatial and temporal scales are present. Although these schemes have better perfomance
when compared with explicit schemes, they require a solution of large and sparse linear system
of equations. Krylov subspace iterative methods are now extensively used in conjunction with
preconditioning strategies for large-scale computational engineering and science applications.
Solver libraries such as PETSc (2009) and Trilinos (2009) have been developed to facilitate and
promote their utilization. Incomplete LU factorization (ILU) preconditioners are a standard op-
tion with such libraries. Hence techniques for enhancing the performance of this class of solvers
are of general interest. Examples of Krylov subspace solvers include the Conjugate Gradient
(CG) method for symmetric systems (Hestenes and Stiefel, 1952) and the Generalized Minimal
Residual (GMRES) method (Saad and Schultz, 1986), the Bi-Conjugate Gradient Stabilized
(Bi-CGSTAB) method (van der Vorst, 1986) and the Left Conjugate Direction (LCD) method
(Dai and Yuan, 2004; Catabriga et al., 2006) for non-symmetric systems.

Here we are interested in the role of parallel techniques to further enhance preconditioned
iterative solvers. Unfortunately, a limited amount of parallelism can be extracted from standard
precontitioners. One of the powerful preconditioning methods in terms of reducing the num-
ber of iterations is the ILU (incomplete LU) factorization method. However, it is very difficult
to parallelize the ILU factorization process due to the recursive nature of the computation. In
order to make the ILU factorizations more suitable for parallel architectures, a number of alter-
native techniques were developed using block preconditioners, that permits combination with
local ILU factorizations. The simplest approach is Block-Jacobi preconditioner. This method
consists of block-diagonals of A were each block coincide with the division of variables over
the processors. Although this method is easy to implement, it often presents slow convergence
rate (Saad and van der Vorst, 2000). Another approach widely used are Overlapping Schwartz
methods and its variants. It combines nice parallel properties with high convergence rates (Silva
et al., 1997; Gropp et al., 2001).

This work deals on how the choice of block ILU preconditioners affects the simulation
performance. Of particular interest is the iterative solver behavior when adaptive mesh refine-
ment (AMR) is utilized for parallel simulations. Our numerical studies are conducted using the
oriented AMR software system libMesh with the PETSc Library (B. S. Kirk and Carey, 2006;
PETSc, 2009). We also present performance results for natural unknowns orderings compared
to Reverse Cuthill-McKee (RCM) and Quotient Minimum Degree (QMD) reorderings for a rep-
resentative scalar field problem when local ILU is used. Without loss of generality, we confine
the simulations to finite element discretizations but it is clear that the ideas and conclusions ap-
ply equally to similar systems coming from finite difference and finite volume approximations.

The organization of the paper is as follows: we first briefly present the test case for the
subsequent numerical studies, indicating the discretization approach and commenting on alge-
braic system properties. This is followed by a summary of the block preconditioning strategies
to be applied. Next, results of experiments with adaptive meshes on parallel systems are pre-
sented and discussed. Some concluding remarks on the performance and other points of interest
complete the work.

2. GOVERNING EQUATION AND DISCRETIZATION

The system of equations considered is the general scalar transient transport equation:



du

dt
+ v · ∇u−∇ · (D∇u) = f em Ω (1)

u = g em ∂Ω1 (2)
−D∇u · n = h em ∂Ω2 (3)

where D = D(u,∇u) in the nonlinear case or more simply D is a function of position (D
is taken as constant in later numerical studies), f , g and h are known functions. To prevent
spurious oscillation generated by the dominance of the convection term in the differential equa-
tion, we use a SUPG (Streamline-Upwind/Petrov-Galerkin) stabilization technique (Brooks and
Hughes, 1982; Codina et al., 1992). Introducing a finite element discretization and correspond-
ing basis functions to define the approximation space V h, the SUPG weighted residual formu-
lation for uh is:

