
SIAM REVIEW c© 2005 Society for Industrial and Applied Mathematics
Vol. 47, No. 4, pp. 629–705

What Color Is Your Jacobian?
Graph Coloring for
Computing Derivatives∗

Assefaw Hadish Gebremedhin†

Fredrik Manne‡

Alex Pothen†

Abstract. Graph coloring has been employed since the 1980s to efficiently compute sparse Jacobian
and Hessian matrices using either finite differences or automatic differentiation. Several
coloring problems occur in this context, depending on whether the matrix is a Jacobian or a
Hessian, and on the specifics of the computational techniques employed. We consider eight
variant vertex coloring problems here. This article begins with a gentle introduction to the
problem of computing a sparse Jacobian, followed by an overview of the historical devel-
opment of the research area. Then we present a unifying framework for the graph models
of the variant matrix estimation problems. The framework is based upon the viewpoint
that a partition of a matrix into structurally orthogonal groups of columns corresponds
to distance-2 coloring an appropriate graph representation. The unified framework helps
integrate earlier work and leads to fresh insights; enables the design of more efficient al-
gorithms for many problems; leads to new algorithms for others; and eases the task of
building graph models for new problems. We report computational results on two of the
coloring problems to support our claims. Most of the methods for these problems treat a
column or a row of a matrix as an atomic entity, and partition the columns or rows (or
both). A brief review of methods that do not fit these criteria is provided. We also discuss
results in discrete mathematics and theoretical computer science that intersect with the
topics considered here.

Key words. sparsity, symmetry, Jacobians, Hessians, finite differences, automatic differentiation, ma-
trix partitioning problems, distance-k coloring, approximation algorithms

AMS subject classifications. 05C15, 05C90, 90C06, 90C27, 90C90

DOI. 10.1137/S0036144504444711

When colour goes home into the eyes,
And lights that shine are shut again . . .

And that no-place which gave them birth, shall close
The rainbow and the rose . . .

—Rupert Brooke, “The Treasure”

∗Received by the editors July 1, 2004; accepted for publication (in revised form) April 4, 2005;
published electronically October 31, 2005.

http://www.siam.org/journals/sirev/47-4/44471.html
†Computer Science Department, Old Dominion University, Norfolk, VA 23529-0162 (assefaw@

cs.odu.edu, pothen@cs.odu.edu). The work of the first author was supported by the University
of Bergen while completing his Ph.D. and later by U.S. National Science Foundation grant ACI
0203722. The work of the third author was supported by U.S. National Science Foundation grant
ACI 0203722, by DOE grant DE-FC02-01ER25476, by subcontracts B533520 and B542604 from the
Lawrence Livermore National Laboratory, and by the Computer Science Research Institute of the
Sandia National Laboratories during a sabbatical year.
‡Department of Informatics, University of Bergen, N-5020 Bergen, Norway (fredrikm@ii.uib.no).

629

630 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Contents.

1 Introduction 632
1.1 Overview . 632
1.2 A Jacobian Computation Problem . 632
1.3 Automatic Differentiation . 635
1.4 Variations on Matrix Computation . 636

1.4.1 Jacobian vs. Hessian . 637
1.4.2 Direct vs. Substitution-Based Evaluation 637
1.4.3 Unidirectional vs. Bidirectional Partition 638
1.4.4 Full vs. Partial Computation 639
1.4.5 Other Variations . 639

1.5 Objectives . 640
1.6 New Contributions . 641
1.7 Scope and Further Reading . 641
1.8 Terminology . 642

2 Definitions of Graph-Theoretic Concepts 642
2.1 Preliminary Concepts and Notations 643
2.2 Distance-k Graph Coloring . 643
2.3 The Power of a Graph . 644
2.4 Representing Matrices Using Graphs 644

3 Unidirectional, Direct Computation of the Jacobian 645
3.1 The Matrix Partitioning Problem . 646
3.2 A Graph Coloring Formulation . 646
3.3 An Alternative Coloring Formulation 647
3.4 Comparison . 648

3.4.1 Flexibility . 648
3.4.2 Unification . 648
3.4.3 Graph Size . 648
3.4.4 Ease of Construction . 649
3.4.5 Use of Existing Software . 649

3.5 Algorithms . 649
3.5.1 A Distance-2 Coloring Algorithm 650
3.5.2 A Partial Distance-2 Coloring Algorithm 651
3.5.3 A Distance-1 Coloring Algorithm 652

3.6 Experimental Results . 653
3.6.1 Test Matrices . 653
3.6.2 Results and Discussion . 653

4 Direct Computation of the Hessian 658
4.1 The Matrix Partitioning Problem . 658
4.2 A Graph Coloring Formulation . 659
4.3 Algorithms . 661

4.3.1 The First Star Coloring Algorithm 661
4.3.2 The Second Star Coloring Algorithm 662

4.4 Experimental Results . 663
4.4.1 Test Graphs . 664
4.4.2 Results and Discussion . 664

GRAPH COLORING FOR COMPUTING DERIVATIVES 631

5 Bidirectional, Direct Computation of the Jacobian 664
5.1 The Need for a Bidirectional Partition 665
5.2 The Matrix Partitioning Problem . 665
5.3 A Graph Coloring Formulation . 667
5.4 Algorithms . 668

6 Substitution Methods 670
6.1 Computing the Hessian . 670

6.1.1 The Matrix Partitioning Problem 671
6.1.2 A Graph Coloring Formulation 671
6.1.3 An Acyclic Coloring Algorithm 674

6.2 Computing the Jacobian . 676
6.2.1 The Matrix Partitioning Problem 676
6.2.2 A Graph Coloring Formulation 676
6.2.3 An Acyclic Bicoloring Algorithm 676

7 Interrelationships among the Coloring Problems 677
7.1 Chromatic Numbers . 677
7.2 Two-Colored Induced Subgraphs . 677

8 Partial Matrix Computation 679
8.1 Unidirectional Computation of the Jacobian 679
8.2 Computing the Hessian . 681
8.3 Bidirectional Computation of the Jacobian 682

9 Hypergraph Coloring Formulations 684
9.1 Definitions . 684
9.2 Hypergraph Coloring . 684
9.3 Representing Matrices Using Hypergraphs 685
9.4 Structurally Orthogonal Partition and Hypergraph Coloring 685

10 Other Matrix Estimation Methods 686
10.1 Methods Based on Solving a Rectangular System 687
10.2 Element and Variable Isolation . 687
10.3 Element Isolation and Edge Coloring 688
10.4 Partitioning Segmented Columns . 688
10.5 Eisenstat’s Example . 689

11 Miscellaneous Topics 690
11.1 Ordering for Coloring . 690
11.2 The Coloring Number . 694
11.3 Bounds for the Chromatic Number . 696
11.4 Theoretical Results on Coloring Problems 696

12 Conclusion 698
12.1 Summary . 698
12.2 Recent Development . 699
12.3 Further Work . 699

632 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

1. Introduction.

1.1. Overview. Many algorithms that solve nonlinear optimization problems and
differential equations require the computation of derivatives. For a vector function, the
matrix of first derivatives is the Jacobian; for a scalar function, the matrix of second
derivatives is the Hessian. These derivative matrices can be estimated through finite
difference approximations or computed exactly, within the limits of machine precision,
through automatic differentiation (AD). When the problems are large, many of the
elements in the Jacobian or Hessian are zero, and these matrices are said to be sparse.
Sparsity and symmetry in the derivative matrices can be exploited to compute the
nonzero entries efficiently. In the context of finite difference approximations, efficiency
corresponds to reducing the number of function evaluations required. In the context
of AD, efficiency often corresponds to reducing the number of AD passes required.
The problem of minimizing the number of function evaluations/AD passes needed

to compute a sparse derivative matrix can be formulated as a matrix partitioning
problem. Indeed, depending on the conditions and the methods employed, one can
identify ten variant matrix partitioning problems.
Each of these ten matrix partitioning problems can be modeled as a (specialized)

graph coloring problem. The graph coloring models provide deeper insight into the
partitioning problems and enable the design of effective approximation or heuristic
algorithms. In this paper we revisit the research in this area of the last twenty
years with the aim of providing a unifying algorithmic framework. We integrate
existing coloring formulations with new ones, design more efficient algorithms for
problems that have been studied earlier, and introduce graph models for new matrix
computation problems that arise in preconditioning.

1.2. A Jacobian Computation Problem. We begin the discussion of graph col-
oring models for the various matrix partitioning problems by considering a represen-
tative problem, a problem that occurs in a columnwise computation of a Jacobian
matrix. After providing a brief background of the problem within the context of a
finite difference approach, we will introduce a natural graph coloring formulation.
Consider a nonlinear function F : Rn → Rm, with n = m = 5. Let the nonzero

structure of the Jacobian matrix J of the function F be as shown in Figure 1.1(a).
In the figure, jk� denotes the (k,) entry of J when it is nonzero; the symbol “0”
denotes a zero entry of J . (The illustration in Figure 1.1 is motivated by a figure
from Hovland’s recent talk [67].)
Let ek ∈ Rn correspond to the kth coordinate vector (a vector with 1 in the kth

row and 0 in all other rows); then from the approximation 1
ε [F (x + εek) − F (x)] ≈

J(x)ek, by differencing the function along the direction ek, we can estimate the kth
column of J through the additional function evaluation F (x + εek) (assuming F (x)
has already been evaluated). Here ε is a small step size. A centered difference formula
would be more accurate, but for pedagogical purposes, the forward difference formula
suffices. Thus, if sparsity is not exploited, the estimation of a Jacobian matrix with
n columns would require n additional function evaluations.
Now consider a subset of the columns of the Jacobian such that no two columns

have a nonzero in a common row; such a subset of columns is structurally orthogonal.
In a group of structurally orthogonal columns, the columns are pairwise orthogonal
to each other independent of the numerical values of the nonzeros. In the example,
columns 1 and 3 are structurally orthogonal; so are columns 1 and 4, and columns
3 and 5. Choose a column vector d with 1’s in components corresponding to the
indices of columns in a structurally orthogonal group of columns, and zeros in all

GRAPH COLORING FOR COMPUTING DERIVATIVES 633

a c e

j 11 j 12 j 15

j 23

j 32 j 33 j 34

j 41

j 54 j 55

j 11 j 12 j 15

j 23

j 32 j 33 j 34

j 41

j 55

j 11 j 12 j 15

j 23

j 32j 33 j 34

j 41

j 54 j 55

j 11 j 12 j 15

j 23

j 32 j 33 j 34

j 41

j 54 j 55

j 11 j 12 j 15

j 23

j 32 j 33j 34

j 41

j 54 j 55

c1

c2

c3c4

c5

c1

c
2

c
3

c
4

c
5

r1

r
2

r
3

r
4

r
5

j 540

0

0

0

0

0 0

0

0 0 0 0

0 0

0

0

0

00

0

0

0

0

0 0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

c1

c2

c3c4

c
5

c1

c
2

c
3

c
4

c
5

r1

r
2

r
3

r
4

r
5

b d

Fig. 1.1 Two partitions of a Jacobian into groups of structurally orthogonal columns (a)–(c). Each
partition is also represented as a distance-1 coloring in the column intersection graph (d),
and as a partial distance-2 coloring in the bipartite graph (e). In the upper row, four colors
are used: columns 1 and 3 are assigned the first color, column 2 is assigned the second
color, column 4, the third color, and column 5, the fourth color. In the lower row, three
colors are used: columns 1 and 4 are assigned the first color, column 2 is assigned the
second color, and columns 3 and 5 are assigned the third color.

other components. The vector d is binary since each entry is either one or zero. By
differencing the function F along the vector d, one can simultaneously determine the
nonzero elements in all of these columns through one additional function evaluation
at F (x+ εd).
Further, by partitioning the columns of the Jacobian into the fewest groups,

each consisting of structurally orthogonal columns, the number of (vector) function
evaluations needed to estimate the Jacobian matrix is minimized. This leads to the
following general problem: given the sparsity structure of a Jacobian matrix, partition
the columns into the fewest groups of structurally orthogonal columns.
Figure 1.1(b) shows two different ways in which the Jacobian matrix can be

partitioned into groups of structurally orthogonal columns. In the figure, columns
of the same color belong to the same group. In the lower row of the figure, the
matrix is partitioned into three such groups: {1, 4}, {2}, and {3, 5}. As we will see in
section 3.5, the fewest groups of structurally orthogonal columns this matrix can be
partitioned into is three, the maximum number of nonzeros in a row.
Two “compressed” representations of the Jacobian matrix in which the nonzeros

in a group of structurally orthogonal columns are packed into the same column are
shown in Figure 1.1(c). Each column in the compressed representation of the Jacobian
corresponds to the nonzeros that can be simultaneously computed through one finite
difference operation.
Figure 1.2 shows a Jacobian matrix having 100 columns and its compressed rep-

resentation with 28 columns obtained by grouping together nonzero elements in a
set of structurally orthogonal columns into a single column. This figure is similar
to Figures 1.1(b) and (c); the nonzeros within each group of structurally orthogonal
columns are assigned a single color distinct from the colors assigned to other nonze-
ros, and then all nonzeros of the same color are grouped into one compressed column.
(Figure 1.2 is inspired by similar figures in Griewank [53] and Hovland [67].)

634 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Fig. 1.2 A Jacobian matrix and its compressed representation.

Curtis, Powell, and Reid [35] were the first to observe in 1974 that sparsity can be
employed in this way to reduce the number of function evaluations needed to estimate
the Jacobian. They described a simple greedy algorithm for partitioning the columns
of a Jacobian into a small number of groups of structurally orthogonal columns.
In 1983 Coleman and Moré [30] modeled this matrix partitioning problem as a

distance-1 graph coloring problem. The model uses the column intersection graph
of a matrix where columns correspond to vertices and two vertices are joined by an
edge whenever the corresponding columns have nonzeros in a common row (i.e., the
columns are structurally nonorthogonal). A distance-1 coloring of a column intersec-
tion graph, i.e., an assignment of colors to the vertices such that adjacent (distance-1
neighboring) vertices receive different colors, partitions the columns into groups of
structurally orthogonal columns. Figure 1.1(d) shows the column intersection graph
of the Jacobian in the example and illustrates two different distance-1 colorings of that
graph. The lower part of the figure shows that vertices c1 and c4 are assigned one color;
vertex c2 is assigned a second color; and vertices c3 and c5 are assigned a third color.
The objective in all coloring problems considered in this paper, including the

distance-1 coloring problem, is to use the fewest colors possible. Since the distance-
1 graph coloring problem is known to be NP-hard, the work of Coleman and Moré
showed that it is highly unlikely that there is a polynomial time algorithm for par-
titioning the columns of a matrix into the fewest groups of structurally orthogonal
columns. Meanwhile, they developed several practically effective heuristics for the
problem.
In this work, we use a different graph coloring model for the same matrix par-

titioning problem. This coloring formulation uses a bipartite graph to represent a
Jacobian matrix. The vertex set V1 in the bipartite graph corresponds to the rows of
the matrix and the vertex set V2 corresponds to the columns. An edge joins a row
vertex rk to a column vertex c� if the matrix element jk� of the Jacobian is nonzero.

GRAPH COLORING FOR COMPUTING DERIVATIVES 635

In Figure 1.1, part (e) shows the bipartite graph of the Jacobian whose structure is
depicted in part (a).
Notice that two column vertices that are at a distance of two edges from each

other in the bipartite graph (hence they share a common row vertex as a neighbor)
are structurally nonorthogonal in the matrix. In fact, two columns are structurally
orthogonal if and only if they are at a distance greater than 2 from each other in
the corresponding bipartite graph. Thus, a distance-2 coloring of the set of column
vertices V2 is equivalent to a partitioning of the columns of the matrix into groups
of structurally orthogonal columns. A distance-2 coloring of the vertex set V2 is an
assignment of colors to these vertices such that every pair of column vertices at a
distance of exactly two edges from each other receives distinct colors. More precisely,
this coloring is a partial distance-2 coloring of the bipartite graph since the row vertex
set V1 is left uncolored. Figure 1.1(e) shows two different distance-2 colorings of the
column vertices of the bipartite graph of the Jacobian in the example. These colorings
are the equivalents of the distance-1 colorings shown in part (d).
In the Jacobian estimation problem under discussion, the bipartite graph–based

partial distance-2 coloring formulation may be preferred over the column intersection
graph–based distance-1 coloring formulation for several reasons. One of the advan-
tages of the former is that the distance-2 coloring problem serves as the most general
problem for the many variations of coloring problems addressed in this paper. The
identification of such a general problem simplifies the design of algorithms for the
specialized variants. Another advantage is related to the size of the graph used to
represent a matrix. The size of the column intersection graph of a matrix A is pro-
portional to the number of nonzeros in ATA, whereas the size of the bipartite graph
of A is proportional to the number of nonzeros in A. For many large-scale practi-
cal problems, the former could be considerably larger in size. A larger graph size in
turn implies that more storage space is required and performance is degraded due
to the hierarchical structure of memory in modern computers [60]. In section 3.6,
we provide computational evidence to support this claim. A third advantage of the
bipartite graph–based formulation is related to flexibility. Unlike the column intersec-
tion graph, the bipartite graph of a matrix is a faithful representation of the sparsity
structure and hence allows for a columnwise, rowwise, or combined column- and row-
wise computation of a matrix. A detailed discussion of the comparison between the
two approaches is included in section 3, a section devoted to the formal treatment of
the problem under discussion. In section 9, we consider hypergraph coloring formu-
lations for the same problem, where the equivalence between the two graph coloring
formulations can be viewed from yet another perspective.

1.3. Automatic Differentiation. For pedagogical reasons, the matrix partition-
ing problem introduced in section 1.2 has been discussed within the context of a finite
difference technique, a technique that computes an approximation to the derivative.
The same partitioning problem also arises when a Jacobian matrix is calculated using
the relatively recent technique of automatic differentiation (AD).
AD is a chain rule–based technique for evaluating the derivatives of functions

defined by computer programs. Unlike finite differencing, the derivatives in AD are
computed analytically, and hence without any truncation error.
AD has two basic modes of operation known as forward and reverse. These modes

correspond to a bottom-up and a top-down strategy of accumulating partial deriva-
tives of elementary functions that define the computational scheme of the function to
be differentiated.

636 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

One pass of the forward mode of AD can be used to compute a column (or a group
of structurally orthogonal columns) of a derivative matrix and a pass of the reverse
mode can be used to compute a row (or a group of structurally orthogonal rows).
Hence, just as in the finite difference setting, the efficient computation of a Jacobian
matrix using the forward mode of AD requires the columns to be partitioned into
as few groups of structurally orthogonal columns as possible. Similarly, an efficient
application of the reverse mode requires a row-partitioning into the fewest possible
groups of structurally orthogonal rows.
A number of AD software tools are available, including ADIFOR [16], Odyssee

[110], and TAMC [50] for FORTRAN 77, and ADIC [17] and ADOL-C [55] for
C/C++.
Some AD tools, such as ADIFOR and ADIC, support a vector mode in which

several bidirectional derivatives are computed simultaneously. Using such tools, the
compressed derivative matrix (see Figure 1.2) can be computed in one pass. The com-
putational effort involved in these contexts is proportional to the number of columns
in the compressed matrix. Hence a partition into the fewest groups of structurally
orthogonal columns continues to capture the requirement of an efficient computation.

1.4. Variations on Matrix Computation. As mentioned earlier, depending on
the type of derivative matrix being computed and the specifics of the method being
applied, there exist several variant matrix partitioning problems. Specifically, the
nature of a particular problem in our context depends on the following:

• whether the matrix to be computed is a Jacobian (nonsymmetric) or a Hes-
sian (symmetric);

• whether the evaluation scheme employed is direct or substitution-based (a
direct method requires solving a diagonal system and a substitution method
relies on solving a triangular system of equations);

• whether a unidirectional (1d) partition or a bidirectional (2d) partition is
used (a unidirectional partition involves only columns or rows, whereas a
bidirectional one involves both columns and rows);

• whether all of the nonzero entries of the matrix or only a subset need to be
determined; we refer to these as full and partial matrix computation.

Under certain assumptions, the aforementioned four mutually orthogonal factors
give rise to ten variants of matrix partitioning problems. Figure 1.3 depicts a classi-
fication of the problems using these factors; the first eight of the ten listed problems
are studied in this paper, the problems being numbered in the order in which they
appear in the body of this paper.
Each of these matrix partitioning problems can be modeled as a graph coloring

problem. In section 1.2 we have seen the graph coloring formulations of problem
P1, a partitioning problem arising in the computation of all nonzero entries of a
Jacobian matrix using a unidirectional partition via a direct method. In sections 1.4.1
through 1.4.4, we briefly review the historical development of the coloring formulations
for problems P2 through P5 and introduce the new problems P6 through P8. The
discussion is organized along the four factors underlying the classification in Figure 1.3.
Problems P1 through P8 are formally treated in detail in sections 3 through 8.
Note that the classification in Figure 1.3 is oblivious as to whether the chosen

numerical technique is finite difference or AD. For example, as has been pointed
out earlier, problem P1 arises within the context of finite difference or AD. In our
discussion in what follows, we may refer to one numerical technique that simplifies
the presentation, but the reader should bear in mind that the particular partitioning
problem also arises within the context of the other numerical technique.

GRAPH COLORING FOR COMPUTING DERIVATIVES 637

Full Partial

P1 P2 P4 P3 P6 P7 P9 P8 P10

Jac. Hes. Hes. Jac.

P5

Jac. Jac. Hes. Hes. Jac. Jac.

Direct Substi-
tution Direct Direct Substi-

tution
Substi-
tution

Substi-
tutionDirect

1d partition
2d

partition 1d partition
2d

partition

Fig. 1.3 Classification of partitioning/coloring problems arising in sparse derivative matrix compu-
tation. Problems P1 through P8 are addressed in this paper.

1.4.1. Jacobian vs. Hessian. In 1979 Powell and Toint [107] extended the ap-
proach of Curtis, Powell, and Reid to compute sparse Hessians. Their approach
exploits the fact that only one of each pair of symmetric off-diagonal elements in the
Hessian matrix needs to be computed.
McCormick [97] introduced a distance-2 graph coloring model for the computa-

tion of Hessians in 1983. The model uses the adjacency graph representation of the
underlying symmetric matrix and requires that in every path u, v, w in the graph,
vertices u, v, and w receive distinct colors. Independently, in 1984, Coleman and
Moré [31] gave a more precise coloring model that exploits symmetry. They called
the model path coloring and required it to satisfy the two conditions: (1) every pair
of adjacent vertices receives distinct colors (a distance-1 coloring), and (2) every path
on four vertices uses at least three colors. This variant of coloring was called star
coloring, e.g., by Fertin, Raspaud, and Reed [41], since in such a coloring every sub-
graph induced by vertices assigned any two colors is a collection of stars. We will use
the name star coloring in this paper since path coloring is a term used in the optical
networks literature to refer to a different concept.
Unlike coloring problems corresponding to general matrices, coloring problems in

discretization of structured grids can be solved optimally in polynomial time. In 1984,
Goldfarb and Toint [52] studied such optimal estimation of Jacobians and Hessians
that arise as model problems in finite difference approximations of partial differential
equations.

1.4.2. Direct vs. Substitution-Based Evaluation. The evaluation scheme con-
sidered thus far is a direct one, in that each nonzero element of a derivative matrix is
obtained from some row of a matrix-vector product via a finite difference operation
or an AD pass. Suppose A is an m×n derivative matrix and d1, d2, . . . , dp are binary
vectors (directions) corresponding to a column partition of A into p groups of struc-
turally orthogonal columns. In the AD literature, the n × p matrix D consisting of
the p columns d1, d2, . . . , dp is known as a seed matrix. In a direct evaluation scheme,
the product AD can be used to define a diagonal system of equations where the un-
knowns are the nonzero entries of A and the right-hand side is the result obtained by
p function evaluations or p passes of the forward mode of AD.
An alternative evaluation scheme would be substitution-based, in which the un-

known matrix elements were determined by solving a triangular system of equations.

638 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

The latter is obtained by an appropriate (less restricted) choice of a seed matrix that
partitions the columns of the derivative matrix into groups of not necessarily struc-
turally orthogonal columns. There is a trade-off in the choice between a direct and a
substitution method. The former being more restrictive requires more function eval-
uations (or AD passes), while the latter is subject to numerical instability. Moreover,
unlike a direct method where the unknowns are obtained without any further arith-
metic, a substitution method incurs the additional computational cost involved with
solving a sparse triangular system of equations.
A substitution-based evaluation is often effectively combined with the exploitation

of symmetry and hence is used in computing the Hessian. A substitution method for
computing the Hessian leads to an acyclic coloring problem in which the requirements
are that (1) the coloring corresponds to a distance-1 coloring, and (2) vertices in every
cycle of the graph are assigned at least three distinct colors. This variant of coloring
is called acyclic since every subgraph induced by vertices assigned any two colors is a
collection of trees—and hence is acyclic. Substitution methods for computing Hessians
were studied by Powell and Toint [107] and Coleman and Moré [31]. The latter authors
in particular found a less accurate model (in comparison with acyclic coloring) called
triangular coloring. The acyclic coloring formulation is due to Coleman and Cai [27],
who called the coloring variant cyclic. The name acyclic coloring was introduced by
Grünbaum [56], the first to define and study the problem within an entirely different
context.
A variant of a substitution method for computing a Jacobian matrix has been

considered by Hossain and Steihaug [63]. The method relies on first finding a partition
of the columns into groups of structurally orthogonal columns and then merging a
pair of successive groups to get a column grouping that allows overlaps; in this way a
column partition consisting of p groups is changed into a grouping having p−1 groups.

1.4.3. Unidirectional vs. Bidirectional Partition. The third source for problem
variation while computing the Jacobian lies in one’s choice to compute by partitioning
the columns (as we have discussed earlier), or rows, or both columns and rows. If
the Jacobian has a few dense columns, i.e., columns with a large number of nonzeros,
it may be more advantageous to consider a partitioning of the columns. Similarly, if
the matrix has a few dense rows, a partitioning of the rows may pay off. However,
if the matrix contains a few dense columns and rows, it may be better to consider
partitioning subsets of both columns and rows. A partition that involves only columns
or rows is referred to as unidirectional, and one that involves both columns and rows
is called bidirectional. More specifically, given the structure of an m × n Jacobian
matrix A, a bidirectional partitioning problem is concerned with finding seed matrices
D1 ∈ {0, 1}n×p1 and D2 ∈ {0, 1}m×p2 such that the products AD1 and DT

2 A together
enable the determination of the entries of A and the value p = p1 + p2 is minimized.
Due to symmetry, there is no advantage in considering a bidirectional partition of the
Hessian; i.e., a symmetry-exploiting unidirectional partition suffices.
In the context of AD, bidirectional partitions arise when the Jacobian is computed

by using the forward and reverse modes simultaneously.
Bidirectional partitioning of the Jacobian leads to specialized bicoloring prob-

lems in the bipartite graph, i.e., a coloring of subsets of both the row vertices and
the column vertices with disjoint sets of colors. When bidirectional partitioning is
used within a direct evaluation scheme for Jacobians, the coloring problem is that
of star bicoloring ; the corresponding model within a substitution-based scheme is
the acyclic bicoloring problem. Bidirectional partitioning problems and their graph

GRAPH COLORING FOR COMPUTING DERIVATIVES 639

Table 1.1 Graph coloring formulations for computing all nonzero entries of derivative matrices.
The Jacobian is represented by its bipartite graph, and the Hessian by its adjacency
graph. NA stands for not applicable. The labels in parentheses correspond to those used
in Figure 1.3.

1d partition 2d partition
Jacobian Distance-2 coloring [P1] Star bicoloring [P3] Direct
Hessian Star coloring [P2] NA Direct
Jacobian NA Acyclic bicoloring [P5] Substitution
Hessian Acyclic coloring [P4] NA Substitution

coloring formulations were studied by Hossain and Steihaug [62] and Coleman and
Verma [32].

1.4.4. Full vs. Partial Computation. The final variation within the classification
scheme of Figure 1.3 is whether all elements of the Jacobian and the Hessian are
required, or only a subset that is needed for preconditioning purposes. We refer to
these variations as full and partial matrix computation. The latter would be useful
in “matrix-free” methods for large-scale problems, where the Jacobian is too large
to be explicitly estimated, but a coarser representation of the Jacobian is used as
a preconditioner. Partial matrix computation problems lead to restricted coloring
problems where only a specified subset of the vertices need to be colored; however,
one still needs to pay attention to the remaining vertices, since they could interfere
with the estimation of the required matrix elements. Partial matrix computation
problems and their coloring formulations are treated in this paper for the first time.
All of these variations lead to a rich collection of graph coloring problems. Ta-

ble 1.1 shows the collection of five coloring problems that arise when we consider the
computation of all nonzero entries of Jacobians and Hessians. Partial matrix com-
putation problems lead to another set of five coloring problems, of which we have
formulated graph models only for direct methods, i.e., problems P6 through P8 in
Figure 1.3. The precise formulation of each of these coloring problems is described in
the section of the paper devoted to the corresponding problems.

1.4.5. Other Variations. One common feature in the partitioning/coloring prob-
lems cataloged in Figure 1.3 is that the nonzero entries of a derivative matrix are
obtained by solving either a diagonal or a triangular system of equations. A second
common feature is that the system of equations is produced from a partition of a set
of columns or rows (or both) of a matrix; i.e., a set is divided into groups in which an
element of the set belongs to one and only one group. Newsam and Ramsdell [103]
suggested a method for computing a Jacobian that relies on solving an overdetermined
rectangular system of equations, a system produced from a column grouping that is
not necessarily a partition. The approach of Newsam and Ramsdell has been applied
within the context of AD by Geitner, Utke, and Griewank [49]. Recently, Hossain
and Steihaug [64] suggested a method for computing a Jacobian that requires solving
a banded rectangular system of equations.
A third common feature in the problems of Figure 1.3 is that the granularity level

used in defining the problems is an entire column or row of a matrix. In other words,
a column or a row is not divided any further. However, approaches that rely on more
“fine-grained” partitioning have also been suggested. The element isolation method
of Newsam and Ramsdell [103] and the segmented column method of Hossain and
Steihaug [61, 65] are examples of such approaches.

640 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

The works mentioned in the previous two paragraphs are briefly discussed in
section 10 of this article.

1.5. Objectives. Since the work of Curtis, Powell, and Reid [35], structural or-
thogonality in a sparse derivative matrix has been identified as a basic property to
be exploited for efficient computation. Two columns of a Jacobian matrix are struc-
turally orthogonal if and only if they are at a distance greater than two in the bipartite
graph of the Jacobian. Similarly, two columns of a Hessian matrix are structurally
orthogonal if and only if they are at a distance greater than two in the adjacency
graph of the Hessian. Thus distance-2 coloring of the bipartite graph of the Jacobian
and the adjacency graph of the Hessian are the two archetypal problems in efficient
derivative matrix computation. This perspective emphasizes the central role played
by distance-2 coloring and thus provides a unifying algorithmic framework for the
many coloring problems.
Describing the unified algorithmic framework is the first objective of this paper;

this framework simplifies the development of algorithms and software for the problems
that have been considered in earlier work and clarifies the development of models and
algorithms for the new partial Jacobian and Hessian computation problems introduced
here. Many of the algorithms proposed earlier for the variant problems relied on
adding new edges to the graph until a distance-1 coloring of the transformed graph
could be used to solve the problem. We show that more efficient algorithms are
possible for the variant problems by employing coloring algorithms directly to the
natural graph representations of the problem.
A second objective of this paper is to provide a self-contained introduction to the

use of graph coloring in derivative matrix computations, in order to make this work
accessible to a broad audience. For researchers in optimization, this article provides
the first review of graph coloring methods for efficiently computing derivatives for
nonlinear problems. The article has been organized by the manner in which these
computational methods would be used in optimization: Jacobian or Hessian matrix;
direct or substitution method; unidirectional or bidirectional estimation; full matrix
or partial matrix evaluation. Our hope is that this organization makes it easy for
practitioners to read the subset of topics of interest to them. An alternate way of
organizing this material would have been by the graph algorithms employed to solve
the problems, and indeed, that is how we first attempted to present this material.
Work done in other research communities on graph coloring topics intersect with

the problems in derivative matrix computation. For instance, early results obtained
by the graph theory community on vertex orderings for reducing the number of colors
have been applied in the optimization context. The graph theory community has also
recently considered some of the variant coloring problems discussed here; e.g., star
coloring, which arises in Hessian estimation [5, 41, 102]. However, this community
seems to be unaware of work done nearly twenty years earlier on this problem in opti-
mization! Conversely, earlier work on acyclic coloring was not noticed by researchers
in optimization who discovered its application to evaluating derivative matrices with
substitution methods.
Graph and hypergraph coloring have been used in a wide collection of applica-

tion areas in addition to optimization: register allocation in compilers [24], radio and
wireless networks [44, 84], scientific computing [51, 73, 74, 111], data movement in dis-
tributed and parallel computing [58], facility location problems [117], cache-efficient
algorithms [77], etc. Parallel computers make it feasible to solve large-scale problems
in many of these application areas, especially optimization, and hence there is cur-

GRAPH COLORING FOR COMPUTING DERIVATIVES 641

rently increased interest in efficient algorithms and software for coloring graphs with
millions of vertices.
For the reasons spelled out in the previous two paragraphs, wider dissemination

of this work among researchers in the optimization, scientific computing, computer
science, discrete mathematics, and various applications communities would be bene-
ficial.
A third objective of this work is to help dispel the feeling that most of the interest-

ing work on this topic has been done already by pointing to the research frontier in this
area: new coloring and ordering algorithms need to be developed and implemented for
many problems considered in this article; new mathematical results that characterize
lower bounds for coloring special classes of graphs are needed. We believe that as this
work becomes better known, new applications of coloring will be discovered, further
enriching the study of the mathematics and algorithms in this area.

1.6. NewContributions. This article gives a coherent review of earlier work, but
it also has several new results. The following summary highlights our contributions.

1. We propose distance-2 coloring as a natural, flexible, space-efficient model for
problem P1 (section 3).

2. We expose the inter-relationships among the coloring formulations of the var-
ious matrix partitioning problems and identify distance-2 coloring as a unify-
ing, archetypal model (section 7, building on the discussions in sections 3–6).

3. Using the insight gained from the unified graph-theoretic treatment, we de-
velop several greedy heuristic algorithms, including new algorithms for star
coloring (section 4) and star bicoloring (section 5). We also sketch a new
acyclic coloring algorithm that exploits the structure of two-colored induced
subgraphs (section 6). In a separate paper (see [48] for a draft), we will de-
scribe this algorithm in more detail, as well as a new star coloring algorithm
based on the same paradigm.

4. We report experimental results from our implementations that demonstrate
• the advantages offered by the bipartite graph–based distance-2 coloring
formulation of problem P1 in comparison with the column intersection
graph–based distance-1 coloring formulation (section 3), and

• the time/quality trade-off between two star coloring algorithms; one of
the algorithms is new while the other is a translation from a previously
known matrix-based algorithm (section 4).

5. In the context of bicoloring models, we make the connection to the problem
of finding a vertex cover in a graph explicit (section 5).

6. We develop the first graph coloring formulations for partial matrix compu-
tation problems, problems where only a subset of the nonzero entries of a
matrix is required to be computed for preconditioning purposes (section 8).

7. We give the first hypergraph coloring formulations for problem P1. These
formulations provide an interesting alternative perspective and are likely to be
useful in the context of partial Jacobian and Hessian computation (section 9).

8. We formulate the element isolation technique of Newsam and Ramsdell [103]
for computing a Jacobian as an edge coloring problem in the associated bi-
partite graph (section 10).

1.7. Scope and Further Reading.
Automatic Differentiation. A discussion of the technical details of AD is beyond the

scope of this paper. The book by Nocedal and Wright [104] contains an introductory
discussion of AD and how graph coloring can be used to reduce the number of passes

642 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Table 1.2 A list of concepts known by different names. The names acyclic and star coloring were
earlier used by Grünbaum [56] and Fertin, Raspaud, and Reed [41], respectively.

Here Elsewhere
Star coloring Symmetric coloring [31]

Path coloring [27]
Distance- 3

2 coloring [45, 47]
Acyclic coloring Cyclic coloring [27]
Star bicoloring Path bicoloring [32]
Acyclic bicoloring Cyclic bicoloring [32]
Structurally orthogonal partition Consistent partition [30]
Symmetrically orthogonal partition Symmetrically consistent partition [31]
Bidirectional partition Bipartition [32]

Row-column partition [62]

needed to compute the Jacobian and the Hessian. The recent book by Griewank [53]
has an excellent discussion of the principles and techniques of AD. The books [33,
54] contain several papers that discuss different aspects of AD, including its theory,
implementations, and applications. Examples of works that discuss AD within the
context of parallel computation include [68, 69, 106].
Combinatorial problems other than coloring also occur in optimizing the compu-

tation of derivatives using AD. A graph model for eliminating vertices and edges in a
computational graph can be used in this context to reduce the storage and the effort
needed to compute the Jacobian or the Hessian. Depending on the type of elimination
technique employed, there exist a number of combinatorial problems that could be
regarded as searching for shortest paths in graphs. These problems are similar to
graph models of sparse Gaussian elimination. Naumann [101] has recently studied
graph elimination in AD. Examples of studies that investigate such methods can also
be found in [33, 53, 54, 100]. In a recent talk, Hovland [67] surveyed the various
combinatorial problems that occur in AD. We will not discuss these problems in this
paper.

Graph Coloring. The graph coloring literature per se is vast. This work focuses
on coloring problems that arise in computing derivative matrices. Furthermore, our
emphasis is on problem formulations, graph models, and fast heuristic or approxima-
tion algorithms. Iterative local improvement heuristics and exact algorithms for the
coloring problems are not discussed. In section 11 we include a discussion of effective
vertex orderings for greedy distance-1 coloring, a discussion of the coloring number
of a graph, and a brief review of theoretical results on some of the coloring problems
addressed in this paper. The monograph by Jensen and Toft [71] provides a detailed
account of over 200 open coloring problems and an extensive list of references. The
survey article by Toft [115] has a good discussion of mathematical results for the
distance-1 coloring problem. The recent book edited by Kubale [86] includes survey
articles on several different coloring problems. The WWW pages of Culberson [34]
and Trick [116] are two useful web resources for the distance-1 coloring problem.

1.8. Terminology. For some of the concepts described in this paper, we have
introduced names that differ from those used earlier in the numerical optimization
literature. We have done so when we felt that the new names are more descriptive or
consistent with the terminology in other fields. For easy reference, Table 1.2 lists the
important concepts in this paper that have been named differently elsewhere.

2. Definitions of Graph-Theoretic Concepts. In the current section we define
most of the graph-theoretic concepts used throughout this paper. Other concepts will
be defined later as required.

GRAPH COLORING FOR COMPUTING DERIVATIVES 643

2.1. Preliminary Concepts andNotations. A graph G is an ordered pair (V,E),
where V is a finite and nonempty set of vertices and E is a set of unordered pairs of
distinct vertices called edges. If (u, v) ∈ E, vertices u and v are said to be adjacent ;
otherwise they are called nonadjacent. A path of length 	 (edges) in a graph is a
sequence v1, v2, . . . , v�+1 of distinct vertices such that vi is adjacent to vi+1 for 1 ≤
i ≤ 	. Two distinct vertices are said to be distance-k neighbors if a shortest path
connecting them has length at most k. Note that the set of distance-k neighbors of
vertex u, denoted by Nk(u), does not include u itself. Note also that, by definition,
two distance-k neighboring vertices are also distance-k′ neighbors for k′ > k. The
usual definition of the degree of a vertex is the number of edges incident on it. We
extend this notion and define the degree-k of a vertex u, denoted by dk(u), to be the
number of distinct paths of length at most k edges starting at u. The terms degree and
degree-1 are thus synonymous, and they are used interchangeably in this paper. The
average degree-k in a graph is denoted by δk. For brevity, we often write d(u) instead
of d1(u), and δ instead of δ1. The maximum degree-1 in a graph is (consistently)
denoted by ∆, and the minimum degree-1 is denoted by δ.
For a simple example consider the graph shown on the left-hand side of Figure 2.1.

In this example, the distance-1 and distance-2 neighbors of vertex a are N1(a) = {b, c}
and N2(a) = {b, c, d, e}; the degree of vertex c is d1(c) = 4, which is also the maximum
degree, ∆, in the graph. The degree-2 of the vertex c is d2(c) = 8.
A graph is called bipartite if its vertex set can be partitioned into two disjoint

sets V1 and V2 such that every edge of the graph connects a vertex in V1 with a
vertex in V2. In a bipartite graph, we denote the maximum degree in the vertex set
V1 by ∆(V1), and the maximum degree in the vertex set V2 by ∆(V2). Similarly, the
average degree-k in the sets V1 and V2 are denoted by δk(V1) and δk(V2), respectively.
The graph in Figure 1.1(e) is an example of a bipartite graph; V1 consists of the
row-vertices and V2 consists of the column-vertices. In this graph, ∆(V1) = 3 and
∆(V2) = 2.
A graph is connected if any two of its vertices are linked by a path in the graph.

A tree is a connected graph without any cycle. A forest is a graph each of whose
components is a tree. A bipartite graph Gb = (V1, V2, E) in which each vertex in V1
is connected to every vertex in V2 is complete. A complete bipartite graph in which
one of the vertex sets consists of a single vertex is a star.
Let G = (V,E) be a graph. A set of vertices C ⊆ V is said to cover a set of edges

F ⊆ E if for every edge e ∈ F , at least one of the endpoints of e is in C. If the vertex
set C covers the set of edges E, it is called a vertex cover. A set of vertices I ⊆ V is
called an independent set if no two vertices in I are adjacent to each other. A set of
vertices Q ⊆ V is called a clique if the vertices in Q are pairwise mutually adjacent
to each other. For any set of vertices U ⊆ V , the graph induced by U is the subgraph
of G whose vertex set is U and whose edges are precisely the edges of G with both
endpoints in U . The graph induced by U is denoted by G[U].
In the graph on the left in Figure 2.1, the set {a, c, f} is a vertex cover, the set

{a, d, e} is an independent set, and the set {a, b, c} is a clique.

2.2. Distance-k Graph Coloring. A distance-k (vertex) coloring of a graph G =
(V,E) is a mapping φ : V → {1, 2, . . . , p} such that φ(u) �= φ(v) whenever vertices
u and v are distance-k neighbors. The color assignment to the vertices of the graph
on the left in Figure 2.1 shows an example of a distance-2 coloring. The least pos-
sible number of colors required for a distance-k coloring of a graph G is called its
k-chromatic number and is denoted by χk(G). A distance-k coloring of G = (V,E)
is called partial if only a subset of the vertices is colored; in particular, a partial

644 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

1

f

5 e

2 b

4d

1a

3
c

1

f

5 e

2 b

4d

1a

3
c

Fig. 2.1 An example of a graph G (left) and its square graph G2 (right). The color assignments
(numbers within the circles) show a distance-2 coloring of G and the equivalent distance-1
coloring of G2.

distance-k coloring of G = (V,E) on W , W ⊂ V , is a mapping φ : W → {1, 2, . . . , p}
such that φ(u) �= φ(v) whenever vertices u and v in the set W are distance-k neigh-
bors. Figure 1.1(e) shows two examples of a partial distance-2 coloring of a bipartite
graph on one of its vertex sets.

2.3. The Power of a Graph. The kth power of a graph G is the graph Gk whose
vertex set is the same as that of G and whose edge set consists of pairs of vertices
(u, v) whenever vertices u and v are distance-k neighbors in G. For example, the
graph on the right in Figure 2.1 is the square graph G2 of the graph G shown on the
left. The following equivalence is easy to see.

Lemma 2.1. A mapping φ is a distance-k coloring of G if and only if it is a
distance-1 coloring of Gk.
Figure 2.1 illustrates the equivalence between a distance-2 coloring of a graph and

a distance-1 coloring of its square.

2.4. Representing Matrices Using Graphs. Here we will define different graph
representations of the sparsity structure of matrices. First, a remark on notation is
in order. In the rest of this paper, for a given matrix A, the ith row is denoted by ri,
the jth column is denoted by aj , and the (i, j) entry is denoted by aij . Moreover, in
order to simplify notation, we use ri (aj) to refer both to the ith row (jth column)
of matrix A and to the corresponding vertex in an appropriate graph representation
of A.

Bipartite Graph. Let A be an m × n matrix with rows r1, r2, . . . , rm and columns
a1, a2, . . . , an. The bipartite graph Gb(A) of A is defined as Gb(A) = (V1, V2, E),
where V1 = {r1, r2, . . . , rm}, V2 = {a1, a2, . . . , an}, and (ri, aj) ∈ E whenever aij is
nonzero for 1 ≤ i ≤ m, 1 ≤ j ≤ n. For example, Figure 1.1(e) shows the bipartite
graph representation of the matrix whose nonzero structure is shown in part (a).
The size of the graph Gb(A) is proportional to the size of the matrix A: the

number of vertices |V1|+ |V2| = m+n, and the number of edges |E| = nnz(A), where
nnz(A) is the number of nonzeros in A.

Adjacency Graph. Let A be an n × n symmetric matrix having nonzero diagonal
elements with its columns denoted a1, a2, . . . , an. The adjacency graph of A is G(A) =
(V,E), where V = {a1, a2, . . . , an}, and (ai, aj) ∈ E whenever aij is nonzero for
1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j.
The graph G(A) exploits the symmetry available in A since both nonzero entries

aij and aji are represented by the single edge (ai, aj). In the adjacency graph G(A),

GRAPH COLORING FOR COMPUTING DERIVATIVES 645

the edges corresponding to the nonzero diagonal elements of A are not explicitly
represented. Thus, the number of edges in G(A) is 1

2 (nnz(A) − n), where nnz(A) is
the number of nonzeros in A. Since there is a vertex corresponding to each column,
the number of vertices in G(A) is n.

Column Intersection Graph. The graph formulations for the derivative matrix compu-
tation problems considered in this paper are based solely on the two graph represen-
tations discussed above. However, the column intersection graph has also been used
to represent a nonsymmetric matrix.
Let a1, a2, . . . , an now correspond to the structures of the columns of an m × n

matrix A. In particular, let each aj = {i ∈ {1, . . . ,m} : aij �= 0} (i.e., aj is a set of row
indices in which the jth column of A has a nonzero entry). The column intersection
graph of A is Gc = (V,E), where V = {a1, . . . , an} and (ai, aj) ∈ E ⇐⇒ ai

⋂
aj �= ∅.

In other words, an edge (ai, aj) exists whenever both the ith and the jth column of A
have nonzero entries in at least one common row index. For example, Figure 1.1(d)
shows the column intersection graph of the matrix whose nonzero structure is shown
in part (a).
Note that the column intersection graph of a matrix A is isomorphic to the adja-

cency graph of ATA.