∫

Ωh

(
duh

dt
wh + (vh · ∇uh)wh + D∇uh · ∇wh

)
dΩ

+
E∑

e=1

∫

Ωe

τ
vh · ∇wh

||vh||
(

du

dt
+ vh · ∇uh −∇ · (D∇uh)− f

)
dΩ = (4)

∫

Ωh

fwhdΩ +

∫

∂Ω2

hwhdΩ

where the first and RHS integrals correspond to the standard Galerkin form and the second
integral is the dissipative SUPG term added to the variational formulation to prevent numerical
oscillations on coarse meshes. The parameter τ is computed as suggested by in Codina et al.
(1992). Introducing a finite element approximations for uh into Equation (5), we obtain a semi-
discrete ODE system which is integrated using a standard θ-method. In the experiments, the
Crank-Nicolson (θ = 1/2) method is used. If D is a function of position or constant, as in the
later numerical cases, then the resulting nonlinear systems simplify to linear nonsymmetric, of
the form Ax = b, for the vector of nodal unknowns at the grid points defining the discretization.

3. PARALLEL AMR/C SIMULATIONS

Adaptive mesh refinement has been used for some time now to enhance grids using local
element subdivision or basis enrichment and thereby resolve different scales such as those of
boundary and interior layers. For serial computations, when the AMR scheme is invoked, the
size and structure of the discrete system changes dynamically at each mesh adaptation stage.
In the case of parallel computations a partitioner embedded with the solver library is typically
applied to distribute the computations across processors and to avoid the development of a
significant load imbalance during the AMR process. In turn this implies recomputing the cor-
responding global ILU at each repartitioning step, however, this process is very complex to
implement in parallel systems.

A more interesting and perhaps natural situation arises in the parallel case if block local
ILU preconditioning is applied instead of their global counterparts. Of course the action of
this block ILU preconditioning will be different than in the previous global factorizations and
parallel construction of the ILU factors are simpler and more efficient. With AMR, the mesh
is changing dynamically. Repartitioning will be required when sufficient imbalance occurs.
Since a different element group now resides on each processor after a repartition, a new local
reordering and local factorization for that partition is needed. This problem is a challenge and
domain decomposition preconditioners can be a very good answer to this.



3.1 Domain Decomposition Preconditioners

Domain decomposition methods have been studied extensively in the past few years. The
increasing success of these methods is due to the fact that they provide a high level of concur-
rency and are simple to implement on most modern parallel computers (Gropp et al., 2001).
Although they can be used directly as iterative methods, in this work we consider two domain
decomposition methods as preconditioners for standard Krylov subspace iterative solvers.

Additive Schwarz preconditioner. Each processor solves a local subsystem including border-
ing variables which belong to other processors. The choice of how to exchange these bordering
variables will define the Schwarz method used: multiplicative or additive. In the first one,
each subdomain uses the solution recently evaluated as boundary values. In essence, it is a se-
quential method and to obtain parallelism in this version, is necessary to use some subdomain
coloring scheme. On the other hand, in the additive scheme, all subdomains uses the last so-
lution computed as boundary values. Thus, this schemes presents better parallelism properties
than multiplicative schemes (Gropp et al., 2001).

To describe the additive Schwarz algorithm, we define a graph G = (W,E), where the
set of vertices W = 1...n represents the n unknowns and the edge set E = (i, j)|ai,j 6= 0
represents the pairs of vertices that are coupled by a nonzero element in A. Assume that graph
G was decomposed into N nonoverlapping sets of vertices W 0

i whose union is W . Let W 1
i be

the one overlap partition of W , where W 1
i ⊃ W 0

i is obtained by including all the immediate
neighbouring vertices of the vertices in W 0

i . Recursively, we can define a δ overlap partition of
W , that is,

W =
N⋃

i=1

W δ
i (5)

where W δ
i ⊃ W 0

i with δ levels of overlap with its neighbouring subdomains. Let us define a
restriction matrix Ri that returns the coefficients belonging to W δ

i . With this we define the local
matrices Ai by

Ai = (Rδ
i )

T ARδ
i (6)

Thus, the Additive Schwarz preconditioner (ASM) can be defined by

M−1
AS =

∑
(Rδ

i )
T A−1

i Rδ
i (7)

Block-Jacobi preconditioner. The Block-Jacobi is the simplest domain decomposition method.
They can be regarded as a zero-overlap form of Additve Schwarz. This method consists of
block-diagonals of A were each block coincide with the division of variables over the proces-
sors. Early experiences with this idea can be found in Kalro and Tezduyar (1998).