3. Unidirectional, Direct Computation of the Jacobian. In this section we re-
visit the partitioning problem introduced in section 1.2 with more technical details.
Given a continuously differentiable function F : Rn → Rm, the Jacobian of

F at the point x is the m × n matrix whose (i, j) entry F ′(x)ij =
∂fi
∂xj
(x), where

f1(x), f2(x), . . . , fm(x) are the components of F (x). Let A denote the Jacobian matrix
F ′(x). An estimate for the jth column of A can be obtained from the finite difference
approximation

(3.1) Aej = aj =
∂

∂xj
F (x) ≈ 1

ε
[F (x+ εej)− F (x)], 1 ≤ j ≤ n,

where ej is the jth coordinate vector and ε is a positive step length. Formula (3.1)
shows that if each column of A is computed independently, n function evaluations,
in addition to the evaluation of F (x), will be required. However, by exploiting the
sparsity structure of A, the required number of function evaluations can be reduced
significantly. Often the sparsity structure of A is either available or can be obtained
relatively easily [53, 61]. The goal here is to exploit the known sparsity structure of
A to estimate its nonzero entries using as few function evaluations as possible. We
assume that evaluating the function F at a given point is more efficient than evaluating
the components fi, for 1 ≤ i ≤ m, separately. This assumption is reasonable since
in many applications the components of F have common subexpressions, and hence
the computation can be made efficient by avoiding repeated computation of these
subexpressions.
A sparsity-exploiting estimation of a matrix using finite differences involves find-

ing directions (vectors) d1, d2, . . . , dp such that the products Ad1, Ad2, . . . , Adp enable
the determination of all the nonzero entries of A. Here each vector d is binary (i.e.,
each entry is either 1 or 0) and is obtained via some linear combination of the coor-
dinate vectors. Using (3.1), the products Ad1, Ad2, . . . , Adp can be used to define a
system of linear equations in which the unknowns are the nonzero elements of A. If
the choice of the binary vectors di is such that the resulting system of equations can
be ordered to be diagonal, then A can be determined directly. If the vectors di are
chosen such that the system of equations can be ordered to be triangular, then the
unknowns can be determined via substitution.

646 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

In the current and the next two sections, we consider direct methods; substitution
methods will be discussed in section 6.

3.1. The Matrix Partitioning Problem. In a direct method for determining a
Jacobian matrix A, for each nonzero element aij there should exist some vector dk in
the set {d1, d2, . . . , dp} such that aij = (Adk)i. Here (Adk)i denotes the ith entry of
the vector Adk. Thus each nonzero matrix element aij can be read off from an entry
of some vector Adk.
In an efficient estimation of a Jacobian, the number of vectors p, which is propor-

tional to the number of function evaluations required, needs to be minimized. Hence
the following general problem can be stated.

Problem 3.1. Given the sparsity structure of an m×n matrix A, find the fewest
binary vectors d1, d2, . . . , dp such that the products Ad1, Ad2, . . . , Adp enable a direct
determination of A.
Curtis, Powell, and Reid [35] were the first to address Problem 3.1. They observed

that the vectors d1, d2, . . . , dp can be obtained by partitioning the columns of A into
groups of structurally orthogonal columns.

Definition 3.2. A partition of the columns of a matrix A is structurally or-
thogonal if for every nonzero element aij the group containing column aj has no
other column with a nonzero in row ri.
Let {C1, C2, . . . , Cp} be a structurally orthogonal column partition. With each

group Ck, associate a binary vector dk having components δj = 1 if aj belongs to Ck,
and δj = 0 otherwise. Then

Adk =
n∑

j=1

δjaj =
∑

aj∈Ck

aj .

If aij �= 0 and column aj ∈ Ck, then aij = (Adk)i. Thus, all the nonzero entries of A
can be determined from the p matrix-vector products Ad1, . . . , Adp.
Problem 3.1 can thus be cast as a matrix partitioning problem in the following

way.
Problem 3.3. Given the sparsity structure of an m× n matrix A, find a struc-

turally orthogonal partition of its columns that has the fewest groups.
As discussed in the introduction, Problem 3.3 also arises while computing the

derivative matrixA using AD. In such a context, the number of groups in a structurally
orthogonal partition corresponds to the number of passes of the forward mode of AD.

3.2. A Graph Coloring Formulation. Recall that a distance-k coloring of a
graph G = (V,E) is a mapping φ : V → {1, 2, . . . , p} such that φ(u) �= φ(v) whenever
u and v are distance-k neighbors. The distance-k graph coloring problem asks for a
distance-k coloring with the fewest colors.
A distance-k coloring of G = (V,E) that uses p colors partitions the vertex set V

into p color classes U1, U2, . . . , Up, where Ui = {u ∈ V : φ(u) = i}. Each color class
is a distance-k independent set ; i.e., no pair of distinct vertices in the class consists
of distance-k neighbors. This prompts the question, Is there a natural relationship
between Problem 3.3 and the distance-k graph coloring problem? The following simple
observation gives a graph-theoretic characterization of structural orthogonality in a
nonsymmetric matrix, which leads to an answer to this question.

Lemma 3.4. Let A be an m × n matrix and Gb(A) = (V1, V2, E) be its bipartite
graph. Two columns (or rows) in A are structurally orthogonal if and only if the
corresponding vertices in Gb(A) are at a distance greater than two from each other.

GRAPH COLORING FOR COMPUTING DERIVATIVES 647

Proof. We prove the statement for columns; a similar argument can be used to
prove the case for rows. First notice that in the bipartite graph Gb(A), any path
between a pair of distinct column vertices is of even length.
Assume that vertices ai and aj in V2 are at a distance greater than two from

each other. This implies that there exists no path ai, rk, aj in Gb for any rk ∈ V1,
1 ≤ k ≤ m. In terms of matrix A, this means that there is no k ∈ [1, m] such that
both aki and akj are nonzero. Hence, by definition, columns ai and aj are structurally
orthogonal.
Conversely, assume that columns ai and aj are structurally orthogonal. Then, by

definition, there is no k ∈ [1, m] such that aki �= 0 and akj �= 0. This implies that
there is no path ai, rk, aj in Gb(A) for any 1 ≤ k ≤ m. Hence, vertices ai and aj are
at a distance d > 2 from each other. In particular, vertices ai and aj are a distance
d ≥ 4 apart.
By Lemma 3.4, finding a structurally orthogonal partition of the columns of a

matrix A is equivalent to finding a partial distance-2 coloring of Gb(A) = (V1, V2, E)
on V2. (The coloring is partial since V1 is not colored.) Theorem 3.5 states this
equivalence.

Theorem 3.5. Let A be an m×n matrix and Gb(A) = (V1, V2, E) be its bipartite
graph representation. A mapping φ is a partial distance-2 coloring of Gb(A) on V2 if
and only if φ induces a structurally orthogonal partition of the columns of A.
In view of Theorem 3.5, Problem 3.3 is equivalent to the following graph coloring

problem.
Problem 3.6. Given the bipartite graph Gb(A) = (V1, V2, E) representing the

sparsity structure of an m × n matrix A, find a partial distance-2 coloring of Gb(A)
on V2 that uses the fewest colors.
Note that for matrices with a few dense rows, a row partition may yield fewer

groups than a column partition. Consequently, the matrix problem one needs to solve
is Problem 3.3 applied to AT . In such cases, the bipartite graph formulation becomes
handy—the equivalent problem is to find a partial distance-2 coloring in the same
graph, but now on the vertex set V1.

3.3. An Alternative Coloring Formulation. Coleman and Moré [30] were the
first to formulate Problem 3.3 as a graph coloring problem. They showed Problem 3.3
to be equivalent to the distance-1 graph coloring problem on the column intersection
graph of the underlying matrix. Here we will show the equivalence between the
bipartite graph–based distance-2 coloring formulation and the column intersection
graph–based distance-1 coloring formulation of Problem 3.3.
The power of a graph gives an alternative view to the distance-k graph coloring

problem. Recall that the kth power of a graph G = (V,E) is the graph Gk = (V, F)
where (u, v) ∈ F if and only if u and v are distance-k neighbors in G. As stated in
Lemma 2.1, a distance-k coloring of G is equivalent to a distance-1 coloring of Gk.
A particular implication of Lemma 2.1 is that a distance-2 coloring of a graph is

equivalent to a distance-1 coloring of the square of the graph. This establishes the
equivalence between distance-2 coloring the column vertices of the bipartite graph
and distance-1 coloring the vertices of the column intersection graph of a matrix.
Specifically, the column intersection graph Gc(A) of a matrix A is isomorphic to the
adjacency graph of ATA. We note that Gc(A) is in fact the subgraph of Gb(A)

2

induced by the vertices in V2.
Lemma 3.7. Let Gb(A) = (V1, V2, E) and Gc(A) = (V2, E

′) be the bipartite and
column intersection graphs of matrix A. Then Gc = Gb

2[V2].

648 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

a11
a22

a33
a44 a45 a46 a47

a35 a36 a38

a25 a27 a28

a16 a17 a18

r1

r2

r3

r4

a 1

a 2

a 3

a 4

a 5

a 6

a 7

a 8

a1

a5

a6

a7

a8

a2

a3

a4

1 1

1

1

1

1

1 1

1

1

1 1
2 2

22

2

2

0000
0
0
0 0 0

0
00

0
0

0
0

Fig. 3.1 A matrix and its bipartite and column intersection graph representations.

3.4. Comparison. Figure 3.1 depicts a matrix A, the corresponding bipartite
graph Gb(A) = (V1, V2, E), and the column intersection graph Gc(A) = (V2, E

′).
Note that we have augmented the graph Gc(A) with edge weights—w(ai, aj) is the
size of the intersection of the sets represented by vertices ai and aj . In terms of the
matrix A, the weight w(ai, aj) is the total number of rows where both the ith and
the jth columns of A have nonzero entries. In the bipartite graph Gb(A), the weight
w(ai, aj) corresponds to the number of common neighbors of vertices ai and aj .
In sections 3.4.1 through 3.4.5, we compare and contrast the two graph formu-

lations in terms of flexibility, suitability for unification, graph size, ease of graph
construction, and use of existing software.

3.4.1. Flexibility. Notice that the column intersection graph is not an equivalent
representation of the sparsity structure of the underlying matrix. In particular, given
an edge between two column vertices, one cannot determine the row index (indices)
at which the columns share nonzero entries. In contrast, the bipartite graph is an
equivalent representation of the structure of the matrix. This provides flexibility. For
instance, the bipartite graph can be used in a column-only, row-only, or combined
row and column partition of the matrix. The column intersection graph, on the other
hand, is applicable only to a column partition. In general, the advantage of the
bipartite graph representation (in the context of computing derivative matrices) is
that the representation is decoupled from the eventual technique to be employed and
the matrix entries to be determined.

3.4.2. Unification. As has been discussed in the introduction, depending on the
type of matrix to be evaluated and on the method employed, there exist several
variants of coloring problems in the context of derivative matrix computation. One of
the key advantages of the bipartite graph–based formulation for Jacobian estimation
in this regard is that it leads to the identification of an archetypal problem: the
distance-2 coloring problem. The identification of an archetype is particularly useful
in developing new algorithms and software for the specialized variants.

3.4.3. Graph Size. Although Lemma 3.7 correlates the bipartite graph of a ma-
trix with its column intersection graph, one cannot immediately deduce that one
graph is larger in size than the other. The size of the particular graph depends on the
sparsity structure of the matrix. Here we provide a rough analysis to show that for
sparse matrices of practical interest, the column intersection graph is likely to have
many more edges than the bipartite graph representation.

GRAPH COLORING FOR COMPUTING DERIVATIVES 649

Let A be a matrix, Gb(A) = (V1, V2, E) be the bipartite graph of A, and Gc(A) =
(V2, E

′) be the (weighted) column intersection graph of A. Further, let w denote the
average edge weight in Gc. Then∑

e∈E′

w(e) =
1
2
·
∑
u∈V2

∑
v∈N1(u)

(d1(v)− 1).

Expressing the sum on the left-hand side with average weight and bounding d1(v) by
∆(V1), we get

|E′| · w ≤ 1
2
(∆(V1)− 1)

∑
u∈V2

d1(u).

Expressing the sum on the right-hand side with average degree gives

|E′| · w = O(|V2| · δ1(V2) ·∆(V1)).

Since |V2| · δ1(V2) = |E|, we have

(3.2) |E′| = O(|E| ·∆(V1)/w).

Therefore, since the inequality ∆(V1) > w is likely to hold in practice, and the con-
stant in the Big Oh is close to 1, the column intersection graph of the matrix could
have many more edges than the bipartite graph. The larger graph size has in turn
two implications. First, more storage space would be required. Second, the average
runtime per edge spent in constructing the graph is likely to be larger since more data
has to be stored in memory, and memory access time is nonuniform on a hierarchical
memory processor.

3.4.4. Ease of Construction. The sparsity structure of the matrix A is identical
to the adjacency lists of the vertices of the bipartite graph Gb(A), and hence the
construction of the latter is trivial. In principle, the data structure used to represent
A could be used for implementing algorithms that use Gb(A). In contrast, Gc(A)
has to be computed. The time required for the computation of Gc(A) is proportional
to the number of edges in Gc(A). Using (3.2) and noting that w ≥ 1, the following
lemma gives the complexity of constructing Gc(A).

Lemma 3.8. Given a graph Gb(A) = (V1, V2, E), the time required for construct-
ing Gc(A) is O(|E| ·∆(V1)).
It should, however, be noted that once the graph Gc(A) is computed, a subsequent

distance-1 coloring of Gc(A) can be done faster than a distance-2 coloring of Gb(A).
In section 3.5, we show that the overall time complexity of constructing and then
distance-1 coloring Gc(A) is of the same order as that of distance-2 coloring Gb(A).

3.4.5. Use of Existing Software. Serial program packages that implement vari-
ous practically effective distance-1 coloring heuristics exist [28, 29]. For matrix parti-
tioning problems where a column intersection graph–based formulation can be applied,
these packages can be readily used. On the other hand, since distance-2 coloring is an
archetypal model in our context, efficient programs, including parallel ones, for the
distance-2 coloring problem need to be developed.

3.5. Algorithms. For every fixed integer k ≥ 1, the distance-k graph coloring
problem is NP-hard [89]. Thus, in practice, one is bound to rely on approximation
algorithms or heuristics. An algorithm A is said to be a γ-approximation algorithm for

650 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Algorithm 3.1. A greedy distance-2 coloring algorithm.
procedure D2ColoringAlg(G = (V,E))
Let v1, v2, . . . , v|V | be a given ordering of V
Initialize forbiddenColors with some value a �∈ V
for i← 1 to |V | do

for each colored vertex w ∈ N1(vi) do
forbiddenColors[color[w]]← vi

for each colored vertex x ∈ N1(w) do
forbiddenColors[color[x]] ← vi

end for
end for
color[vi] ← min{c > 0 : forbiddenColors[c] �= vi}

end for
end procedure

a minimization problem if its runtime is polynomial in the input size and if for every
problem instance I with the value OPT (I) of an optimal solution, the value A(I) of
the solution produced by A is such that A(I)

OPT (I) ≤ γ. For a minimization problem,
the approximation ratio γ satisfies γ ≥ 1, and the goal in designing an approximation
algorithm is to make γ as close to unity as possible. If no such guarantee can be given
for the quality of an approximate solution obtained by a polynomial time algorithm,
the algorithm is usually referred to as a heuristic.
The current best known approximation ratio for the distance-1 coloring problem

is O(|V |(log log |V |
log |V |)

3) [59]. Also, the problem is known to be not approximable within
O(|V |1/7−ε) for any ε > 0, unless P = NP [12]. Despite these rather pessimistic
results, there exist several practically effective distance-1 coloring heuristics [30, 94].
A detailed discussion of some of these heuristics is included in section 11 of this
paper. In the current section we show how a distance-1 coloring heuristic can be easily
adapted to the distance-2 coloring case by looking at the extended neighborhood of a
vertex. The algorithms we present in this paper are greedy in nature; i.e., the vertices
of a graph are processed in some order and at each step a decision that looks best at
the moment (and that will not be changed later) is made.
In section 3.5.1 we present a generic greedy distance-2 coloring algorithm and give

a detailed analysis of its performance in terms of both computation time and number
of colors used. In later sections, adaptations of this algorithm tailored to the various
coloring problems that concern us will be presented.

3.5.1. ADistance-2ColoringAlgorithm. A simple approach for an approximate
distance-2 coloring of a graph G = (V,E) is to visit the vertices in some order, at
each step assigning a vertex the smallest color that is not used by any of its distance-2
neighbors.
The degree-2 of a vertex v in G is bounded by ∆2; i.e., d2(v) =

∑
w∈N1(v) d1(w) ≤

∆ · d1(v) ≤ ∆2. The vertices in G can always be distance-2 colored trivially using |V |
different colors. Thus, it is always possible to assign a vertex a color chosen from the
set {1, 2, . . . ,min{∆2 + 1, |V |}}. D2ColoringAlg, outlined in Algorithm 3.1, uses
this fact as it colors the vertices of the graph in a given order. In the algorithm, color
is a vertex-indexed array that stores the color of each vertex and forbiddenColors
is a color-indexed array of size Cmax = min{∆2 + 1, |V |} used to mark the colors

GRAPH COLORING FOR COMPUTING DERIVATIVES 651

that cannot be assigned to a particular vertex. Specifically, forbiddenColors[c] = vi

indicates that color c cannot be assigned to vertex vi.
We prove the following statement regarding D2ColoringAlg.
Lemma 3.9. D2ColoringAlg finds a distance-2 coloring of a graph G = (V,E)

in time O(|V |δ2).
Proof. We first show correctness. In step i of the algorithm, the colors used by

each of the colored distance-2 neighbors of vertex vi are marked (using vi) in the array
forbiddenColors. Thus, at the end of the middle for-loop, the colors that are allowed
for vertex vi are the indices in forbiddenColors, where the marker used is different
from vi. The minimum value in this set is thus the smallest allowable color for vertex
vi. Notice that the array forbiddenColors does not need to be initialized at every step
as the marker vi is used only in step i.
Turning to complexity, marking the forbidden colors at step i of the algorithm

takes O(d2(vi)) time. Finding the smallest allowable color to assign vi can be done
within the same order of time by scanning the array forbiddenColors sequentially
until the first index c where a value other than vi is found. The total time is thus
proportional to

∑
vi∈V d2(vi) = O(|V |δ2).

We now analyze the quality of the output of D2ColoringAlg. The distance-1
neighbors of a vertex in a graph G form a clique in the square graph G2. This fact
immediately provides a lower bound on χ2(G), the distance-2 chromatic number of G.

Lemma 3.10. For every graph G, χ2(G) ≥ ∆+ 1.
In general, the graph G2 may contain a clique whose size is larger than ∆ + 1.

Thus, the maximum clique size in G2 is a tighter lower bound on χ2(G) than the
bound ∆ + 1.
Let the number of colors used by D2ColoringAlg on a graph G = (V,E) be

χ2(G, greedy). As discussed earlier, χ2(G, greedy) ≤ min{∆2 + 1, |V |}. Combining
this with the lower bound on χ2 given in Lemma 3.10, we get the following theorem
and its corollary. The latter is due to McCormick [97].

Theorem 3.11. ∆+ 1 ≤ χ2(G) ≤ χ2(G, greedy) ≤ min{∆2 + 1, |V |}.
Corollary 3.12. D2ColoringAlg is an O(min{∆,

√
|V |}) = O(

√
|V |) ap-

proximation algorithm.
Proof. From Theorem 3.11, the approximation ratio γ is at most 1

∆+1 ·min{∆2+
1, |V |}. There are two possibilities to consider. In the first case ∆2 + 1 ≤ |V |. This
implies ∆ = O(

√
|V |) and γ ≤ ∆2+1

∆+1 = O(∆) = O(
√
|V |). In the second case

|V | < ∆2 + 1. This implies ∆ = Ω(
√
|V |) and γ ≤ |V |

∆+1 = O(
√
|V |).

For many practical problems, such as meshes from finite element discretization of
PDEs, ∆2 � |V |, making D2ColoringAlg an O(∆)-approximation algorithm.
The actual number of colors used by D2ColoringAlg depends on the order in

which the vertices are visited. In our analysis, we assumed an arbitrary ordering.
A solution with fewer colors can be expected if a more elaborate ordering criterion
is used. For example, orderings such as largest first, smallest last, incidence degree,
and saturation degree, appropriately adapted, are likely to be as fruitful for distance-
2 coloring as for distance-1 coloring. In the context of distance-1 coloring, these
orderings are analyzed in section 11.1. For a remark on the adaptation of these
orderings for distance-k coloring problems, see section 12.2.

3.5.2. A Partial Distance-2 Coloring Algorithm. D2ColoringAlg needs to
be modified only slightly to give an algorithm for the partial distance-2 coloring prob-
lem, our graph formulation of Problem 3.3. PartialD2ColoringAlg, given in
Algorithm 3.2, is a result of such a modification.

652 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Algorithm 3.2. A greedy partial distance-2 coloring algorithm.
procedure PartialD2ColoringAlg(Gb = (V1, V2, E))
Let v1, v2, . . . , v|V2| be a given ordering of V2
Initialize forbiddenColors with some value a �∈ V2
for i← 1 to |V2| do

for each w ∈ N1(vi) do
for each colored vertex x ∈ N1(w) do

forbiddenColors[color[x]] ← vi

end for
end for
color[vi] ← min{c > 0 : forbiddenColors[c] �= vi}

end for
end procedure

Let Gb = (V1, V2, E) be an input graph to this algorithm. For every vertex
v ∈ V2, the number of vertices at distance exactly two edges from v is at most
∆(V2) · (∆(V1) − 1). Thus, vertex v can always be assigned a color from the set
{1, 2, . . . , Cmax}, where Cmax = min{∆(V2) · (∆(V1)− 1) + 1, |V2|}. Hence the array
forbiddenColors in PartialD2ColoringAlg is of this size.
The time complexity result stated in Lemma 3.13 is evident.
Lemma 3.13. PartialD2ColoringAlg finds a partial distance-2 coloring of a

bipartite graph Gb = (V1, V2, E) on the vertex set V2 in time O(|V2| · δ1(V2) ·∆(V1)) =
O(|E| ·∆(V1)).
Let χ2(Gb, V2) denote the minimum number of colors required for a partial distance-

2 coloring of Gb = (V1, V2, E) on V2. One can then state the following analogous result
to Lemma 3.10.

Lemma 3.14. For every bipartite graph Gb = (V1, V2, E), χ2(Gb, V2) ≥ ∆(V1).
In terms of Problem 3.3, Lemma 3.14 says that ∆(V1), which is equal to the

maximum number of nonzeros in a row of the Jacobian, is a lower bound on the least
number of groups required in a structurally orthogonal column partition. This lower
bound was observed by Coleman and Moré [30]. It should be noted that the size of a
largest clique in Gb

2[V2] is a tighter lower bound than ∆(V1).

3.5.3. ADistance-1ColoringAlgorithm. As mentioned earlier, Problem 3.3 can
also be formulated as a distance-1 coloring problem on the column intersection graph.
For comparison purposes, we consider D1ColoringAlg, the distance-1 analog of
D2ColoringAlg. The pseudocode forD1ColoringAlg (omitted here) differs from
that of D2ColoringAlg in only two ways: (1) the innermost for-loop is skipped;
and (2) the array forbiddenColors is of size ∆ + 1, instead of min{∆2 + 1, |V |}.
The following result is straightforward.
Lemma 3.15. D1ColoringAlg finds a distance-1 coloring of a graph G =

(V,E) in time O(|V |δ1) = O(|E|).
From Lemmas 3.8, 3.13, and 3.15 it follows that the time required for constructing

and then distance-1 coloring the column intersection graph is asymptotically the same
as the time required for distance-2 coloring the column vertices of the bipartite graph.
This means that the two formulations are asymptotically comparable in terms of
overall computation time. In practice, however, the runtimes while using the two
approaches may differ considerably. Our experimental results reported in the next
subsection demonstrate this fact.

GRAPH COLORING FOR COMPUTING DERIVATIVES 653

Table 3.1 Matrix statistics.

Matrix m n nnz κmax κmin κavg ρmax ρmin ρavg

lp cre a 3,516 7,248 18,168 14 1 2.51 360 0 5.17
lp dfl001 6,071 12,230 35,632 14 1 2.91 228 2 5.87
lp ken 11 14,694 21,349 49,058 3 1 2.30 122 1 3.34
lp stocfor3 16,675 23,541 76,473 18 1 3.25 15 1 4.59
lp ken 13 28,632 42,659 97,246 3 1 2.28 170 1 3.40
lp pds 10 16,558 49,932 107,605 3 1 2.16 96 1 6.50
lp maros r7 3,136 9,408 144,848 46 1 15.4 48 5 46.2
lhr10 10,672 10,672 232,633 36 1 21.8 63 1 21.8
lp pds 20 33,874 108,175 232,647 3 1 2.15 96 0 6.87
lp cre d 8,926 73,948 246,614 13 1 3.33 808 0 27.6
lp cre b 9,648 77,137 260,785 14 1 3.38 844 0 27.0
e30r2000 9,661 9,661 306,356 62 8 31.7 62 8 31.7
lhr14 14,270 14,270 307,858 36 1 21.6 63 1 21.6
lp ken 18 105,127 154,699 358,171 3 1 2.31 325 1 3.40
af23560 23,560 23,560 484,256 21 10 20.6 21 11 20.6
e40r0100 17,281 17,281 553,956 62 8 32.1 62 8 32.1
cage11 39,082 39,082 559,722 31 3 14.3 31 3 14.3
lhr34 35,152 35,152 764,014 36 1 21.7 63 1 21.7
lhr71c 70,354 70,304 1,528,092 36 1 21.7 63 1 21.7
cage12 130,228 130,228 2,032,536 33 5 15.6 33 5 15.6
lp osa 07 1,118 25,067 144,812 6 1 5.78 17,613 18 130
lp fit2d 25 10,524 129,042 17 1 12.3 10,500 1,427 5,162

3.6. Experimental Results. Here we report experimental results that compare
the bipartite graph–based distance-2 coloring formulation of Problem 3.3 with the
column intersection graph–based distance-1 coloring formulation. The comparison
focuses on the number of colors, overall execution time, and storage space required
by the respective algorithms.
The algorithms in our test (including those reported in section 4.4) were imple-

mented in the programming language C, and the experiments were conducted on an
Intel Pentium 4, 2.53 GHz machine with 1 GB memory and 512 KB cache, running
Linux 2.4.20/RedHat 8.0.
The vertices are visited in their natural order when greedy coloring algorithms

are used in our experiments.

3.6.1. Test Matrices. Our testbed consists of matrices obtained from the Uni-
versity of Florida Sparse Matrix Collection [36]. Table 3.1 lists the test matrices along
with some relevant structural statistics. Matrices with the prefix lp in their names are
linear programming problems translated from Netlib. (For brevity, we drop the prefix
lp when we refer to these matrices in later tables and figures.) The lhr -matrices arise
in steady-state chemical process simulation problems. The cage-matrices are mod-
els used in DNA electrophoresis. Matrices e30r2000 and e40r0100 come from fluid
dynamics problems, and matrix af23560 is an airfoil problem.
In Table 3.1, the numbers of rows, columns, and nonzeros in each matrix are

listed under m, n, and nnz, respectively. The matrices are sorted in increasing order
of number of nonzeros. The maximum, minimum, and average number of nonze-
ros per column of a matrix are listed under κ with an appropriate subscript. The
corresponding figures per row are given under the various ρ’s.

3.6.2. Results and Discussion. Table 3.2 lists results obtained by running Par-

tialD2ColoringAlg on the bipartite graph representation of the test matrices.

654 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Table 3.2 Results of partial d2 coloring the bipartite graph Gb(A).

Matrix |V | |E| ∆ δ δ K (ρmax) TGb Tcol Ttot

cre a 10,764 18,168 360 0 3.38 360 (360) 0 0.01 0.01
dfl001 18,301 35,632 228 1 3.89 228 (228) 0 0.01 0.01
ken 11 36,043 49,058 122 1 2.72 130 (122) 1 0.00 1.00
stocfor3 40,216 76,473 18 1 3.80 16 (15) 1 0.03 1.03
ken 13 71,291 97,246 170 1 2.73 176 (170) 1 0.02 1.02
pds 10 66,490 107,605 96 1 3.23 96 (96) 1 0.01 1.01
maros r7 12,544 144,848 48 1 23.1 74 (48) 1 0.07 1.07
lhr10 21,344 232,633 63 1 21.8 65 (63) 1 0.10 1.10
pds 20 142,049 232,647 96 0 3.28 96 (96) 2 0.03 2.03
cre d 82,874 246,614 808 0 5.95 813 (808) 2 0.34 2.34
cre b 86,785 260,785 844 0 6.01 845 (844) 2 0.34 2.34
e30r2000 19,322 306,356 62 8 31.7 65 (62) 2 0.07 2.07
lhr14 28,540 307,858 63 1 21.6 65 (63) 2 0.11 2.11
ken 18 259,826 358,171 325 1 2.76 330 (325) 7 0.23 7.23
af23560 47,120 484,256 21 10 20.6 32 (21) 3 0.09 3.09
e40r0100 34,562 553,956 62 8 32.1 66 (62) 4 0.13 4.13
cage11 78,164 559,722 31 3 14.3 81 (31) 4 0.12 4.12
lhr34 70,304 764,014 63 1 21.7 65 (63) 6 0.25 6.25
lhr71c 140,608 1,528,092 63 1 21.7 65 (63) 12 0.45 12.4
cage12 260,456 2,032,536 33 5 15.6 96 (33) 15 0.37 15.4
Total1 1,527,603 8,396,670 3,764 (3,573) 67 2.78 69.8
osa 07 26,185 144,812 17,613 1 11.1 17,613 (17,613) 0 5.07 5.07
fit2d 10,549 129,042 10,500 1 24.5 10,501 (10,500) 0 4.63 4.63
Total2 36,734 273,854 28,114 (28,113) 0 9.70 9.70

The left half of the table lists information on the underlying graph. The maximum,
minimum, and average degrees are given under ∆, δ, and δ, respectively. Note the
relationship between the graph and matrix structural statistics given in Tables 3.1
and 3.2: |V | = m+ n, |E| = nnz, ∆ = max{κmax, ρmax}, and δ = min{κmin, ρmin}.
The right half of Table 3.2 lists coloring and timing information. Each test matrix

is initially stored as an unordered list of nonzeros (edges). The time for reading
this data and for allocating memory for the various graph structures is not included
in the reported times. Column K in Table 3.2 lists the number of colors used by
PartialD2ColoringAlg, and the number in parenthesis in the same column shows
the lower bound ρmax on the optimal number of colors. The time used (in seconds)
for constructing the bipartite graph (i.e., building the graph data structure from its
equivalent matrix data structure) is given in column TGb , and the time spent on
coloring is listed under Tcol. The last column gives the sum of the previous two. In
Table 3.2, as well as other later tables in this paper, if the time elapsed on some
computation is less than 5 ms, we write the value 0.
Table 3.3 lists results obtained when D1ColoringAlg is run on the column

intersection graph of each test matrix. The column intersection graph is obtained
by first constructing the bipartite graph and then computing the subgraph, induced
by the set of column vertices, of the square of the bipartite graph. See Lemma 3.7
for this relationship between the bipartite and column intersection graphs. In our
experiments, we used the routine ConstructG c, outlined in Algorithm 3.3, to
compute an intersection graph from a bipartite graph. In ConstructG c, the array
marked, which is indexed with vertices in V2, is used to avoid multiple edges between
two vertices in the intersection graph that are connected by several paths of length 2
in the bipartite graph.

GRAPH COLORING FOR COMPUTING DERIVATIVES 655

Table 3.3 Results of d1 coloring the column intersection graph Gc(A).

Matrix |V | |E| ∆ δ δ TGb TGc Tcol Ttot

cre a 7,248 253,411 454 1 69.9 0 0 0.01 0.01
dfl001 12,230 250,976 423 2 41.0 0 4 0.01 4.01
ken 11 21,349 459,921 138 1 43.1 0 2 0.01 2.01
stocfor3 23,541 125,969 39 1 10.7 0 0 0.01 0.01
ken 13 42,659 1,158,664 186 2 54.3 1 9 0.01 10.0
pds 10 49,932 594,681 106 1 23.8 1 8 0.01 9.01
maros r7 9,408 610,760 314 4 129 1 8 0.01 9.01
lhr10 10,672 431,411 101 1 80.8 1 5 0.02 6.02
pds 20 108,175 1,325,891 115 1 24.5 2 10 0.02 12.0
cre d 73,948 21,347,885 1,124 2 577 2 76 0.25 78.2
cre b 77,137 20,852,569 1,168 2 540 2 268 0.75 271
e30r2000 9,661 688,848 209 42 143 2 12 0.02 14.0
lhr14 14,270 572,463 101 1 80.2 1 10 0.00 11.0
ken 18 154,699 8,412,174 340 1 109 8 43 0.15 51.1
af23560 23,560 1,210,004 107 41 103 2 12 0.02 14.0
e40r0100 17,281 1,254,328 209 42 145 3 14 0.01 17.0
cage11 39,082 1,887,384 340 7 96.6 4 16 0.02 20.0
lhr34 35,152 1,417,888 101 1 80.7 5 22 0.03 27.0
lhr71c 70,304 2,835,968 101 1 80.7 8 39 0.04 47.0
cage12 130,228 7,550,823 400 12 116 15 57 0.11 72.1
Total1 930,536 73,242,018 58 615 1.51 675
osa 07 > 100 million edges
fit2d > 100 million edges

Algorithm 3.3. An algorithm for computing the column intersection graph from a
bipartite graph.

procedure ConstructG c(Gb = (V1, V2, E))
E′ ← ∅
for each v ∈ V2 do

for each w ∈ N1(v) do
for each x ∈ N1(w) do

if x �= v then
if marked[x] �= v then

E′ ← E′ ∪ (v, x)
marked[x] ← v

end if
end if

end for
end for

end for
return Gc = (V2, E

′)
end procedure

In Table 3.3 the time spent on the respective graph constructions is given under
columns TGb and TGc . The other columns are defined in a similar manner to Table 3.2.

Discussion. A comparison between the results in Tables 3.2 and 3.3 reveals,
among others, the following points.

656 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Quality. The two coloring formulations are equivalent in terms of quality. In partic-
ular, as long as the vertices are visited in the same order, a greedy distance-1 coloring
on a column intersection graph is exactly the same as a partial distance-2 coloring
on a bipartite graph. In Table 3.3, the column listing the number of colors used by
the algorithm is omitted since the corresponding numbers are identical to those listed
under column K in Table 3.2. Another observation regarding the quality of coloring
is that, as can be seen from Table 3.2, for the matrices in our experiment, the number
of colors used by the greedy algorithm is often close to, and in some cases even equal
to, the lower bound ρmax on the optimal value, hence implying optimality.

Graph Size. In general, for the matrices used in our experiments, a column inter-
section graph is larger in size than a bipartite graph and hence requires more storage
space. The difference in graph size becomes particularly large for matrices with rela-
tively “dense” rows (“high” ρavg). Using the quantity |V |+ |E| as a measure of graph
size, for instance, the column intersection graph of matrix cre b is sixty times as large
as the corresponding bipartite graph. In the case of matrices osa 07 and fit2d, the
column intersection graph was too big to fit in the available memory space (the graph
construction process in Algorithm 3.3 was stopped when the number of edges |E′|
exceeded 100 million). Considering the sum total of the graph sizes of all other ma-
trices from our testbed, the column intersection graph representation would require
more than seven times as much storage space as the bipartite graph representation.
Figure 3.2 shows a comparative plot of graph sizes using the two approaches for a
subset of the computational results listed in Tables 3.2 and 3.3.

Time. The average time spent in constructing the bipartite graphs in our experi-
ment is about 8 µs per edge, while the average time spent in constructing the column
intersection graphs is about 8.4 µs per edge. The partial distance-2 coloring algorithm
traverses on average |E|ρavg edges, while the distance-1 coloring algorithm traverses
|E| edges, where |E| is the number of edges in the appropriate graph in each case.
The average time spent on coloring per edge is again roughly the same for the two al-
gorithms with 17 ns for the distance-2 coloring algorithm and 20 ns for the distance-1
coloring algorithm.
In terms of overall computation time for each test case, our experimental results

show that a distance-2 coloring approach is significantly faster than a method based
on distance-1 coloring (a subset of the results listed in Tables 3.2 and 3.3 is illustrated
in Figure 3.3). Again, the difference in overall execution time is large for matrices with
dense rows. For example, the overall time used for intersection graph construction
and distance-1 coloring for matrix cre b is 115 times that used for bipartite graph
construction followed by partial distance-2 coloring.
For the first twenty matrices, on which both approaches could be tested suc-

cessfully, the total time spent on constructing and distance-1 coloring the column
intersection graph is about ten times the overall time spent on constructing and
distance-2 coloring the bipartite graph. This rather big difference is most likely due
to the fact that a column intersection graph–based approach requires larger memory
size, which in turn implies larger memory access time due to the multilevel memory
hierarchies in modern microprocessors [39]. A similar explanation can be offered for
the observation that building a bipartite graph takes more time than distance-2 col-
oring it afterwards (see columns TGb and Tcol of Table 3.2). It should be pointed out
that in our experiments both the bipartite graph– and intersection graph–based ap-
proaches rely on “straightforward” implementations; the code was not been optimized
by performance-tuning.

GRAPH COLORING FOR COMPUTING DERIVATIVES 657

0

20

40

60

80

100

120

140

160

180

200

220

3.75

pds 20

14.34

3.29

cre d

214.22

3.47

cre b

209.30

6.18

ken 18

85.67

5.31

af23560

12.34
5.89

e40r0100

12.71
6.38

cage11

19.26

8.3

lhr34

14.515.3

lhr71c

29.1
22.9

cage12

76.81

Matrix

|V |+ |E|

Bipartite graph Column intersection graph

Fig. 3.2 Graph size comparison. The vertical axis shows |V |+ |E| scaled by 100,000.

0
15
30
45
60
75
90

105
120
135
150
165
180
195
210
225
240
255
270
285
300
315

2.34

cre d

78.25

2.34

cre b

270.75

7.23

ken 18

51.15

4.13

e40r0100

17.01
4.12

cage11

20.02
6.25

lhr34

27.03
12.45

lhr71c

47.04

15.37

cage12

72.11

Matrix

Time in sec.

d2-coloring Gb(A) d1-coloring Gc(A)

Fig. 3.3 Overall execution time (graph construction plus coloring) comparison.

658 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

In practice, the time spent on distance-2 coloring a Jacobian is likely to be only a
small percentage of the time spent on computing the numerical values of the entries
of the Jacobian. For instance, a finite difference evaluation of a Jacobian matrix with
a sparsity structure and size similar to that of matrix cage 12 takes about 4 seconds,
whereas coloring it takes less than 0.4 seconds [76].

4. Direct Computation of the Hessian. Given a twice continuously differen-
tiable function f : Rn → R, the Hessian of f at the point x is the n × n symmetric
matrix whose (i, j) entry ∇2f(x)ij =

∂2f(x)
∂xi∂xj

. When ∇f is available, ∇2f can be
approximated by applying the finite difference formula (3.1) to the function F = ∇f .
We assume that evaluating the gradient ∇f(x) as a single entity is more desirable
than evaluating the components ∂1f(x), . . . , ∂nf(x) separately. In this section, we
consider the efficient computation of a Hessian matrix using a direct method.

4.1. The Matrix Partitioning Problem. Let di be a linear combination of a
subset of the n coordinate vectors ej ∈ Rn. Analogous to the Jacobian estimation
case of the previous section, the problem of interest in the efficient estimation of the
Hessian via a direct method can be stated in its general form as follows.

Problem 4.1. Given the sparsity structure of a symmetric matrix A, find the
fewest binary vectors d1, d2, . . . , dp such that the products Ad1, Ad2, . . . , Adp enable a
direct determination of A.
Powell and Toint [107] showed that in the case of Hessian estimation using finite

differences, in addition to exploiting sparsity using structurally orthogonal partitions,
the number of function evaluations can be reduced further by exploiting symmetry.
Coleman and Moré [31] later defined the following more general version of the partition
underlying the approach of Powell and Toint.

Definition 4.2. A partition of the columns of a symmetric matrix A is symmet-
rically orthogonal if for every nonzero element aij, either (1) the group containing the
column aj has no other column with a nonzero in row ri, or (2) the group containing
the column ai has no other column with a nonzero in row rj.
A more precise name for the partition referred to in Definition 4.2 would be

symmetrically structurally orthogonal; we omit the word structurally for the sake of
brevity.
The left part of Figure 4.1 illustrates a symmetrically orthogonal partition of the

columns of a symmetric matrix. The figure shows a partition of the six columns of
the matrix into the three groups {a1, a3, a5, a6}, {a2}, and {a4}.
Let {C1, C2, . . . , Cp} be a symmetrically orthogonal partition of the columns of

a symmetric matrix A. With each group Ck, associate a binary vector dk having
components δj = 1 if aj belongs to Ck, and δj = 0 otherwise. Then

Adk =
n∑

j=1

δjaj =
∑

aj∈Ck

aj .

If aij �= 0 and column aj is the only column in group Ck with a nonzero in row ri,
then aij = (Adk)i; alternatively, if ai is the only column in a group Ck′ with a nonzero
in row rj , then aji = (Adk′)j . This way, all the diagonal entries and at least one of
each pair of symmetric entries of the matrix A can be determined directly with the p
evaluations of Ad1, . . . , Adp.
While using a finite difference technique to estimate a symmetric matrix A, if

a structurally orthogonal partition rather than a symmetrically orthogonal one is

GRAPH COLORING FOR COMPUTING DERIVATIVES 659

X

X X

X

XXX

X

X

X

X X

X

X

X

X

X X

1 2 3 4 5 6
a1

a2

a3

a4

a5

a6

Fig. 4.1 A symmetrically orthogonal column partition and its representation as a star coloring of
the adjacency graph.

used, the estimate for aij may differ from that of aji due to truncation error. Thus,
using a symmetrically orthogonal partition to estimate half of the off-diagonal nonzero
elements of a matrix and determining the other half by symmetry is preferable in
terms of both reducing computational work and ensuring that the computed matrix
is indeed symmetric.
Using Definition 4.2, Problem 4.1 can be cast as a partitioning problem as follows.
Problem 4.3. Given the sparsity structure of a symmetric matrix, find a sym-

metrically orthogonal partition of its columns that has the fewest groups.

4.2. A Graph Coloring Formulation. The adjacency graph of a symmetric ma-
trix exploits symmetry and hence is an appropriate graph representation for the spar-
sity structure of a Hessian. A Hessian matrix is often positive definite; hence the
assumption in the definition of the associated adjacency graph that all diagonal en-
tries of the matrix are nonzero is reasonable.
We proceed by presenting an adjacency graph–based characterization of structural

orthogonality in a symmetric matrix, a result due to McCormick [97].
Lemma 4.4. Let A be a symmetric matrix with nonzero diagonal elements, and let

G(A) = (V,E) be its adjacency graph. Two columns in A are structurally orthogonal
if and only if the corresponding vertices in G(A) are at a distance greater than two
from each other.

Proof. Assume that vertices ai and aj are at a distance greater than two from
each other in G(A). This implies that (1) (ai, aj) �∈ E, and (2) there exists no path
ai, ak, aj in G(A) for any vertex ak ∈ V , 1 ≤ k ≤ n, k �= i, j. In terms of matrix
A, this means that (1) aij = aji = 0, and (2) there is no index k ∈ [1, n], k �= i, j,
such that both aki and akj are nonzero. Recall that the diagonal entries aii and ajj

are nonzero. The first statement above ensures that neither row index i nor j causes
columns ai and aj to be structurally nonorthogonal. The second statement says that
there is no other row index k that causes columns ai and aj to be nonorthogonal
either. Thus, columns ai and aj are structurally orthogonal.
Conversely, assume that columns ai and aj in A are structurally orthogonal.

Noting that aii �= 0 and ajj �= 0, this implies that (1) aij = aji = 0, and (2) there is
no index k, 1 ≤ k ≤ n, k �= i, j, such that aki �= 0 and akj �= 0. This means that in
G(A) = (V,E), (1) (ai, aj) �∈ E, and (2) there exists no path ai, ak, aj for any vertex
ak ∈ V , 1 ≤ k ≤ n, k �= i, j. Hence, vertices ai and aj are at a distance d > 2 from
each other. In particular, they are a distance d ≥ 3 apart from each other.
Notice that just as structural orthogonality of two columns in a nonsymmetric

matrix corresponds to the associated vertices in the bipartite graph being at a dis-

660 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

tance greater than two from each other, structural orthogonality of two columns in a
symmetric matrix corresponds to the associated vertices in the adjacency graph being
at a distance greater than two from each other. There is, however, one difference
between the two cases: the distance between a pair of column vertices in a bipartite
graph is always even, while the distance between a pair of vertices in an adjacency
graph could be odd or even.
By Lemma 4.4, finding a structurally orthogonal partition of the columns of a

symmetric matrix A is equivalent to finding a distance-2 coloring of the adjacency
graph G(A).
We note that Lemma 4.4 is also applicable to a Jacobian matrix that is symmetric

in its zero-nonzero structure, but not in the numerical values of its entries. In par-
ticular, distance-2 coloring the adjacency graph of a structurally symmetric Jacobian
matrix with nonzero diagonal entries is equivalent to a structurally orthogonal column
partition.
In the case of Hessian estimation, the fact that entries aij and aji of matrix A

are equal in numerical value can be exploited to further reduce the number of groups
(colors) required. We now consider the graph coloring formulation of Problem 4.3,
the partitioning problem where symmetry is exploited.
Consider a symmetric matrix A with nonzero diagonal elements and let aij , i �= j,

be any nonzero element in A. Further, let aki, k �= i, j, and ajl, l �= i, j, k, be any
other two nonzero elements. These three nonzeros (and their symmetric counterparts)
and the relevant diagonal entries of the matrix A have the following structure:


aii aij aik

aji ajj aj�

aki akk

a�j a��


 .

By Definition 4.2, in a symmetrically orthogonal partition of the columns of A,
R1. each of the column pairs (ai, aj), (ai, ak), and (aj , al) have their respective

elements in two different groups; and
R2. either columns aj and ak belong to two different groups, or columns ai and

al belong to two different groups.
In fact, these two requirements are also sufficient for a symmetrically orthogonal
partition. Notice that a partition of the four columns ai, aj , ak, and al into the three
groups {ai}, {aj , ak}, and {al} satisfies R1 and R2.
Coleman and Moré [31] characterized the requirements R1 and R2 in terms of a

coloring in the associated adjacency graph.
Definition 4.5. A mapping φ : V → {1, 2, . . . , p} is a star coloring of the graph

G = (V,E) if (1) φ is a distance-1 coloring of G, and (2) every path on four vertices
uses at least three colors.
Notice that R1 corresponds to the first requirement of Definition 4.5, and R2

corresponds to the second.
The subfigure on the right in Figure 4.1 shows a star coloring representation of

the symmetrically orthogonal partition shown on the left. In Figure 4.1, vertices a1,
a3, a5, and a6 are assigned one color; vertex a2 is assigned a second color; and vertex
a4 is assigned a third color.
Coleman and Moré [31] refer to the coloring given in Definition 4.5 as path color-

ing. Unfortunately, the term path coloring is used in the optical networks literature to
refer to an assignment of colors to paths in a graph serves as a theoretical model for

GRAPH COLORING FOR COMPUTING DERIVATIVES 661

routing problems. Examples of works that discuss such applications include [1, 108],
and a recent survey is available in [15]. The term star coloring owes its name to the
fact that in such a coloring, every subgraph induced by vertices assigned any two col-
ors is a collection of stars. As an illustration, consider the graph shown in Figure 4.1
and the subgraph induced by vertices a1, a2, a3, a5, and a6 therein.
The following theorem formalizes the connection between symmetrically orthog-

onal partitioning and star coloring. The result follows from the discussion that led to
the definition of star coloring.