In both methods, the incomplete LU factorizations can be applied in the local block. Con-
sidering Block Jacobi, a non-overlapping incomplete factorization is performed over the main
diagonal block of the local part of the matrix A, thus avoiding extra communication. On the
other hand, when the ASM preconditioner is used, each processor block overlaps to the neigh-
bouring domain block by the amount δ levels. An ILU is performed over each processor block.
A greater overlap level means more communication is necessary between the processors.



3.2 Implementation Issues

Here we use the open-source, C++ finite element library, libMesh (B. S. Kirk and Carey,
2006) in our tests. A major goal of libMesh is to provide a platform for parallel, adaptive,
multiphysics finite element simulations. libMesh users can focus on the specifics of a given
application without having to develop the additional complexities for parallel adaptive mesh
computing. In this way libMesh has proved a valuable testbed for a wide range of physical
applications. On the other hand, libMesh uses the well-known PETSc library (PETSc, 2009)
to solve the linear equation systems. PETSc implements several Krylov interactive solvers
and preconditioners, including Block-Jacobi and one-level Addtive Schwarz. PETSc permits
that we use a local preconditioner on each subdomain (processor). In this paper, we use ILU
factorizations.

4. NUMERICAL RESULTS

We chose the three-dimensional deformation problem that has been used to investigate mass
(volume) loss issues associated with level set methods (Osher and Fedkiw, 2000). It superposes
deformation in the x − y plane with deformation in the x − z plane. In this case, a sphere is
entrained by vortices and stretched out very thinly, before the flow times return the sphere to its
original form. Following LeVeque (1996), the velocity field is given by

ux = 2sin2(πx) sin(2πy) sin(2πz) g(t)

uy = −sin(2πx) sin2(πy) sin(2πz) g(t) (8)
uz = −sin(2πx) sin(2πy) sin2(πz) g(t)

The time dependent function g(t) is used to reverse the flow field at time T/2 so that the initial
data should be recovered at time T . The problem comprises a sphere of radius 0.15 centered
at (0.35, 0.35, 0.35) in a unit domain. In this test a unstructured mesh with 1,130,949 linear
tetrahedra is used. The refine and coarse fractions are 0.9 and 0.1, respectively. In addition, the
maximum level that elements can be divided is 4. The AMR procedure is employed every 5
time steps.

The numerical tests were carried out on the SGI Altix ICE 8200 with 32 nodes. Each
node has two Intel Xeon quad-core (2.66GHz / 4MB L2) and 8GB of memory. The nodes are
connected by a InfiniBand network. The MPI over InfiniBand is OpenMPI version 1.2.8. The
libMesh and PETSc were compiled with Intel compilers version 10.1. In all cases, the linear
solver is the GMRES(5) and the linear tolerance is 10−6. PETSc provides parallel precondition-
ers that can be used with incomplete LU factorizations on each subdomain (on each processor).
They are Block Jacobi and one-level overlapping Additive Schwartz (ASM). In the experiments
we used both preconditioners and compare solutions with natural, RCM and QMD orderings in
local ILU(0) and ILU(1) preconditioners.

Figure 1 illustrates the solution in three different times. To verify the solution at 3 time
units, we compared its volume with the initial volume. Volumes are obtained by a Paraview
filter. At the last time step volume loss is 14.5%. More accurate solutions can be obtained
using enhancing the formulation as shown in Elias and Coutinho (2007) and/or adding more
refinement/coarsening levels. In our experiments we use the standard SUPG formulation and
adaptive meshes generated by the AMR process to reduce the volume loss.