Theorem 4.6 (Coleman and Moré [31]). Let A be a symmetric matrix with
nonzero diagonal elements, and let G(A) = (V,E) be its adjacency graph representa-
tion. A mapping φ is a star coloring of G(A) if and only if φ induces a symmetrically
orthogonal partition of the columns of A.
By Theorem 4.6, the following problem is equivalent to Problem 4.3.
Problem 4.7. Given the adjacency graph G(A) = (V,E) representing the spar-

sity structure of a symmetric matrix A having nonzero diagonal elements, find a star
coloring of G(A) that uses the fewest colors.

4.3. Algorithms. Coleman and Moré [31] showed that the problem of finding a
star coloring with the fewest colors is NP-hard even if the graph is bipartite. Here we
discuss two heuristic algorithms for this problem. The first algorithm is new, while the
second was proposed earlier by Powell and Toint [107] in terms of matrices. In finding
a valid color to assign a vertex, the first algorithm visits the distance-3 neighbors of
the vertex while the second algorithm visits only the distance-2 neighbors. The latter
essentially solves a more restricted coloring problem. The two algorithms represent
a trade-off between the number of colors used and runtime. In both algorithms an
array forbiddenColors of size Cmax = min{∆2 + 1, |V |} is used.
While this paper was in print, we developed a new star coloring algorithm whose

time complexity is the same as the second algorithm discussed here and whose per-
formance is similar to the first. See section 12.2 for a remark.

4.3.1. The First Star Coloring Algorithm. StarColoringAlg1 (Algorithm
4.1) outlines the first algorithm. Figure 4.2 graphically shows the decision made
during one of the |V | steps of the for-loop in lines 4–21 of StarColoringAlg1. In
Figure 4.2, the root of the tree corresponds to the vertex v to be colored at the current
step. The neighbors of v that are one, two, and three edges away are represented by
the tree nodes at levels w, x, and y, respectively. A green-painted node signifies
that the vertex is already colored. The forbidden colors are marked by an f and “?”
indicates that whether the color is forbidden or not depends on the color used at level
y. The correspondence between Figure 4.2 and lines 6, 10, and 14 of Algorithm 4.1 is
obvious. Note that each tree node corresponds to many vertices of the input graph.
Line 6 in Algorithm 4.1 guarantees that the resulting coloring is consistent with a

distance-1 coloring. Notice that in line 10 of the algorithm, the color of vertex x in a
path v, w, x where w is not yet colored is forbidden for vertex v. Later on, when vertex
w is colored, the test in line 6 ensures that w will not have two neighbors of the same
color and thus will not be the center of a 2-colored path of length two (which could
stretch into a 2-colored path of length three). Thus it remains to ensure that v does not
become an endpoint of a 2-colored path of length three, and this is done in line 14 of the
algorithm. The break statement in Algorithm 4.1 is used since the discovery of the first
(out of possibly several) 2-colored paths of length two connected to v suffices to force
v to have a third color. (A break statement forces control to jump out of the nearest
loop that contains the statement, in this case, out of the for-loop in lines 13–18.)

662 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Algorithm 4.1. A greedy star coloring algorithm.
1: procedure StarColoringAlg1(G = (V,E))
2: Let v1, v2, . . . , v|V | be a given ordering of V
3: Initialize forbiddenColors with some value a �∈ V
4: for i← 1 to |V | do
5: for each w ∈ N1(vi) do
6: if w is colored then
7: forbiddenColors[color[w]] ← vi

8: end if
9: for each colored vertex x ∈ N1(w) do
10: if w is not colored then
11: forbiddenColors[color[x]] ← vi

12: else
13: for each colored vertex y ∈ N1(x), y �= w do
14: if color[y] = color[w] then
15: forbiddenColors[color[x]] ← vi

16: break
17: end if
18: end for
19: end if
20: end for
21: end for
22: color[vi] ← min{c > 0 : forbiddenColors[c] �= vi}
23: end for
24: end procedure

v

f

f

?

y

x

w

Fig. 4.2 Visualizing a step in StarColoringAlg1.

The work done to assign a color to vertex vi in StarColoringAlg1 is propor-
tional to d3(vi). Thus we get the following result.

Lemma 4.8. StarColoringAlg1 finds a star coloring of a graph G = (V,E)
in time O(|V |δ3).

4.3.2. The Second Star Coloring Algorithm. Recall that a coloring of a graph
is an assignment of positive integers to its vertices. The second star coloring algorithm
is based on the observation that a star coloring is a relaxed distance-2 coloring, and
makes use of the fact that colors are positive integers.
One way of relaxing the requirement for a distance-2 coloring so as to obtain a

star coloring is to let two vertices at distance of exactly two edges from each other

GRAPH COLORING FOR COMPUTING DERIVATIVES 663

Algorithm 4.2. A second greedy star coloring algorithm.
1: procedure StarColoringAlg2(G = (V,E))
2: Let v1, v2, . . . , v|V | be an ordering of V
3: Initialize forbiddenColors with some value a �∈ V
4: for i← 1 to |V | do
5: for each w ∈ N1(vi) do
6: if w is colored then
7: forbiddenColors[color[w]] ← vi

8: end if
9: for each colored vertex x ∈ N1(w) do
10: if w is not colored then
11: forbiddenColors[color[x]] ← vi

12: else
13: if color[x] < color[w] then
14: forbiddenColors[color[x]] ← vi

15: end if
16: end if
17: end for
18: end for
19: color[vi] ← min{c > 0 : forbiddenColors[c] �= vi}
20: end for
21: end procedure

share a color as long as the vertex in between them has a color of lower value. More
precisely, let v, w, x be a path in G and suppose v and w are colored and we want
to determine the color of x. Clearly, we need to make sure that φ(x) is distinct
from φ(w). Further, we allow φ(x) to be equal to φ(v) as long as φ(w) < φ(v). To
see that this coloring can always be extended to yield a valid star coloring, consider
the path v, w, x, y, an extension of the path v, w, x in one direction. Now, since
φ(x) = φ(v) > φ(w), we cannot let φ(y) be equal to φ(w). Obviously, φ(y) should
be different from φ(x), otherwise it will not be a valid distance-1 coloring. Thus the
path v, w, x, y uses three colors, φ is a distance-1 coloring, and therefore it is a valid
star coloring. StarColoringAlg2, the algorithm that uses this idea, is outlined in
Algorithm 4.2. The work done to assign a color to vertex vi in StarColoringAlg2

is proportional to d2(vi), hence the following result.
Lemma 4.9. StarColoringAlg2 finds a star coloring of a graph G = (V,E)

in time O(|V |δ2).
Notice that the coloring produced by StarColoringAlg2 is a more restricted

variant of star coloring, and therefore StarColoringAlg1 is likely to use fewer col-
ors than StarColoringAlg2 for a given input graph. Figure 4.3 shows an example
where the first algorithm uses three colors in coloring the vertices in their alphabetical
order while the second uses four in doing the same. The two star coloring algorithms
represent a trade-off between the number of colors used and the computational time
needed.

4.4. Experimental Results. Our experimental work in the Hessian estimation
case has two objectives: (i) to experimentally demonstrate the advantage of exploiting
symmetry, and (ii) to compare and contrast the performance of the two star coloring
algorithms.

664 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

1

a

3

c

1

d

2b

1

a

3

c

4

d

2b

Fig. 4.3 A simple example where StarColoringAlg1 uses fewer colors than StarColoringAlg2.

Table 4.1 Graph statistics.

Graph |V | |E| ∆ δ δ

mrng1 257,000 505,048 4 2 3
mrng2 1,017,253 2,015,714 4 2 3
598a 110,971 741,934 26 5 13
144 144,649 1,074,393 26 4 14
m14b 214,765 1,679,018 40 4 15
auto 448,695 3,314,611 37 4 14

Table 4.2 The number of colors used by and the runtimes of D2ColoringAlg, StarColoring

Alg1, and StarColoringAlg2.

Graph K(d2) K(star1) K(star2) T (d2) T (star1) T (star2)
mrng1 12 8 10 0.37 0.61 0.35
mrng2 12 9 10 1.74 2.90 1.75
598a 38 27 32 0.74 3.00 0.75
144 41 28 35 0.90 4.35 0.93
m14b 42 29 34 1.19 5.65 1.23
auto 42 29 36 3.97 17.4 4.07
Total 187 130 157 8.91 33.9 9.08

4.4.1. Test Graphs. The matrices behind the test graphs used in our experiments
arise from finite element methods [46]. Table 4.1 gives some structural information
about the adjacency graphs of these matrices.

4.4.2. Results and Discussion. Table 4.2 shows the performance of algorithms
D2ColoringAlg, StarColoringAlg1, and StarColoringAlg2 when applied
to our test graphs. In each algorithm, the vertices are visited in their natural order.
The left half of the table shows the number of colors used by the different algorithms
and the right half shows the corresponding time (in seconds) spent on coloring.
The results clearly demonstrate the advantage of exploiting symmetry: star col-

oring requires significantly fewer colors than distance-2 coloring. The total number
of colors required by StarColoringAlg1 over all involved test graphs is about
30% less than the number required by D2ColoringAlg. The table also shows
nicely the time/quality trade-off between the two star coloring algorithms. Star-

ColoringAlg2 uses nearly the same time as D2ColoringAlg, while the number
of colors required is 16% less.

5. Bidirectional, Direct Computation of the Jacobian. Recall that a bidirec-
tional partition, as opposed to a unidirectional partition, involves both the rows and
columns of a matrix. We begin this section by motivating the need for a bidirectional

GRAPH COLORING FOR COMPUTING DERIVATIVES 665

partition within the context of AD. We then introduce the partitioning problem, dis-
cuss its graph coloring formulation, and suggest algorithms for solving the problem.

5.1. The Need for a Bidirectional Partition. Through its forward and reverse
mode AD allows a columnwise and a rowwise computation of a Jacobian, respectively.
One way of exploiting sparsity in a matrix in this context is to separately partition the
columns and rows of the matrix, choose the partition which gives the minimum number
of groups, and apply the appropriate mode of AD to compute the matrix entries. For
a symmetric matrix, a row partition is equivalent to a column partition, but for
a nonsymmetric matrix, the two partitions may differ considerably. For example,
consider an n × n matrix where all the entries on the diagonal and the first row are
nonzero, and the rest of the matrix entries are all zero. In such a case, a structurally
orthogonal column partition requires n groups, whereas a structurally orthogonal row
partition requires just two groups.
However, an approach based on a separate row and column partition is not always

satisfactory. For example, consider an n×n arrowhead matrix where all of the elements
in the first row, first column, and the diagonal are nonzero and the rest of the entries
are all zero. For such a pattern, a structurally orthogonal row partition requires n
groups and so does a column partition. However, using a combined row and column
partition, three groups are enough to determine all the nonzero entries of the matrix.
First, separately evaluate the entries in the first column and the first row (two groups).
Then, since the remaining (n − 1) × (n − 1) matrix is diagonal, group the columns
together and determine all entries by one forward AD pass. Thus, three groups (two
column and one row) suffice to determine all the nonzero entries.
In the current section we consider such a computation of a nonsymmetric matrix

using the combined modes of AD via a direct method. The corresponding problem
using a substitution method will be discussed in section 6.2.
Note that a bidirectional partition does not make sense for computing a numeri-

cally symmetric matrix. In particular, a symmetry-exploiting unidirectional partition,
as discussed in section 4, is sufficient.

5.2. The Matrix Partitioning Problem. Let A be an m×n matrix with a known
sparsity structure. Partitioning the columns of A into p groups can be seen as the
task of seeking an n× p binary matrix D whose (j, k) entry is defined as follows:

(5.1) djk =

{
1 if column aj belongs to group k,
0 otherwise.

Recall that D has been referred to as a seed matrix in earlier sections. Using this,
an alternative way of posing Problem 3.1 would then be the following: Given the
structure of an m× n matrix A, find an n× p seed matrix D with the least value of
p such that the product AD enables a direct determination of A. By the same token,
the problem that arises in the bidirectional computation of a Jacobian via a direct
method can be posed as follows.

Problem 5.1. Given the sparsity structure of an m × n matrix A, find an
n× p1 binary matrix D1 and an m× p2 binary matrix D2 such that the products AD1
and DT

2 A together enable a direct determination of A and the value p = p1 + p2 is
minimized.
In this problem formulation, the product AD1 corresponds to the columns of A

determined using the forward mode of AD, and the product DT
2 A corresponds to the

rows of A determined using the reverse mode of AD.

666 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

X X

X

XX

X

X

X

XX

XX

X

1
2
3
4
5

1 2 3 4 5

Fig. 5.1 A structurally orthogonal bidirectional partition of a matrix. The color(s) used on each
nonzero entry shows the column and/or row group from which it can be computed.

Hossain and Steihaug [62] studied Problem 5.1 and identified an associated par-
titioning problem. Their formulation relies on the notion of a consistent row-column
partition in which the entire set of rows and columns is partitioned into two respective
sets of groups. Coleman and Verma [32] also studied the same problem and identified
a similar bidirectional partitioning problem. Their notion of partition differs from
that of Hossain and Steihaug in that it partitions only a subset of the columns and
the rows of the matrix that suffices for the direct determination of the entries. We
consider such a partition and introduce its formal definition below.

Definition 5.2. A bidirectional partition of a matrix A is a pair (ΠC ,ΠR) where
ΠC is a partition of a subset of the columns of A and ΠR is a partition of a subset of
the rows of A.

Definition 5.3. A bidirectional partition (ΠC ,ΠR) of a matrix A is structurally
orthogonal if for every nonzero element aij, either (1) column aj is in a group of ΠC

which has no other column having a nonzero in row ri, or (2) row ri is in a group of
ΠR which has no other row having a nonzero in column aj.
The number of column and row groups in a structurally orthogonal bidirectional

partition corresponds to the number of forward and reverse AD passes, respectively,
required to compute the nonzero entries directly. To see this, observe that a nonzero
element aij can be determined either from a column group where column aj is the
only column with a nonzero in row ri, or from a row group where row ri is the only
row with a nonzero in column aj .
Figure 5.1 shows an example of a structurally orthogonal bidirectional partition

of a matrix. In the example, ΠC includes columns a1 and a3, whereas ΠR includes
rows r2, r4, and r5. As can be seen from the color used at the left and bottom
edges of the figure, column a1 forms one column group and column a3 forms another;
similarly, rows r2 and r5 form one group and row r4 forms a second row group. Thus,
the bidirectional partition uses a total of four groups. Notice that some entries of the
matrix (painted with one color) can be computed only from one group while others
(painted with two colors) can be computed from either of the two groups. As the
reader can easily verify, for this example, a row-only or a column-only structurally
orthogonal partition would have required five groups.
Assuming that the computational costs involved in the forward and reverse modes

of AD are of the same order, in an efficient method that uses a bidirectional parti-
tion (ΠC ,ΠR), the value |ΠC | + |ΠR| is required to be as small as possible. Thus
Problem 5.1 can be cast as a partitioning problem in the following way.

GRAPH COLORING FOR COMPUTING DERIVATIVES 667

X X

X

XX

X

X

X

X

X

X

XX

1
2
3
4
5

1 2 3 4 5

r1
r2
r3
r4
r5

a1
a2
a3
a4
a5

Fig. 5.2 A structurally orthogonal bidirectional partition and its representation as a star bicoloring.
The illustration shows a bidirectional partition (ΠR,ΠC): ΠR = {r2, r5}; {r4} and ΠC =
{a1}; {a3}.

Problem 5.4. Given the sparsity structure of an m× n matrix A, find a struc-
turally orthogonal bidirectional partition (ΠC ,ΠR) such that |ΠC |+ |ΠR| is minimized.

It should be pointed out that in formulating Problem 5.4 within the context of
AD, we are concerned only with computational cost. However, in general, the forward
mode of AD requires less memory space than the reverse mode, making the former
perhaps more desirable. Hence, a more accurate objective would be to minimize
w1|ΠC |+ w2|ΠR| for some empirically determined weights w1 and w2 [66].

5.3. A Graph Coloring Formulation. When a nonsymmetric matrix A is rep-
resented by its bipartite graph Gb(A) = (V1, V2, E), we have seen that a structurally
orthogonal unidirectional partition can be obtained by finding a partial distance-2
coloring of Gb on the set V2 of column vertices. We now consider how this coloring
needs to be modified to find a structurally orthogonal bidirectional partition. Notice
that the coloring we are looking for has to meet the following conditions.

• Some vertices may not be involved in the determination of any nonzero entry
of the underlying matrix. Such vertices are assigned the “neutral” color zero.
We use positive integers to denote the other colors.

• The colors assigned to vertices in V1 should be disjoint from colors assigned
to vertices in V2, except for the neutral color zero.

• Since every nonzero matrix entry has to be determined, for every edge in E,
at least one of the endpoints has to be assigned a positive color.

• A nonzero matrix entry may be determined from either a positively colored
column vertex or a positively colored row vertex. This suggests that the
coloring condition sought here is some relaxation of the distance-2 coloring
requirement imposed in the case of unidirectional partition.

The following definition, introduced by Coleman and Verma [32], makes the afore-
mentioned conditions more precise. The subsequent theorem establishes the equiva-
lence between the matrix and graph problems.

Definition 5.5. Let Gb = (V1, V2, E) be a bipartite graph. A mapping φ :
[V1, V2]→ {0, 1, . . . , p} is a star bicoloring of Gb if the following conditions hold:

1. If u ∈ V1 and v ∈ V2, then φ(u) �= φ(v) or φ(u) = φ(v) = 0.
2. If (u, v) ∈ E, then φ(u) �= 0 or φ(v) �= 0.
3. If vertices u and v are adjacent to a vertex w with φ(w) = 0, then φ(u) �= φ(v).
4. Every path on four vertices uses at least three colors.
Figure 5.2 shows a structurally orthogonal bidirectional partition of a matrix and

its representation as a star bicoloring in the associated bipartite graph. The reader

668 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Algorithm 5.1. A scheme for star bicoloring.
procedure StarBicoloringScheme(Gb = (V1, V2, E))
1. Find a suitable vertex cover C in Gb

2. Assign the vertices in the set I = (V1 ∪ V2) \ C the color 0
3. Color the vertices in C such that the result is a star bicoloring of Gb

end procedure

could verify that these four conditions listed above are satisfied by the coloring in the
graph.

Theorem 5.6 (Coleman and Verma [32]). Let A be an m×n matrix and Gb(A) =
(V1, V2, E) be its bipartite graph. The mapping φ : [V1, V2] → {0, 1, . . . , p} is a star
bicoloring of Gb(A) if and only if φ induces a structurally orthogonal bidirectional
partition (ΠC ,ΠR) of A.
Thus Problem 5.4 is equivalent to the following graph coloring problem.
Problem 5.7. Given the bipartite graph Gb(A) = (V1, V2, E) representing the

sparsity structure of an m×n matrix A, find a star bicoloring of Gb(A) that uses the
fewest colors.

5.4. Algorithms. In a star bicoloring of a bipartite graph, some vertices are
assigned the neutral color zero. (As an example, see the unpainted vertices in Fig-
ure 5.2.) We make the following observation which helps us identify a possible set
of such vertices. The observation is a direct consequence of conditions 1 and 2 of
Definition 5.5.

Observation 5.8. Let Gb = (V1, V2, E) be a bipartite graph and φ : [V1, V2] →
{0, 1, . . . , p} be a star bicoloring of Gb. Then

• the set C = {v : φ(v) �= 0} is a vertex cover in Gb, and
• the set I = {v : φ(v) = 0} is an independent set in Gb.
One consequence of Observation 5.8 is that |I|+|C| = |V1|+|V2|. Thus, a decrease

in the cardinality of the vertex cover C results in an increase in the cardinality of the
independent set I.
Observation 5.8 suggests a scheme for solving Problem 5.7. This scheme, called

StarBicoloringScheme, is outlined in Algorithm 5.1.
In step 1 of starBicoloringScheme, a vertex cover needs to be chosen care-

fully. Though a vertex cover of small size is desirable, minimizing its cardinality is
not a primary objective. Specifically, the chosen vertex cover should be such that it
results in fewer colors compared to both a partial distance-2 coloring on V1 (rowwise
unidirectional partition) and a partial distance-2 coloring on V2 (columnwise unidi-
rectional partition). As the discussion in section 5.1 suggests, such a vertex cover
needs to include vertices from V1 and V2 having a relatively high number of distance-
1 neighbors, even when the implication is that the vertex cover is not minimal in size.
Coleman and Verma [32] have suggested a procedure (formulated in matrix terms)
for computing a vertex cover suitable for star bicoloring.
A high-level translation of the procedure of Coleman and Verma in graph terms

would be as follows. A vertex cover C = C1 ∪ C2 is obtained by first finding an
independent set I = I1 ∪ I2 and then applying the differences C1 = V1 \ I1 and
C2 = V2 \ I2. The independent set is obtained using an algorithm that has the
flavor of a minimum degree algorithm for finding a maximal independent set. An
additional ingredient of the algorithm is a classification of the edge set E into four
categories. The first category corresponds to edges not yet covered. An edge in the

GRAPH COLORING FOR COMPUTING DERIVATIVES 669

v

f ?

y

x

w

f

Fig. 5.3 Visualizing a step in StarBicoloringAlg.

second category is an edge covered solely by a vertex from V1, an edge in the third
category is covered solely by a vertex from V2, and an edge in the fourth category is
covered both by a vertex from V1 and by a vertex from V2. This classification is used
to define specialized vertex “degrees” (number of incident edges of each category).
Initially all edges are set to be in category 1, to reflect that they are not covered yet.
In each step of the greedy algorithm, a vertex v1 of minimum degree in V1 and a
vertex v2 of minimum degree in V2 are chosen; the minimum degree in each case is
evaluated using the subgraph of Gb obtained by deleting category-2 and category-3
edges. Then, based on a test function that involves a comparison between current
maximum degrees (restricted to category-2 and category-3 edges), one of the vertices
v1 or v2 is chosen to be included in the independent set. Once the vertex to be included
in the independent set is determined, the edges incident on the chosen vertex and its
neighbors are placed into appropriate categories that reflect the choice. The algorithm
terminates when no category-1 edge is left (all edges are covered).
Once steps 1 and 2 are carried out, step 3 can be done by a suitable adaptation of

StarColoringAlg1. Let StarBicoloringAlg be such an adaptation. One of the
differences between the coloring and bicoloring algorithms is that in the latter case,
two disjoint sets of colors are used in coloring the vertices in V1 and V2 of the bipartite
graph Gb = (V1, V2, E). Another difference is that at the instance of the bicoloring
algorithm in which vertex v is colored, a vertex within the distance-3 neighborhood
of v may be one of three types: it is colored with a positive value, it is colored with 0,
or it is not yet colored. The choice of color for vertex v thus needs to consider these
three options.
Figure 5.3 shows a visual presentation of an iteration (in the loop over all vertices)

of StarBicoloringAlg. Note the similarity with Figure 4.2. Since the colors for the
vertices in V1 and V2 are chosen from two disjoint sets, in choosing a color for vertex v
in Gb = (V1, V2, E), we need only consider colors of vertices that are exactly two edges
away from v. In the figure, green-painted nodes correspond to vertices with positive
colors, shaded nodes show vertices with color zero, and unpainted nodes correspond
to uncolored vertices. Observe that the node with color zero at level w has only two
children; it cannot have a child with color zero, for otherwise there would exist an
uncovered edge. The colors of the vertices in the nodes marked by an f indicate forbid-
den colors; whether the color at the node marked by “?” is forbidden or not depends
on the color used at node y: if φ(w) = φ(y), φ(x) is forbidden; otherwise, it is not.
The time complexity of StarBicoloringAlg is O((|V1|+ |V2|)δ3), which is also

the overall time complexity of StarBicoloringScheme assuming that step 1 is done
using a greedy algorithm that is linear in the number of edges.

670 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Notice that a partial distance-2 coloring of Gb on V2 is just a special case of
StarBicoloringScheme. To see this, consider the trivial choice of vertex cover
C = V2 in step 1. This implies that, in step 2, the vertices in the set I = V1 will be
colored with color zero. By condition 3 of Definition 5.5, vertices adjacent to a vertex
colored with color zero are required to be assigned different colors. Thus, the result
is effectively a partial distance-2 coloring of Gb on V2.
Hossain and Steihaug [62] and Coleman and Verma [32] each proposed an algo-

rithm for Problem 5.7. These can be interpreted in light of StarBicoloringScheme.
The algorithm of Hossain and Steihaug implicitly finds a vertex cover while the color-
ing of the graph proceeds. Using our terminology, the vertices that remain uncolored
at the end of the Hossain–Steihaug algorithm form an independent set in the graph
and can thus be assigned the neutral color zero.
The algorithm of Coleman and Verma uses a preprocessing step to identify the

rows and columns of the underlying matrix that eventually need to be colored with
positive values. The preprocessing step uses a matrix-based procedure which effec-
tively produces a small-sized vertex cover. After the preprocessing step, certain “col-
umn and row intersection graphs,” adapted to the star bicoloring requirements, are
constructed to finally use known distance-1 coloring heuristics on the resulting graphs.

6. Substitution Methods. In a unidirectional computation of a matrix A via
a substitution method, the vectors d1, d2, . . . , dp are chosen such that the system
of equations defined by the products Ad1, Ad2, . . . , Adp can be made triangular. In
this case, the partition defined by the p vectors could fulfill a more relaxed set of
requirements compared to a structurally orthogonal partition used in a direct method,
and hence results in a smaller p. This fact has been especially useful when estimating
a Hessian matrix since substitution can be effectively combined with the exploitation
of symmetry [27, 31]. In the Jacobian case, a substitution method is worth considering
when the computation is bidirectional [32].
In this section, within the context of substitution methods, we consider unidirec-

tional partitions for Hessians (section 6.1) and bidirectional partitions for Jacobians
(section 6.2).
An example of a variant of a substitution method for a unidirectional computation

of a Jacobian has been considered by Hossain and Steihaug [63]. The method relies
on first finding a structurally orthogonal partition of the columns and then merging a
pair of consecutive groups to get a column grouping that allows overlaps. In this way
a structurally orthogonal partition consisting of p groups is changed into a column
grouping having p − 1 groups. The former defines a diagonal system of equations,
while the latter leads to a triangular system.

6.1. Computing the Hessian. To illustrate the fact that a partition used in a
substitution method requires fewer groups than one used in a direct method, consider
the 4× 4 symmetric matrix A shown below:



a11 a12
a21 a22 a23

a32 a33 a34
a43 a44


 .

Any symmetrically orthogonal partition of the columns of this matrix—and hence
a direct method—requires at least three groups. An example of a symmetrically
orthogonal partition is {a1, a3}, {a2}, and {a4}. However, if we do not insist on

GRAPH COLORING FOR COMPUTING DERIVATIVES 671

determining the elements directly, two groups would suffice. For example, consider
the partition {a1, a3} and {a2, a4}. The seed matrix corresponding to this partition
is

DT =
[
1 0 1 0
0 1 0 1

]
.

The product AD from which the nonzeros of A can be recovered is

AD =




a11 a12
a12 + a23 a22
a33 a23 + a34
a34 a44


 .

Thus, nonzero entries a11, a12, a22, a33, a34, and a44 can be obtained directly and
element a23 can be obtained via substitution either from the expression a12 + a23
or from a23 + a34. Note that in the product AD, every nonzero entry aij has been
identified with its symmetric counterpart aji.

6.1.1. The Matrix Partitioning Problem. In general, a column partition of a
symmetric matrix induces a substitution method if there is an ordering of the nonzero
entries (unknowns) such that all unknowns can be solved for, in that order, using
symmetry and previously solved elements.
We formally define such a partition and then state the corresponding partitioning

problem. In the following definition, we identify the two matrix elements aij and
aji of the symmetric matrix A. The ordering of the elements in the definition is the
ordering in which the matrix elements are evaluated in a substitution method.

Definition 6.1. A partition of the columns of a symmetric matrix A is said to
be substitutable if there exists an ordering on the elements of A such that for every
nonzero aij, either (1) column aj is in a group where all the nonzeros in row ri, from
other columns in the same group, are ordered before aij, or (2) column ai is in a group
where all the nonzeros in row rj, from other columns in the same group, are ordered
before aij.

Problem 6.2. Given the sparsity structure of a symmetric matrix, find a substi-
tutable partition of its columns that has the fewest groups.

6.1.2. A Graph Coloring Formulation. To formulate Problem 6.2 as a graph
problem, we need to introduce the notion of acyclic coloring.

Definition 6.3. A mapping φ : V → {1, 2, . . . , p} is an acyclic coloring of a
graph G = (V,E) if (1) φ is a distance-1 coloring, and (2) every cycle in G uses at
least three colors.
Note that since the vertices in every cycle are assigned at least three colors in an

acyclic coloring, the subgraph induced by the set of vertices assigned any two colors
does not contain a cycle, and hence it is a forest. The name acyclic coloring stems
from this fact.
Consider the 10× 10 symmetric matrix A whose nonzero structure is depicted in

Figure 6.1. The figure shows a partition of the columns of A into the three groups
{a1, a3, a5}, {a2, a4, a7, a9}, and {a6, a8, a10}. We will show that this partition is
substitutable.
An acyclic coloring of the adjacency graph G(A) is shown in Figure 6.1 (right);

the vertices {a1, a3, a5} are colored red, the vertices {a2, a4, a7, a9} are colored blue,
and the vertices {a6, a8, a10} are colored green. Note that the subgraph induced

672 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X

X
X

X

X

X

X

X
X

X

X

X

X

X
X X

X X
X

21 3 4 5 6 87 9 10

a7 a8 a9 a10

a1 a2 a3 a4

a6a5

Fig. 6.1 A substitutable partition of the columns of a symmetric matrix and its representation as
an acyclic coloring of the associated adjacency graph.

by the vertices colored red or blue, the set {a1, a2, a3, a4, a5, a7, a9}, is a forest; the
vertex a9 is an isolated vertex in this forest and the remaining six vertices constitute a
tree. Similarly, the subgraph induced by the vertices colored blue or green is a forest
consisting of the tree on the six vertices a4, a6, a7, a8, a9, a10 and the isolated vertex
a2; and the subgraph induced by the vertices colored red or green is a forest consisting
of the path on the four vertices a3, a6, a5, a8 and the two isolated vertices a1 and a10.
Our goal here is to show how the ordering in a substitutable partition can be

computed from an acyclic coloring of the adjacency graph G(A) of the symmetric
matrix A. First, it is easy to verify that in a group of columns in a substitutable
partition induced by an acyclic coloring, each diagonal element is the only nonzero
in its row. This is an immediate consequence of the fact that an acyclic coloring is
a distance-1 coloring, for if aij is nonzero, vertices ai and aj are adjacent and are
assigned different colors in a distance-1 coloring. Thus ai is the only column with a
nonzero in row i in the group of columns to which it belongs.
Next, consider off-diagonal elements aij with i �= j, where the two elements aij

and aji are identified due to symmetry. Each edge in G(A) belongs to exactly one two-
colored subgraph of G(A), since its two endpoints are assigned distinct colors. Thus
an acyclic coloring partitions the edges of the graph G(A) into two-colored subgraphs,
which are forests. We will solve for the matrix elements corresponding to the edges
from each two-colored tree separately, and thus we need to prescribe the order only
for a tree.
In a two-colored tree, every edge incident on a leaf vertex can be solved for

immediately since it is the only nonzero in a row of the group of columns to which
its parent vertex belongs. As an example, consider the red-blue forest induced by
the vertices {a1, a2, a3, a4, a5, a7, a9} in Figure 6.1. The relevant nonzeros in the two
groups of columns {a1, a3, a5} and {a2, a4, a7, a9} in the partition induced by the
acyclic coloring are as follows:



a21 a23 a25

a43
a63 a65

a71
a85


 ;




a12 a17
a32 a34
a52

a69

a87 a89

a10,4 a10,9



.

GRAPH COLORING FOR COMPUTING DERIVATIVES 673

Note that we have not shown the diagonal nonzeros in each column. Furthermore,
the elements shown in bold will be evaluated when we consider the other two-colored
forests; the bold entries in the submatrix on the left will be evaluated from the red-
green forest, and the bold entries in the submatrix on the right will be evaluated from
the blue-green forest.
Consider the nontrivial tree in the red-blue forest. In this tree, the vertex a7 is

a leaf, and the edge (a7, a1) can be computed from column a1 since a71 is the only
nonzero in row 7 in the columns colored red, the set {a1, a3, a5}. The vertex a4 is also
a leaf, and the edge (a4, a3) can be computed from column a3 since a43 is the only
nonzero in row 4 in the columns colored red. Likewise, vertex a5 is a leaf, and the
edge (a5, a2) can be computed from column a2 since a52 is the only nonzero in row 5
in the columns colored blue, the set {a2, a4, a7, a9}.
Furthermore, once the edges incident on a leaf have been evaluated, they can

be deleted from the tree to create new leaves. The process can be repeated to solve
for edges incident on the new leaf vertices, by using values computed for the leaf
edges from earlier steps. The deletion of edges corresponds to substitution of already
computed quantities in a triangular system of equations. In our illustration, once edges
(a7, a1), (a4, a3), and (a5, a2) have been evaluated and deleted, the path a1, a2, a3
remains. In this path, vertices a1 and a3 are leaves. In the columns colored blue,
row 1 has two nonzeros, a12 and a17; since the latter is known from the evaluation
of a71, we can compute the element a12 by substitution. Finally, the last edge in
the tree, edge (a2, a3), can be evaluated by using row 1 of the columns colored red,
by substituting the known values for a21 and a25, or by using row 2 of the columns
colored blue, by substituting the known value for a34.
To summarize, an ordering from which matrix elements can be evaluated follows

naturally from an acyclic coloring by considering the partition of the graph into two-
colored trees. In each tree, the edges incident on a leaf vertex can be evaluated
directly; subsequently, as the evaluated edges are deleted, edges incident on new leaf
vertices could be evaluated in a substitution method. This process can be repeated
until the tree becomes empty and every edge in the tree has been evaluated.
Coleman and Cai [27] established the connection between acyclic coloring and the

computation of a symmetric matrix using a substitution method. Acyclic coloring had
been studied earlier by Grünbaum [56] in a different context. Further information on
acyclic coloring with pointers to references is included in section 11.4.

Theorem 6.4 (Coleman and Cai [27]). Let A be a symmetric matrix with nonzero
diagonal elements and let G(A) = (V,E) be its adjacency graph representation. A
mapping φ is an acyclic coloring of G(A) if and only if φ induces a substitutable
partition of the columns of A.

Proof. Assume that φ is an acyclic coloring of the graph G(A). We claim that
φ induces a substitutable partition of the columns of A. This is immediate from
the earlier discussion, since an acyclic coloring partitions the edges of G(A) into two-
colored forests, and the edges in each two-colored tree can be computed by the process
of computing edges incident on leaf vertices.
Now we prove the converse. Assume that we are given a substitutable partition

of the columns C = {C1, C2, . . . , Cp} of the symmetric matrix A. Define a mapping
φ(ai) = k if ai ∈ Ck for 1 ≤ i ≤ p. We will show that φ corresponds to an acyclic
coloring of the vertices of the adjacency graph G(A).
To arrive at a contradiction, assume that φ is not an acyclic coloring. Then either

it is not a distance-1 coloring, or the graph G(A) has a cycle in which the vertices are
assigned only two colors.

674 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

If φ is not a distance-1 coloring, then there are two adjacent vertices, say, ai and
aj in the graph G(A) with the same color. Then these columns belong to the same
group in C. The columns ai and aj contain the following 2× 2 submatrix:(

aii aij

aji ajj

)
.

These three distinct nonzero elements are not present in any other column and hence
cannot be evaluated from any other group. But their values cannot be computed by
solving a triangular system of equations since there are two unknown elements in each
of the two rows. This contradicts the assumption that C is a substitutable partition.
Now consider the case when φ induces a two-colored cycle in the graph G(A). By

assumption, the elements corresponding to the edges of the cycle can be computed
from the substitutable partition of A. Let (ai, aj) denote the first edge computed from
the two-colored cycle. Let ah denote the neighbor of ai distinct from aj in the cycle,
and similarly let ak denote the neighbor of aj distinct from ai in the cycle. Then,
by choice of the edge (ai, aj), the edges (ah, ai) and (aj , ak) have not been evaluated
yet. Thus the pair of nonzeros ahi and aij (and also aij and ajk) cannot be ordered
to satisfy the requirements of a substitutable partition given in Definition 6.1. This
contradicts the assumption that C is a substitutable partition.
In view of Theorem 6.4, Problem 6.2 is equivalent to the following graph problem.
Problem 6.5. Given the adjacency graph G(A) = (V,E) representing the spar-

sity structure of a symmetric matrix A with nonzero diagonal elements, find an acyclic
coloring of G(A) that uses the fewest colors.

6.1.3. An Acyclic Coloring Algorithm. Coleman and Cai [27] proved that the
problem of finding an acyclic coloring of a graph that uses the fewest colors is NP-hard.
Recently, we developed a new efficient heuristic algorithm for the problem. Here we
briefly mention the main idea in the algorithm; for a more detailed discussion see [48].
Our algorithm relies on the fact that in a graph where the vertices have been

colored satisfying the conditions of acyclic coloring, every subgraph induced by a set
of vertices assigned any two colors is a forest. The union of all two-colored forests
in a partially acyclically colored graph is a collection of edge-disjoint trees. Each
tree in the collection is dynamic in the sense that edges may be added to it as the
algorithm proceeds. Based on these observations, our algorithm uses the disjoint-set
data structure to maintain the collection of trees in an efficient way. In our context, a
set in the disjoint-set data structure corresponds to a two-colored tree and an element
of a set corresponds to an edge. The two important operations supported by the
disjoint-set data structure are union and find.
The algorithm iterates over the vertices in the set V in some order. In each step

i, 1 ≤ i ≤ |V |, it ensures that the color chosen for vertex vi (1) is distinct from each
of the colors of the distance-1 neighbors of vi, and (2) does not lead to a cycle in
any one of the current two-colored trees. The first requirement is easy to enforce:
the colors used by the distance-1 neighbors of vertex vi are excluded from the set
of colors allowed for vertex vi. Since we maintain a collection of two-colored trees,
the second requirement reduces to checking whether vertex vi is connected to at least
two same-colored vertices in a single two-colored tree. These checks can be done
systematically for all the trees incident on vi in order to exclude additional colors
from the set of colors allowed to vertex vi. Once the colors that are not allowed for
vertex vi are determined, the smallest allowable color is chosen and assigned to vi. The
computational work involved in coloring the vertex vi is proportional to d2(vi). The

GRAPH COLORING FOR COMPUTING DERIVATIVES 675

total number of find operations in the algorithm is bounded by f =
∑

v∈V d2(v), while
the number of union operations is at most |E|. Thus the overall time complexity of
the algorithm is O(α(f, |E|) · |V |δ2), where α is the functional inverse of Ackermann’s
function. Recently, we used the underlying technique in this algorithm, exploiting the
structure of two-colored induced subgraphs, to design an O(|V |δ2)-time star coloring
algorithm. See the report [48] for a detailed discussion of these algorithms.
Earlier, Coleman and Cai [27] suggested an algorithm for the acyclic coloring

problem. The idea in their algorithm is to first transform a given graph G = (V,E) to
a “completed” graph G′ = (V,E′) by adding edges in such a way that every cycle in
G includes a triangle in G′, and then use a known distance-1 coloring heuristic on G′.
The construction of G′ is done in the following way. Initially set E′ to be the same as
E. Consider an ordering (numbering) π : V ↔ {1, 2, . . . , n} of the vertices. Process
the vertices in the order given by π. In each iteration i, if the vertex w = π−1(i)
is such that there exists a path v, w, x in G where π(w) > max{π(v), π(x)}, then
add the edge (v, x) to E′. It is clear that when G′ is constructed in this manner,
a distance-1 coloring of G gives a valid acyclic coloring of G. However, an optimal
distance-1 coloring of G′ does not imply an optimal acyclic coloring of G. In fact, the
algorithm of Coleman and Cai is an algorithm for a more constrained coloring problem
that Coleman and Moré [31] have called triangular coloring. (A vertex coloring φ of
a graph G is triangular if there exists an ordering π of the vertices such that (1) φ
is a distance-1 coloring of G, and (2) in every path v, w, x in G, the vertices v and x
receive different colors whenever π(w) > max{π(v), π(x)}.)
The graph G′ used in the algorithm described above depends critically on the

chosen ordering π. Coleman and Moré [31] showed that a smallest last vertex ordering
is particularly well-suited for minimizing the number of colors required to distance-1
color the graph G′. For a discussion of the smallest last ordering and its relationship
to various graph parameters, see section 11.
The graph G′ has interesting relationships with fill graphs in sparse matrix fac-

torization. Our first observation is that the graph G′ is a subgraph of a chordal
completion G+ = (V,E ∪ F) of G. A graph is chordal if every cycle on four or more
vertices has a chord, an edge connecting two nonconsecutive vertices on the cycle.
Computing a chordal completion of a graph in which the number of fill edges |F | is
minimized is NP-hard [124]. This graph problem is a well-known model for sparse
Cholesky factorization. The process through which G′ is computed resembles, but is
not the same as, the elimination game, a process through which G+ is computed. The
difference is that in the former case a fill edge is added between two lower numbered
vertices whenever these vertices have a common higher numbered neighbor in the
original graph G.
We can also characterize the edges in the graph G′ in terms of fill in a sparse

incomplete LU factorization. In a level-based incomplete LU factorization, each of
the edges in the original graph are assigned level 0, and the fill edges are assigned
higher values of levels. In the sum rule of assigning levels to fill edges, when a fill edge
(vj , vk) is created by a pair of edges (vi, vj) and (vi, vk), the level of the fill edge is
one more than the sum of the levels of the two causative edges. In this case, since the
causative edges belong to the original graph G, they have level values equal to 0, and
hence the fill edge (vj , vk) has level 1. Thus the added edges E′ \E in G′ are exactly
the fill edges in a level-based sparse incomplete LU factorization corresponding to
level 1, i.e., ILU(1).
Hysom and Pothen [70] proved a theorem characterizing fill in an incomplete

factorization. A fill path between two vertices vi and vj is a path in the original graph

676 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Algorithm 6.1. A scheme for solving the acyclic bicoloring problem.
procedure AcyclicBicoloringScheme(Gb = (V1, V2, E))
1. Find a suitable vertex cover C in Gb

2. Assign the vertices in the set I = (V1 ∪ V2) \ C the color 0
3. Color the vertices in C such that the result is an acyclic bicoloring of Gb

end procedure

G joining the two vertices such that all of its interior vertices are numbered less than
vi and vj . An edge (vi, vj) is a fill edge of level 	 if and only if the shortest fill path
joining vi and vj in the graph G has length 	+ 1 edges [70].

6.2. Computing the Jacobian. In estimating a nonsymmetric matrix using a
substitution method, the requirement on the bidirectional partition can be relaxed so
as to obtain fewer groups compared to a partition in a direct method.

6.2.1. The Matrix Partitioning Problem. We state the following definition, due
to Coleman and Verma [32], to subsequently describe the fifth matrix partitioning
problem of our concern.

Definition 6.6. A bidirectional partition (ΠC ,ΠR) of a matrix A is substi-
tutable if there exists an ordering on the elements of A such that for every nonzero
element aij, either (1) column aj is in a group where all nonzeros in row ri, from
other columns in the group, are ordered before aij, or (2) row ri is in a group where
all the nonzeros in column aj, from other rows in the group, are ordered before aij.

Problem 6.7. Given the sparsity structure of an m × n matrix A, find a sub-
stitutable bidirectional partition (ΠC ,ΠR) of A such that |ΠC | + |ΠR| is minimized.

6.2.2. AGraphColoring Formulation. The relationship between bicoloring and
bidirectional partition, established by Theorem 5.6, coupled with that between acyclic
coloring and substitutable partition, established by Theorem 6.4, suggests that “acyclic
bicoloring” might be the right graph model for Problem 6.7. Coleman and Verma [32]
showed that this was indeed the case.

Definition 6.8. Let Gb = (V1, V2, E) be a bipartite graph. A mapping φ :
[V1, V2]→ {0, 1, . . . , p} is an acyclic bicoloring of Gb if the following conditions hold:

1. If u ∈ V1 and v ∈ V2, then φ(u) �= φ(v) or φ(u) = φ(v) = 0.
2. If (u, v) ∈ E, then φ(u) �= 0 or φ(v) �= 0.
3. If vertices u and v are adjacent to a vertex w with φ(w) = 0, then φ(u) �= φ(v).
4. Every cycle uses at least three colors.

Theorem 6.9 (Coleman and Verma [32]). Let A be an m×n matrix and Gb(A) =
(V1, V2, E) be its bipartite graph. The mapping φ : [V1, V2]→ {0, 1, . . . , p} is an acyclic
bicoloring of Gb(A) if and only if φ induces a substitutable bidirectional partition
(ΠC ,ΠR) of A.
By Theorem 6.9, the following coloring problem is equivalent to Problem 6.7.
Problem 6.10. Given the bipartite graph Gb(A) = (V1, V2, E) representing the

sparsity structure of an m×n matrix A, find an acyclic bicoloring of Gb(A) that uses
the fewest colors.

6.2.3. An Acyclic Bicoloring Algorithm. Observation 5.8 suggests the scheme
AcyclicBicoloringScheme outlined in Algorithm 6.1 for solving the acyclic bi-
coloring problem. Step 3 of AcyclicBicoloringScheme can be done using an
appropriate adaptation of the acyclic coloring algorithm sketched in section 6.1.3.

GRAPH COLORING FOR COMPUTING DERIVATIVES 677

7. Interrelationships among the Coloring Problems. In this short section, we
expose the interrelationships among the various coloring variants introduced thus far
in this paper. The relationships reveal that distance-2 coloring is the most general
variant.

7.1. ChromaticNumbers. The conditions required by distance-1 coloring, acyc-
lic coloring, star coloring, acyclic bicoloring, star bicoloring, and distance-2 coloring
imply the relationships among the respective chromatic numbers stated in Theo-
rems 7.1 and 7.2. The two theorems are due to Coleman and Cai [27] and Coleman
and Verma [32].
Recall that the distance-k chromatic number of a graph G is denoted by χk(G),

and the least number of colors required for a partial distance-2 coloring of a bipartite
graph Gb = (V1, V2, E) on Vi (i = 1, 2) is denoted by χ2(Gb, Vi). Let the chromatic
number for acyclic and star coloring of a graph G be denoted by χa(G) and χs(G),
respectively. Further, let the chromatic number for acyclic and star bicoloring of a
bipartite graph Gb be denoted by χab(Gb) and χsb(Gb), respectively.

Theorem 7.1. For every graph G = (V,E),

χ1(G) ≤ χa(G) ≤ χs(G) ≤ χ2(G) = χ1(G2).

Proof. Regarding the first three inequalities, observe that a distance-2 coloring
is a star coloring; a star coloring is an acyclic coloring; and an acyclic coloring is
a distance-1 coloring. The last equality holds since a distance-2 coloring of G is
equivalent to a distance-1 coloring of G2.

Theorem 7.2. For every bipartite graph Gb = (V1, V2, E),

χab(Gb) ≤ χsb(Gb) ≤ min{χ2(Gb, V1), χ2(Gb, V2)}.