In the series of parallel investigations that follows we compare the solver performance
using Block-Jacobi and Additive Schwarz with ILU(0) and ILU(1) preconditioners and different
reordering schemes. Table 1 shows the CPU time for runs with 4, 8, 16, 32 and 64 nodes.
The symbol † means that convergence failed. We can observe that ASM gives the best CPU



Figure 1: Solution and mesh configuration of the 3D deformation problem at three times, T = 0,
T = 1.5, T = 3.s.

times when up to 16 processors are used. Increasing the number of processors, the ASM’s
communication cost affects its overall performance. Thereby, the Block-Jacobi has smaller
CPU time for high processors counts. Comparing the ordering schemes, RCM presents the best
CPU times using the ILU(0) preconditioner. This demonstrates that the preconditioners are very
sensitive to the orderings.

Table 1: The Solver CPU time for the 3D deformation problem.

Additive-Schartz
Natural RCM QMD

Processors ILU(0) ILU(1) ILU(0) ILU(1) ILU(0) ILU(1)
4 282.15 † 321.18 385.31 402.31 538.88
8 247.50 894.02 228.95 286.97 296.59 325.56
16 150.07 546.30 148.72 184.00 150.60 189.45
32 92.95 328.49 88.41 112.64 101.52 114.46
64 70.69 210.82 68.62 82.57 73.73 81.629

Block-Jacobi
Natural RCM QMD

Processors ILU(0) ILU(1) ILU(0) ILU(1) ILU(0) ILU(1)
4 782.63 † 405.70 657.61 619.30 †
8 334.12 1091.60 309.53 370.37 376.36 378.62
16 158.04 573.65 158.50 190.19 158.71 181.65
32 69.33 279.19 65.79 85.18 74.19 81.28
64 39.78 129.08 37.44 43.54 40.56 43.66

Figure 2 shows the strong scalability for Additive Schwarz and Block-Jacobi, respectively.
We can observe that Block-Jacobi scales better than additive Schwarz methods. In addition,
although RCM ordering gives the best CPU times, the other ordering techniques are more scal-
able when Block-Jacobi and ILU are used. In this case, we have super linear speedup for the



natural ordering parallel computations in any number of processors. One possible reason for
this the fact that no additional calculations are needed when reordering is not applied to local
subdomains for block ILU preconditioning. We can also note that QMD scales better than RCM
with a speedup closer to the ideal for 16, 32 and 64 processors.

(a) Additive-Schwatz

(b) Block-Jacobi

Figure 2: Parallel Scalability

Finally, in Figure 3, we show the number of nonzeros allocated for ILU(1) preconditioner
for all orderings and 64 processors. As we expected, the number of allocated nonzeros is much
larger for natural ordering than RCM and QMD orderings for both Additive Schwarz and Block-
Jacobi. Figure 3 also illustrates the dynamic nature of the AMR/C processes.

5. CONCLUDING REMARKS

In this work, we have compared the behavior of Block ILU preconditioners in Krylov
solvers for parallel solution of sparse algebraic systems arising from evolution problems. Of
particular interest was the iterative solver behavior when adaptive mesh refinement and coars-
ening (AMR/C) was also utilized. Moreover, reordering strategies were applied to local sub-
domains for ILU preconditioning. We considered a scalar field problem where the transient



(a) ASM

(b) Block-Jacobi

Figure 3: Nonzero allocated for the sphere problem using ILU(1) preconditioner and 64 processors.

convection-diffusion equation was discretized using SUPG stabilized finite element formula-
tion. Block-Jacobi and Additive Schwarz, two domain decomposition techniques, were used
to build approximate preconditioners on each subdomains. The results have shown that Block-
Jacobi presented lower computational cost when the number of processors increases. Further-
more, local ILU was sensitive to the unknowns ordering in terms of CPU time. Comparing
orderings schemes,the RCM ordering has better performance.
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