Proof. The first inequality is obvious. For the second inequality, observe that a
partial distance-2 coloring on V2 is a valid star bicoloring of the bipartite graph Gb

where all the vertices in V1 are restricted to be colored with color zero. A similar
argument, with the roles of V1 and V2 interchanged, can be used to complete the
proof.
In the context of efficient derivative matrix computation, the implication of The-

orem 7.2 is that an optimal bidirectional partition, irrespective of the structure of the
matrix, yields at most as many groups as an optimal unidirectional partition, and
hence potentially results in a more efficient computation.
Theorems 7.1 and 7.2 show that distance-2 coloring is an archetypal model in the

computation of Jacobian and Hessian matrices.
Distance-2 coloring also has applications other than derivative matrix computa-

tion. Examples include channel assignment [84] and facility location problems (see
Chapter 5 of the book by Vazirani [117]).

7.2. Two-Colored Induced Subgraphs. As discussed in earlier sections, the
names for star and acyclic coloring are derived from the structure of two-colored
induced subgraphs in the respective colorings. In this section we revisit this issue and
extend the observation to the distance-1 and distance-2 coloring cases.
Let G = (V,E) be a graph and φ : V → {1, 2, . . . , p} be a variant of vertex

coloring. Let H2colors ⊆ G denote a subgraph of G induced by the union of any
two color classes in φ. In Table 7.1 we summarize our observations regarding the
characterization of H2colors in the cases where φ is a distance-1, an acyclic, a star,
and a distance-2 coloring. The reader will find the illustration in Figure 7.1 helpful

678 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Table 7.1 Characterization of the subgraph induced by the union of any two color classes.

φ H2colors
Distance-1 coloring A bipartite graph
Acyclic coloring A collection of trees
Star coloring A collection of stars
Distance-2 coloring A distance-2 matching

a

c

e

i

h

b g

d

f

a

c

e

i

h

b g

d

f

a

c

e

i

h

b g

d

f

a

c

e

i

h

b g

d

f

iii iii iv

Fig. 7.1 (Left to right) A distance-1, an acyclic, a star, and a distance-2 coloring of a graph.

Table 7.2 The color classes in each of the four colorings depicted in Figure 7.1.

i ii iii iv
Class 1 {a, d, e, f, i} {a, d, f, i} {a, i} {a, i}
Class 2 {b, c} {b, c} {b, c} {b, f}
Class 3 {g, h} {e} {d, f} {c, d}
Class 4 {g, h} {e} {e}
Class 5 {g, h} {g}
Class 6 {h}

in following this discussion; parts (i) through (iv) depict an example of each of the
respective coloring variants. For convenience, Table 7.2 lists the color classes in each
of the four cases of Figure 7.1.
It is obvious that φ is a distance-1 coloring if and only if H2colors is a (not

necessarily connected) bipartite graph.
Since φ in Table 7.1 gets progressively restricted as one goes down the column, cor-

respondingly, H2colors becomes progressively restricted (and less connected). Acyclic
coloring is named as such precisely because the corresponding H2colors is a collection
of trees (an acyclic graph). Similarly, star coloring owes its name to the fact that the
corresponding H2colors is a collection of stars [41]. It is easy to see that a connected
two-colored induced subgraph here ought to be a star, for otherwise there would exist
a two-colored path on four vertices, violating a condition of star coloring.
In the case where φ is a distance-2 coloring, we note that H2colors is a restricted

matching. In the usual sense, a matching in a given graph G = (V,E) is a set M ⊆ E
of edges with no shared endpoints. In other words, in a connected graph G, a pair
of edges in a matching M is at least one edge apart in G. The matching H2colors in
the last row of Table 7.1 is such that a pair of edges in H2colors is apart by a path
of length at least two edges in G. We call this a distance-2 matching. The subgraph
induced by the vertices {b, c, d, f} in part (iv) is an example of a distance-2 matching,
since it consists of the two edges (b, d) and (c, f), which are apart from each other by
paths of length two or greater.

GRAPH COLORING FOR COMPUTING DERIVATIVES 679

As a corollary, we observe a relationship between distance-2 vertex coloring and
a restricted variant of edge coloring. In the standard usage, an edge coloring of a
graph is an assignment of colors to its edges such that every pair of edges sharing an
endpoint receives different colors. Such an edge coloring clearly partitions the edge
set into matchings. A distance-2 edge coloring is an assignment of colors to edges such
that every pair of edges that either shares an endpoint or is separated by one other
edge is assigned different colors. Consider now the edge coloring φ′ derived from a
distance-2 vertex coloring φ in the following way: assign each edge a color obtained
by “mixing” the colors of its two endpoints; i.e., for each e = (u, v), φ′(e) = φ(u) �
φ(v). Here, x � y denotes the number obtained by concatenating the positive integers
x and y; e.g., 2 � 3 is 23. It is evident that the edge coloring φ′ obtained in this
manner is a distance-2 edge coloring and hence partitions the edge set into distance-2
matchings.

8. Partial Matrix Computation. In many large-scale optimization contexts, the
Jacobian or the Hessian is formed only for preconditioning purposes, and only a subset
of the matrix elements needs to be computed. Computing a good preconditioner is
critical for fast convergence to a solution. A recent survey article by Knoll and Keyes
[79] discusses various applications where the “Jacobian-free Newton–Krylov” method
is used. A basic ingredient of this method is an approximate computation of some
elements of the Jacobian. Also, there are examples in which only certain elements of
the Hessian need to be updated in an iterative procedure, since the other elements do
not change in value [11].
In this section we develop graph coloring formulations of partitioning problems

that arise in the computation of a specified subset of the nonzero entries of a matrix.
We call this partial matrix computation as opposed to full matrix computation, the
case in which all nonzero entries are required to be determined.
The coloring formulations in this section are new and more sophisticated than the

coloring formulations in full matrix computation. In a coloring formulation of partial
matrix estimation, one may be tempted to think that the vertices corresponding to the
nonzeros outside the set of required elements might as well be ignored. However, such
vertices still need to be considered since they could interfere with the computation of
the required elements. The motivation for developing the new graph formulations is
that efficient partial matrix computation can be used to further reduce the number
of colors needed to compute the required elements. For example, if only the diagonal
elements of a Hessian are needed, then we need only a distance-1 coloring of the
adjacency graph, rather than a star coloring, the coloring required for full matrix
computation.
Similar to the bicoloring cases discussed in earlier sections, in the colorings defined

here we allow a vertex to be assigned the “neutral” color zero. A vertex with color
zero signifies the fact that a column or a row that corresponds to the vertex is not
used to compute any element in that column or row.
The rest of this section is organized in three parts. Each part deals with a scenario

defined by the kind of matrix under consideration (Jacobian or Hessian) and the type
of partition employed (unidirectional or bidirectional). In each case, the required
entries are assumed to be determined using a direct method. The problems that
correspond to computation via substitution are not studied in this work.

8.1. Unidirectional Computation of the Jacobian. Let A be an m × n non-
symmetric matrix, and let S denote the set of nonzero elements of A required to be
computed. A partition of a subset of the columns of A is structurally orthogonal when

680 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

X

X X

X X

XX

X

X

X

X X

X

X

1 2 3 4 5 6

1
2
3
4
5
6

r1
r2
r3
r4
r5
r6

a1
a2
a3
a4
a5
a6

Fig. 8.1 Partial estimation of a nonsymmetric matrix and its formulation as a restricted distance-2
coloring in the associated bipartite graph. The required matrix entries are encircled and
the corresponding edges in the graph are shown in bold. The illustration uses two colors:
columns a1 and a5 are green, and columns a4 and a6 are red.

restricted to S if for every aij ∈ S, column aj is included in some group that contains
no other column with a nonzero in row ri. (The latter nonzero could be inside or
outside S.) Such a partition enables a direct determination of the elements of S.
Let Gb(A) = (V1, V2, E) be the bipartite graph of A, and let ES ⊆ E correspond

to the elements of S. A mapping φ : V2 → {0, 1, . . . , p} is a distance-2 coloring of
Gb when restricted to ES if the following conditions hold for every edge (v, w) ∈ ES ,
where v ∈ V1, w ∈ V2:

1. φ(w) �= 0, and
2. for every path (u, v, w), φ(u) �= φ(w). (Here the edge (u, v) may or may not
belong to ES .)

Theorem 8.1 below shows the equivalence between the restricted partitioning and
coloring variants introduced above. See Figure 8.1 for an illustration; in the figure, the
nonzero matrix entries required to be computed are encircled and the corresponding
edges in the bipartite graph are shown in bold; columns a1 and a5 are colored green,
and columns a4 and a6 are colored red.

Theorem 8.1. The mapping φ is a distance-2 coloring of Gb(A) when restricted
to ES if and only if φ induces a structurally orthogonal column partition when re-
stricted to S.

Proof. Assume that φ is a distance-2 coloring of Gb(A) when restricted to ES .
Let p be the number of colors used. We show that the groups {C1, . . . , Cp} where
Cα = {aj : φ(aj) = α}, 1 ≤ α ≤ p, constitute a structurally orthogonal column
partition when restricted to S. First, observe that by condition 1, for every aij ∈ S
(i.e., (ri, aj) ∈ ES), φ(aj) �= 0. Thus column aj belongs to group Cφ(aj) and hence
is involved in the partition. Assume now that the partition induced by the coloring
is not structurally orthogonal when restricted to S. This occurs only if there exist
nonzero elements aij and aik, j �= k, such that aij ∈ S and both aj and ak belong
to group Cα′ for some α′, 1 ≤ α′ ≤ p. But this contradicts condition 2, and hence
cannot occur.
Conversely, assume that the partition C = {C1, . . . , Cp} is structurally orthogonal

when restricted to S. Construct a coloring φ of Gb(A) as follows: φ(aj) = α if aj ∈ Cα,
and φ(aj) = 0 if aj does not belong to any group in C. We claim that φ is a distance-
2 coloring of Gb(A) when restricted to ES . Each vertex in V2 incident on an edge
in ES corresponds to a column with an entry in S, and hence gets a nonzero color.
Thus φ satisfies condition 1. Consider any path (aj , ri, ak) where (ri, aj) ∈ ES . Note
that such a path in Gb(A) exists whenever entries aij and aik are nonzero. Structural

GRAPH COLORING FOR COMPUTING DERIVATIVES 681

X

X X

X

XXX

X

X

X

X X

X

X

X

X

X X

1 2 3 4 5 6

X

X

X

X

X

X

a1

a2

a3

a4

a5

a6

Fig. 8.2 Partial estimation of a symmetric matrix and its formulation as a restricted star color-
ing in the adjacency graph. The required matrix entries are encircled, and edges of the
graph corresponding to required off-diagonal matrix entries and vertices “corresponding”
to required diagonal matrix entries are shown in bold. The illustration uses three colors:
column a2 is red, a3 is green, and both a4 and a5 are blue.

orthogonality when restricted to S implies that column ak cannot be in the same group
as column aj . Thus, by construction, φ(aj) �= φ(ak), satisfying condition 2.

8.2. Computing the Hessian. Let A be a symmetric matrix with nonzero di-
agonal elements, and let S denote the set of nonzero elements of A required to be
computed. A partition of a subset of the columns of A is symmetrically orthogonal
when restricted to S if for every aij ∈ S at least one of the following two partition
conditions are met:

1. The group containing column aj has no other column with a nonzero in row
ri.

2. The group containing column ai has no other column with a nonzero in row
rj .

Such a partition enables a direct determination of the elements of S.
Let G(A) = (V,E) be the adjacency graph of A; let Sod ⊆ E correspond to

the off-diagonal elements in S; and let Sd correspond to the diagonal elements in
S, i.e., Sd = {(u, u) : u ∈ U} where U ⊆ V . Let ES = Sod ∪ Sd. A mapping
φ : V → {0, 1, 2, . . . , p} is a star coloring of G when restricted to ES if the following
coloring conditions hold:

1. For every (u, u) ∈ Sd,
1.1. φ(u) �= 0, and
1.2. for every (u, v) ∈ E, φ(u) �= φ(v).

2. For every (v, w) ∈ Sod,
2.1. φ(v) �= φ(w), and
2.2. at least one of the following two conditions holds:
2.2.1. φ(v) �= 0 and for every path (v, w, x), φ(v) �= φ(x), or
2.2.2. φ(w) �= 0 and for every path (u, v, w), φ(u) �= φ(w).

The following theorem states the equivalence between the restricted partitioning
and coloring variants introduced above. See Figure 8.2 for an illustration; in the figure,
the matrix entries required to be computed are encircled, edges in the adjacency graph
corresponding to the required off-diagonal entries are shown in bold, and column
vertices containing a required diagonal element are shown in bold. In the illustration,
column a2 is colored red, a3 is green, and a4 and a5 are blue.

Theorem 8.2. The mapping φ is a star coloring of G(A) when restricted to ES

if and only if φ induces a symmetrically orthogonal partition when restricted to S.

682 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Proof. Assume that φ is a star coloring of G(A) when restricted to ES . Let
the number of colors used by φ be p. We show that the groups {C1, . . . , Cp} where
Cα = {aj : φ(aj) = α}, 1 ≤ α ≤ p, constitute a symmetrically orthogonal partition
when restricted to S.
By coloring conditions 1.1 and 2.1, for every aij ∈ S (i.e., (ai, aj) ∈ ES), at least

one of the vertices ai or aj has a nonzero color and hence the column is involved in
the partition {C1, . . . , Cp}. Let aij ∈ S be a diagonal entry (i = j). Then coloring
conditions 1.1 and 1.2 ensure that φ(ai) �= 0 and that φ(ai) �= φ(ak) for every (ai, ak) ∈
E. Thus, by construction, column ai belongs to group Cφ(ai) and no column ak, where
i �= k and aik �= 0, is in Cφ(ai). This clearly satisfies the partition conditions.
Let aij ∈ S now be an off-diagonal entry (i �= j). Assume without loss of gener-

ality that φ(aj) �= 0. By coloring condition 2.1, φ(ai) �= φ(aj). By coloring condition
2.2.2, there is no path (ah, ai, aj) in G(A), for any h �= i, j, such that φ(ah) = φ(aj).
The last two statements together imply that column aj belongs to group Cφ(aj) and
that no column ah, where h �= j and aih �= 0, is in Cφ(aj). This satisfies the first
partition condition. A similar argument applies to the case where φ(ai) �= 0, which
implies the satisfaction of the alternate partition condition.
To prove the converse, assume that the partition C = {C1, . . . , Cp} is symmet-

rically orthogonal when restricted to S. Construct a coloring φ of G(A) as follows.
Define φ(aj) = α if aj ∈ Cα, and φ(aj) = 0 if aj does not belong to any group in C.
We claim that φ is a star coloring of G(A) when restricted to ES .
Consider a diagonal element aii ∈ S. The partition conditions ensure that column

ai is in some group Cα′ and that there is no column ak ∈ Cα′ , i �= k, such that aik �= 0.
Thus, by construction, φ(ai) �= 0 and φ(ai) �= φ(ak) for every (ai, ak) ∈ E, satisfying
coloring condition 1.
Consider now the case where aij ∈ S is an off-diagonal element. First, observe

that since all diagonal elements are nonzero, ai and aj cannot belong to the same
group. Thus φ(ai) �= φ(aj), satisfying coloring condition 2.1. Second, observe that
there are two possibilities by which the partitioning conditions can be satisfied. We
consider only one of these; the second can be treated in a similar manner. Suppose
column aj belongs to some group Cα′ and that there is no other column ah ∈ Cα′ ,
h �= j, such that aih �= 0. Thus, by construction, φ(aj) �= 0 and φ(ah) �= φ(aj) for
every path (ah, ai, aj) in G(A), satisfying coloring condition 2.2.2.
A special case of Theorem 8.2 is the problem of estimating only the diagonal

elements of A, i.e., Sd = {(v, v) : v ∈ V } and Sod = ∅. For this problem, coloring
conditions 1.1 and 1.2 are the only applicable conditions, and they imply that a
distance-1 coloring of G(A) suffices.

8.3. Bidirectional Computation of the Jacobian. Let A be an m × n nonsym-
metric matrix, and let S denote the set of nonzero elements of A required to be
computed. A bidirectional partition (ΠC ,ΠR) of a subset of the columns and rows of
A is structurally orthogonal when restricted to S if for every aij ∈ S at least one of
the following two partition conditions are met:

1. The group containing column aj has no other column with a nonzero in row
ri.

2. The group containing row ri has no other row with a nonzero in column aj .
Such a partition enables a direct determination of the elements of S.
Let Gb(A) = (V1, V2, E) be the bipartite graph of A, and let ES ⊆ E correspond

to the elements in S. A mapping φ : [V1, V2]→ {0, 1, . . . , p} is a star bicoloring of Gb

when restricted to ES if the following coloring conditions are met:

GRAPH COLORING FOR COMPUTING DERIVATIVES 683

X

X X

X

X

X

X

X

X

X

XX

X

r1
r2
r3
r4
r5

a1
a2
a3
a4
a5

1 2 3 4 5
1
2
3

4
5

Fig. 8.3 Partial estimation of a nonsymmetric matrix via bidirectional partition and its formula-
tion as a restricted star bicoloring in the bipartite graph. The required matrix entries are
encircled and the corresponding edges in the graph are shown in bold. The illustration uses
three colors: both r2 and r3 are blue, r4 is green, and a1 is red.

1. Vertices in V1 and V2 receive disjoint colors, except for color 0;
i.e., for every u ∈ V1 and v ∈ V2, either φ(u) �= φ(v) or φ(u) = φ(v) = 0.

2. At least one endpoint of an edge in ES receives a nonzero color;
i.e., for every (v, w) ∈ ES , φ(v) �= 0 or φ(w) �= 0.

3. For every edge (v, w) ∈ ES ,
3.1. if φ(v) = 0, then, for every path (u, v, w), φ(u) �= φ(w);
3.2. if φ(w) = 0, then, for every path (v, w, x), φ(v) �= φ(x);
3.3. if φ(v) �= 0 and φ(w) �= 0, then for every path (u, v, w, x), either φ(u) �=

φ(w) or φ(v) �= φ(x).
The following theorem establishes the equivalence between the restricted parti-

tioning and coloring notions introduced above. See Figure 8.3 for an illustration.
Theorem 8.3. The mapping φ is a star bicoloring of Gb when restricted to ES if

and only if φ induces a structurally orthogonal bidirectional partition when restricted
to S.

Proof. Let the construction of a partition given a coloring, and vice versa, be
done in a similar manner as in the proof of Theorem 8.1.
Assume that φ is a star bicoloring ofGb(A) when restricted to ES . Let the induced

bidirectional partition be (ΠC ,ΠR). Coloring condition 1 implies that (ΠC ,ΠR) is a
bidirectional partition. By condition 2, for every aij ∈ S, either aj ∈ ΠC or ri ∈ ΠR

(or both). Assume now that (ΠC ,ΠR) is not structurally orthogonal when restricted
to S. This occurs only if one of the following cases holds for any nonzero aij ∈ S:

• φ(ri) = 0, φ(aj) �= 0, and there exists a column ak, where j �= k and aik �= 0,
such that φ(aj) = φ(ak). But this contradicts coloring condition 3.1 and
hence cannot occur.

• φ(aj) = 0, φ(ri) �= 0, and there exists a row rh, where h �= i and ahj �= 0,
such that φ(rh) = φ(ri). But this contradicts coloring condition 3.2 and hence
cannot occur.

• φ(ri) �= 0, φ(aj) �= 0, and there exists a column ak, where j �= k and aik �= 0,
and a row rh, where h �= i and ahj �= 0, such that φ(aj) = φ(ak) and
φ(rh) = φ(ri). But this contradicts coloring condition 3.3 and hence cannot
occur.

Hence, the bipartition (ΠC ,ΠR) is structurally orthogonal when restricted to S.
Conversely, assume that (ΠC ,ΠR) is a structurally orthogonal bidirectional par-

tition when restricted to S. Clearly, the constructed coloring φ satisfies conditions 1

684 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

and 2. To complete the proof, we show that φ also satisfies condition 3. Assume that
φ violates condition 3. Then one of the following cases must hold:

• There exists a path (ah, ri, aj) for some (ri, aj) ∈ ES such that φ(ri) = 0 and
φ(ah) = φ(aj). But this implies that element aij cannot be determined di-
rectly, contradicting the assumption that (ΠC ,ΠR) is structurally orthogonal
when restricted to S.

• There exists a path (ri, aj , rk) for some (ri, aj) ∈ ES such that φ(aj) = 0
and φ(ri) = φ(rk). Again this implies that element aij cannot be determined
directly, a contradiction of our assumption.

• There exists a path (ah, ri, aj , rk) for some (ri, aj) ∈ ES such that φ(ri) =
φ(rk) �= 0 and φ(ah) = φ(aj) �= 0. But this implies that element aij cannot
be determined directly, contradicting the assumption.

Algorithms. We have not developed specialized algorithms for the restricted coloring
problems introduced in this section. However, we believe that the ideas used in the
algorithms for the corresponding coloring problems in full matrix computation can be
adapted to the restricted cases.

9. Hypergraph Coloring Formulations. In this section, we introduce yet an-
other perspective concerning Problem 3.3, the partitioning problem that arises in the
unidirectional computation of a Jacobian via a direct method. This view uses the
notion of a hypergraph, which is a generalization of a graph. Besides being an in-
teresting alternative perspective, a hypergraph formulation might be a worthwhile
approach for modeling partial matrix computation problems for preconditioning pur-
poses. However, hypergraph formulations are included here mainly for the sake of
completeness.

9.1. Definitions. We begin by defining a few concepts that we need for our for-
mulations. A hypergraph H = (V,E) consists of a finite set V of vertices and a
collection E of nonempty subsets of V called hyperedges. Note that the size of a hy-
peredge (i.e., the number of vertices in it) is not constrained to be two as in a graph.
A hypergraph is called r-uniform if all of its hyperedges are of size r. Thus, a graph
is a 2-uniform hypergraph.
We denote the vertex set and edge set of a hypergraph H by V (H) and E(H),

respectively. When the hypergraph under consideration is clear from the context, we
may use just V and E to refer to these sets.
The line graph L(H) of hypergraph H is a graph where the vertices of L(H) are

the hyperedges of H and the edges of L(H) are pairs of intersecting hyperedges of H.
Figure 9.1 (left) is a simple example that shows a hypergraph consisting of five

vertices and three hyperedges; two hyperedges have size three and one hyperedge has
size two. The figure on the right shows the corresponding line graph.

9.2. Hypergraph Coloring. Given a hypergraph H = (V,E), a strong vertex
coloring of H is a mapping φ : V → {1, 2, . . . , p} such that for every hyperedge
e ∈ E and every pair of vertices {u, v} ⊆ e, φ(u) �= φ(v). In words, we require
that the vertices in every hyperedge be assigned distinct colors in a strong vertex
coloring of a hypergraph. The more common variant of hypergraph coloring, called
weak vertex coloring, requires that no hyperedge be monochromatic; i.e., at least two
different colors are assigned to the vertices in every hyperedge consisting of two or
more vertices.
An edge coloring of a hypergraph H = (V,E) is a mapping φ : E → {1, 2, . . . , p}

such that hyperedges e1 and e2 in E satisfy φ(e1) �= φ(e2) whenever e1 ∩ e2 �= ∅.

GRAPH COLORING FOR COMPUTING DERIVATIVES 685

v1

v2
v3

v4v5

e 1 e2

e3

e 1 e2

e3

Fig. 9.1 A hypergraph and its line graph.

The strong (weak) vertex coloring problem of a hypergraph asks for a strong
(weak) vertex coloring with the fewest colors. Similarly, the edge coloring problem of
a hypergraph asks for an edge coloring with the fewest colors.
For more information on the concepts introduced here and other notions in hyper-

graphs as well as pointers to relevant literature, see, e.g., the book by Berge [13] and
the survey article by Duchet [38]. The terms strong and weak coloring in hypergraphs
are used, for instance, in [83, 112].

9.3. Representing Matrices Using Hypergraphs. To achieve our goal of for-
mulating Problem 3.3 using hypergraphs, we introduce two new ways in which the
sparsity structure of a matrix can be represented.
Let A be an m×n matrix. Define the column-oriented hypergraph representation

of A as the hypergraph Hc(A), where V (Hc(A)) = {v1, v2, . . . , vn} and each vj corre-
sponds to column aj ; and E(Hc(A)) = {e1, e2, . . . , em} with each hyperedge ei = {vj :
aij �= 0} “corresponding” to row ri. The quotation marks are used to reflect that a
row is perceived as a set of columns at which it has nonzero entries. Similarly, define
the row-oriented hypergraph representation of A as the hypergraph Hr(A), where
V (Hr(A)) = {v′1, v′2, . . . , v′m} and each v′i corresponds to row ri; and E(Hr(A)) =
{e′1, e′2, . . . , e′n} with each e′j = {v′i : aij �= 0} “corresponding” to column aj .

9.4. Structurally Orthogonal Partition and Hypergraph Coloring. Our main
result in this section is Theorem 9.1, which summarizes the equivalence relationships
that underlie the graph- and hypergraph-theoretic formulations of Problem 3.3.

Theorem 9.1. Let A be an m×n matrix. Let Hc and Hr be the column-oriented
and row-oriented hypergraph representations of A, respectively. Let Gb and Gc be the
bipartite and column intersection graph representations of A, respectively. Let φ be a
mapping S → {1, 2, . . . , p}, where S is a context-dependent set of n elements and p is
a positive integer satisfying p ≤ n. Then the following statements are equivalent:

1. φ induces a structurally orthogonal column partition of A.
2. φ is a partial distance-2 coloring of Gb on the column vertex set.
3. φ is a distance-1 coloring of Gc.
4. φ is a strong vertex coloring of Hc.
5. φ is an edge coloring of Hr.
6. φ is a distance-1 coloring of the line graph L(Hr) of the hypergraph Hr.

Proof. The equivalences among statements 1, 2, and 3 have already been estab-
lished in section 3. Here we show the equivalences among the remaining statements;
the reader will find Figure 9.2 helpful in following the discussion.

686 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

r1
r2
r3
r4

a1
a2
a3
a4
a5

A b

Hc Hr G c

a1 a2

a3
a4

a5

a11
a21
a31

a12
a22

a43 a44 a45

a34

a15

0 0
0

0 0
00

0
00

r1 r2

r4
r3

a1 a2

a3

a4

a5

G

Fig. 9.2 Structurally orthogonal partition and (hyper)graph colorings. In this illustration three col-
ors are used: columns a1 and a3 are green, a2 and a4 are red, and a5 is blue.

First note the relationship between hypergraph Hc and column intersection graph
Gc of A: the columns with a nonzero in row ri form a clique in Gc, whereas they
form a hyperedge in Hc. A similar observation can be made regarding Hr and the
row intersection graph of A. With this observation it is obvious that a strong vertex
coloring of Hc is equivalent to a distance-1 coloring of Gc. Next observe that the
line graph L(Hr) of Hr is isomorphic to the column intersection graph Gc. Thus
statements 1, 2, 3, 4, and 6 are equivalent. Further, since the distance-1 neighbors
of a vertex v from the set of column vertices of Gb constitute a hyperedge in Hr, it
follows that statements 2 and 5 are equivalent, thus completing our proof.
As we pointed out earlier in this section, the hypergraph formulation has a poten-

tial application in partial matrix computation for preconditioning. For such purposes,
the idea is to relax the requirement on strong vertex coloring by allowing the reuse of
colors within a hyperedge. Using such a weaker coloring, one may be able to compute
a subset of the nonzero entries of a matrix and use the result as a preconditioner.

10. Other Matrix Estimation Methods. The methods for computing Jacobians
and Hessians considered thus far in this paper rely on a number of underlying require-
ments.
First, each method is based on a unidirectional or a bidirectional partition; i.e.,

a set S of columns or rows is divided into disjoint subsets whose union is S. This
requirement precludes the possibility of a column (or a row) in S belonging to more
than one group, or to none of the groups. Second, a column or a row of a matrix is seen
as an atomic entity; i.e., a column or a row is not divided into any smaller parts. Third,
a partition is required to be structurally orthogonal, or symmetrically orthogonal, or
substitutable. The last requirement implies that the system of equations defined
by the partitions is either diagonal or triangular, and hence the unknowns can be
obtained either directly or via substitution.
However, approaches where one or more of these underlying requirements are

relaxed have also been suggested in the literature. In this section, we will discuss

GRAPH COLORING FOR COMPUTING DERIVATIVES 687

a few examples of such approaches. For Hessian estimation, McCormick [97] gives
a classification of direct methods, including those that do not necessarily rely on
symmetrically orthogonal partitions.

10.1. MethodsBased onSolving aRectangular System. Newsam and Ramsdell
[103] proposed a method for computing a Jacobian that relies on solving an over-
determined rectangular system of equations. The approach enables the determination
of the nonzero entries of an m × n Jacobian matrix using ρmax groups, where ρmax

is the maximum number of nonzeros in a row of the matrix. The method is optimal
in terms of the number of groups used. However, it needs to solve n least-squares
problems, and hence the system is potentially ill-conditioned.
Geitner, Utke, and Griewank [49] applied the Newsam and Ramsdell approach

within the context of automatic differentiation.
Recently, Hossain and Steihaug [64] suggested an elimination scheme for comput-

ing a Jacobian. The scheme is based on successive merging of the columns of the
compressed Jacobian, obtained from a structurally orthogonal partition. The nonzero
entries are then determined by solving a banded system of equations. The latter re-
quires an LU factorization. This approach also uses the optimal number of groups,
the maximum number of nonzeros in a row of the Jacobian matrix.

10.2. Element and Variable Isolation. Newsam and Ramsdell [103] also sug-
gested a method that generalizes structurally orthogonal column partitioning. They
used the term variable isolation (VI) to refer to a method based on a structurally
orthogonal column partition and element isolation (EI) to refer to their generalized
method.

Definition 10.1. A nonzero element aij of a matrix A is isolated from nonzero
element apq, whenever aiq = apj = 0, or j = q and i �= p.
The EI method partitions the nonzero entries of a matrix into groups consisting

of pairwise isolated elements, with the objective of having the fewest groups. The
nonzeros in a row of a matrix are, by definition, not isolated from each other; hence,
the maximum number of nonzeros in a row is a lower bound for an optimal EI parti-
tion. An EI partition is used to determine a column grouping (in which a group may
contain structurally nonorthogonal columns, and/or columns may belong to several
groups) that enables the determination of all nonzero matrix entries via matrix-vector
products. In particular, given a partition I1, I2, . . . , Ip of the nonzero entries of a
matrix A into groups of isolated elements, a column grouping C1, C2, . . . , Cp is con-
structed as follows: Ck = {aj : aij ∈ Ik for some i}. In words, a column group Ck

consists of the column indices of the nonzeros in a set Ik.
The middle column in Figure 10.1 illustrates two different partitions into iso-

lated elements of a matrix whose nonzero structure is shown on the left. The upper
part shows a partition into the four groups {a11, a44, a56}, {a21, a34}, {a13, a23, a55},
and {a26, a35, a42}. The column grouping based on this element partition is then
{a1, a4, a6}, {a1, a4}, {a3, a5}, and {a2, a5, a6}. The lower part shows an optimal
partition consisting of three groups: {a11, a21, a35, a42, a55}, {a13, a23, a34, a44}, and
{a26, a56}. The column grouping corresponding to this EI partition is {a1, a2, a5},
{a3, a4}, and {a6}, which in this case coincides with a structurally orthogonal column
partition.
Note that variable isolation in general implies element isolation but not vice versa.

Thus an optimal EI method would use at most as many groups as an optimal VI
method.
Newsam and Ramsdell formulated element isolation as a vertex coloring in a

graph. The vertices in the graph are the nonzero entries of the matrix and an edge

688 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

r1
r2
r3
r4
r5

a1
a2
a3
a4
a5
a6

r1
r2
r3
r4
r5

a1
a2
a3
a4
a5
a6

a55

a11 a13
a21 a23 a26

a34 a35

a56

a44a42

0
0
0

0

0

0
0

0

0
0

0

0
0

0
0

0
0

0

0

a55

a11 a13
a21 a23 a26

a34 a35

a56

a44a42

0
0
0

0

0

0
0

0

0
0

0

0
0

0
0

0
0

0

0

a55

a11 a13
a21 a23 a26

a34 a35

a56

a44a42

0
0
0

0

0

0
0

0

0
0

0

0
0

0
0

0
0

0

0

Fig. 10.1 Two partitions of the nonzero entries of a matrix into groups of isolated elements. Each
partition is also represented as a specialized edge coloring in the bipartite graph.

between two entries exists whenever the latter are not isolated from each other. Such
a coloring formulation is likely to be impractical for large problem instances as it deals
with coloring a graph consisting of nnz vertices and O((nnz)2) edges, where nnz is
the number of nonzero entries in the matrix.

10.3. Element Isolation and Edge Coloring. We note that the problem of par-
titioning the nonzero entries of a matrix into groups of isolated elements can in fact
be modeled as a specialized edge coloring problem on a smaller graph.

Definition 10.2. Let Gb = (V1, V2, E) be the bipartite graph of matrix A, where
V1 is the row vertex set and V2 is the column vertex set. A mapping φ : E →
{1, 2, . . . , p} is called an EI edge coloring if the following two conditions are satisfied:

1. At each row vertex v, edges having v as an endpoint are colored differently.
2. In every path (e1, e2, e3) on three edges, φ(e1) �= φ(e3).
From the definition of isolated elements, it is easy to see that an EI edge coloring

in the bipartite graph Gb(A) is equivalent to a partition of the nonzero entries of A
into groups of isolated elements. The right column in Figure 10.1 shows the EI edge
coloring representations of the partitions into isolated elements shown in the middle
column.

10.4. Partitioning Segmented Columns. Hossain and Steihaug [61, 65] sug-
gested a framework that has an EI and a VI method as its special cases. In particular,
they suggest a technique for direct estimation of an m×n Jacobian in which the rows
are first grouped into 	 blocks that define “segmented” columns, and then the seg-
ments are partitioned into groups each of which consists of structurally independent
segments. Two segments are said to be structurally independent in a manner analo-
gous to two elements being isolated. The case 	 = 1 corresponds to a VI method and
the case 	 = m corresponds to an EI method. Hossain and Steihaug showed that, for
some matrix structures, there exists an 	 �= 1 that results in fewer groups compared
with an approach based on 	 = 1. In a recent report [65], they characterized the
nature of a partition that leads to an optimal number of groups. The optimal parti-
tion is also formulated as a vertex coloring in an associated graph. One of the main
results in their work is that any direct determination of a Jacobian via matrix-vector
products implies that the nonzero elements in each product are isolated elements.

GRAPH COLORING FOR COMPUTING DERIVATIVES 689

r1
r2
r3
r4
r5

a1
a2
a3
a4
a5
a6

0
0

0
0 0

0

0

0
0

0

0
0

0

0

0

0
0

0

0

0
0
0

0 0

a11
a22

a42a41
a51

a62
a73 a74

a64
a75

a66

a56a55

a36

a25

a14

a33
a43

r6
r7

Fig. 10.2 Eisenstat’s example of a matrix where the nonzeros can be directly determined using fewer
groups than are obtained from an optimal structurally orthogonal column partition.

10.5. Eisenstat’s Example. Eisenstat’s (counter)example is cited often in the
literature as a case in point where a Jacobian can be directly determined using fewer
groups than that obtained by an optimal structurally orthogonal partition.
The example in its general form is stated for an (n + 1) × n matrix A, where n

is an even integer satisfying n ≥ 6, in the following manner. Matrix A =
[

A1
A2

]
where

A1 =
[
D1 D2

]
, A2 =

[
C 0
D3 B

]
, and D1, D2, D3 ∈ R

n
2×

n
2 are nonsingular diagonal

matrices; every diagonal entry of B ∈ Rn
2×

n
2 is zero, while every off-diagonal entry

is nonzero; C ∈ R1×n2 consists entirely of nonzeros; and 0 ∈ R1×n2 is a zero vector.
Eisenstat’s example for the case n = 6 is shown in Figure 10.2.
The columns in Eisenstat’s example are pairwise structurally nonorthogonal, and

hence an optimal structurally orthogonal column partition would require n groups.
However, as has been noted by several authors (e.g., [31, 61, 103]), Eisenstat’s example
can be computed directly using n/2 + 2 groups by separately evaluating submatrices
A1 and A2. Clearly, the columns of A1 can be partitioned into two structurally
orthogonal groups with columns of D1 in the first and columns of D2 in the second.
For each i, i ≤ n/2, columns i and n/2 + i of A2 are structurally orthogonal, and
hence by grouping two such columns together, a structurally orthogonal partition of
A2 consisting of n/2 groups is possible. Hence, the entries of matrix A can be obtained
from n/2+ 2 matrix-vector products. An evaluation of A in this manner corresponds
to using 	 = 2 in the segmented column approach of Hossain and Steihaug.
For the case where n = 6 the discussion above shows that Eisenstat’s example

can be computed directly using five, instead of six, matrix-vector products. Hossain
and Steihaug [65] have recently shown that it can be computed using four groups
and that four is the optimal number of groups required in a direct method. They
considered the column grouping {a3, a4, a5}, {a2, a4, a6}, {a1, a5, a6}, and {a1, a2, a3}
which corresponds to the seed matrix

D =




0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0
1 0 1 0
0 1 1 0



.

The matrix-vector product AD from which the entries of A can be directly recovered

690 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

is thus

AD =




a14 a14 a11 a11
a25 a22 a25 a22
a33 a36 a36 a33
a43 a42 a41 a41 + a42 + a43
a55 a56 a51 + a55 + a56 a51
a64 a62 + a64 + a66 a66 a62

a73 + a74 + a75 a74 a75 a73



.

We note that the EI edge coloring (see the left part in Figure 10.2) in which the
edges are partitioned into the four groups {a11, a41, a66, a75}, {a14, a25, a33, a43, a55, a64},
{a22, a36, a42, a56, a74}, and {a51, a62, a73} corresponds to the seed matrix of Hossain
and Steihaug.

11. Miscellaneous Topics. Some of the coloring problems addressed in this paper
have been studied outside the context of derivative matrix computation from a purely
graph-theoretic or algorithmic point of view. In this section, we briefly review part
of the relevant literature with emphasis on work that is close to the subject of this
paper.
We begin in section 11.1 by discussing examples of effective vertex orderings for

a greedy distance-1 coloring heuristic. In section 11.2 we include a relatively detailed
discussion of the coloring number of a graph, a concept also useful in contexts other
than graph coloring. In section 11.3 we mention a few results on upper and lower
bounds for the chromatic number of a graph. Finally, in section 11.4 we provide an
overview of complexity and approximability results for some of the coloring problems
addressed in this paper. For further information on some of the issues discussed in
sections 11.2–11.4, we refer the reader to Jensen and Toft [71] and Toft [115].
Our discussion in sections 11.1 through 11.3 pertains to distance-1 coloring. In

those sections, for brevity, we write “coloring” instead of “distance-1 coloring.” In
section 11.4, however, we will explicitly state the kind of coloring being discussed.
Unlike previous sections of this paper, the current section assumes familiarity with
more advanced graph-theoretic concepts; we will use several such concepts without
defining them.

11.1. Ordering for Coloring. In 1972, Matula, Marble, and Isaacson [94] ana-
lyzed various practically effective greedy coloring heuristics. A decade later Coleman
and Moré [30] used, among others, some of these heuristics to solve a Jacobian estima-
tion problem. Manvel [92], Kubale [85], and very recently Kosowski and Manuszewski
[80] have surveyed greedy coloring heuristics.
A key issue in a greedy coloring heuristic is the order in which the vertices are

visited as the latter determines the number of colors used by the heuristic. Here we
discuss a few examples of effective vertex orderings.
For much of the discussion in this section we consider the greedy coloring heuristic

SEQ, short for “sequential,” outlined in Algorithm 11.1.
Notation. We begin by collecting some notation to be used here and in section 11.2.

For a graph G = (V,E) and a given vertex ordering v1, v2, . . . , vn, let G[Vi] denote
the graph induced by the vertex set Vi = {v1, . . . , vi}. Hence G[Vn] ≡ G. Let qi
be the number of colors required by SEQ to color G[Vi]; thus qn is the number of
colors required by SEQ to color the entire graph G. Let d(v,G[Vi]) be the number of
vertices adjacent to vertex v in G[Vi]; thus d(v,G[Vn]) ≡ d(v) is the degree of vertex
v in G. Recall that ∆(G) and δ(G) denote the maximum and minimum degree in

GRAPH COLORING FOR COMPUTING DERIVATIVES 691

Algorithm 11.1. Greedy (sequential) coloring.
procedure SEQ(G = (V,E))
Let v1, v2, . . . , vn be a vertex ordering
Assign v1 color 1
for i← 2 to n do
Assign vi the smallest color not used by any of its neighbors

end for
end procedure

G, respectively. When the graph under discussion is clear from the context, we may
simply use ∆ and δ.
Theorems 11.1 and 11.3 below give upper bounds on the number of colors used by

SEQ that reflect the importance of the chosen ordering; we will shortly see orderings
that minimize the upper bounds given in the two theorems.

Theorem 11.1. The number of colors used by SEQ satisfies the inequality

qn ≤ max
1≤i≤n

{d(vi, G[Vi])}+ 1.

Proof. In the ith step, i > 1, if the algorithm does not introduce a new color to
color vertex vi, then by definition of qi, we have qi = qi−1. Otherwise, qi = qi−1 + 1.
In the latter case, d(vi, G[Vi]) satisfies the inequality qi−1 ≤ d(vi, G[Vi]) since a new
color was needed to color vi. The theorem follows by induction on i.
The following result is an immediate consequence of Theorem 11.1.
Corollary 11.2. For any ordering, SEQ uses at most ∆+ 1 colors.
The theorem below gives a weakening of the bound given in Theorem 11.1.
Theorem 11.3. The number of colors used by SEQ satisfies the inequality

qn ≤ max
1≤i≤n

min{d(vi), i− 1}+ 1.

Proof. Consider the bound in Theorem 11.1. Clearly d(vi, G[Vi]) ≤ d(vi, G) ≡
d(vi). Also, since there are exactly i − 1 vertices in G[Vi] other than vi itself, the
statement d(vi, G[Vi]) ≤ i− 1 holds—hence the bound in this theorem.
Notice that a nonincreasing ordering of the vertices with respect to their degrees

in the input graph G minimizes the upper bound in Theorem 11.3. This ordering,
known as largest first (LF) ordering, was suggested by Welsh and Powell [120]. In
general, however, the number of colors used by SEQ using an LF ordering can be
much larger than the optimal number of colors. An example of a bipartite (hence
2-colorable) graph with n vertices and maximum degree n/2 − 1 for which an LF
ordering could require n/2 colors is given in [30]. The example, as a by-product,
shows that the bound of Corollary 11.2 is tight.
An ordering that has been found to usually require fewer colors compared with

an LF ordering is a smallest last (SL) ordering. In SL ordering the last vertex in the
ordering, vn, is chosen to be a vertex with the minimum degree in G. The order of
the remaining vertices is defined backwards. Assume that the vertices vi+1, . . . , vn in
the ordering have been determined. Then vertex vi is chosen to be a vertex with the
minimum degree in the subgraph induced by the set V −{vi+1, . . . , vn}. At each step,
while choosing a vertex of minimum degree, ties are broken arbitrarily. Note that
although an SL ordering is computed backwards, vn through v1, the vertices are then
colored in the order v1 through vn. In this, SL ordering differs from LF ordering.

692 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Algorithm 11.2. Greedy coloring formulated as a while-loop.
procedure SEQ-W(G = (V,E))

U ← V > U is the set of currently uncolored vertices
i← 1
while U �= ∅ do
Choose a vertex vi from U using some criterion
Assign vi the smallest color not used by any of its neighbors
U ← U − {vi}
i← i+ 1

end while
end procedure

The SL ordering was proposed by Matula [93] and, as discussed in section 11.2,
its relevance in other contexts was discovered independently by other researchers.
In the context of algorithm SEQ, an SL ordering minimizes the bound given in

Theorem 11.1. In particular, in an SL ordering, for each i, 1 ≤ i ≤ n,

d(vi, G[Vi]) = min
vj∈Vi

d(vj , G[Vi]).

An SL ordering of the vertices in a graph can be obtained in time proportional
to the number of edges in the graph.
In the literature other vertex orderings, such as incidence degree (ID) and satu-

ration degree (SD) ordering, have also been suggested as heuristics for reducing the
number of colors used by a greedy algorithm. The former ordering is due to Coleman
and Moré [30] and the latter is due to Brélaz [22]. ID and SD orderings are similar in
spirit to LF ordering; they differ in the specialized “degree” measure they use. Un-
like LF, SL, and ID orderings, an SD ordering can be computed only as the coloring
proceeds. In other words, an SD ordering cannot be precomputed to then color the
vertices.
To appreciate the ideas in LF, ID, and SD orderings, consider the scheme SEQ-

W outlined in Algorithm 11.2. At the ith step of SEQ-W that uses LF ordering,
among the current set of uncolored vertices, a vertex having the maximum degree
in the input graph is selected and colored. An ID ordering–based coloring improves
on this by focusing on the already colored part of the input graph. In particular,
the ith step of SEQ-W that uses ID ordering selects a vertex (from the current set
of uncolored vertices) having the maximum incidence degree, the number of already
colored neighbors. Note that the incidence degree of vertex vi is precisely d(vi, G[Vi]).
In a further improvement, the ith step of SEQ-W that uses SD ordering chooses

a vertex having the maximum saturation degree, the number of distinctly colored
neighbors. In each of the three orderings LF, ID, and SD, ties are broken arbitrarily.
The notions saturation degree (sd), incidence degree (id), and usual degree (d) of a
vertex v satisfy the inequalities sd(v) ≤ id(v) ≤ d(v). Figure 11.1 illustrates this; in
the figure vertex c has the values two, three, and four for sd, id, and d, respectively.
Notice that a vertex with a larger “degree” is more constrained in the choice of colors
than a vertex with a smaller “degree.” Note also that among the various specialized
degree measures, saturation degree is the measure that most accurately models the
choice of colors available to a vertex. Thus, intuitively one could expect algorithm
SEQ-W to require a nondecreasing number of colors while using SD, ID, and LF
orderings. Experimental results of Coleman and Moré [30] on graphs that arise in

GRAPH COLORING FOR COMPUTING DERIVATIVES 693

b c

f e

a d

Fig. 11.1 A partially colored graph illustrating the notions of saturation degree (sd), incidence degree
(id), and “usual” degree (d). In this illustration, vertex a is red, vertices b and e are blue,
and vertex f is green. Vertex c has sd = 2, id = 3, and d = 4.

Table 11.1 Summary of properties of SL, LF, ID, and SD ordering.

Ordering ith vertex satisfies

SL d(vi, G[Vi]) = min
vj∈Vi

d(vj , G[Vi])

LF d(vi, G) = max
vj∈(V−Vi−1)

d(vj , G)

ID d(vi, G[Vi]) = max
vj∈(V−Vi−1)

d(vj , G[Vi−1 ∪ {vj}])

SD sd(vi, G[Vi]) = max
vj∈(V−Vi−1)

sd(vj , G[Vi−1 ∪ {vj}])

practice by and large support this intuition. In terms of time complexity, algorithm
SEQ-W using LF or ID ordering can be implemented to run in O(m) time, whereas
an SD ordering–based coloring runs in O(n2) time [22, 30, 120]. Here n and m are
the numbers of vertices and edges, respectively.
In Table 11.1 we give a succinct summary of the properties of SL, LF, ID, and

SD orderings. The right column of the table shows a statement satisfied by the ith
vertex in the respective ordering, for each i, 1 ≤ i ≤ n; in the case where i = 1, the
set Vi−1 on the right column corresponds to the empty set. The quantity sd(v,G[Vi])
in the last row of the table shows the saturation degree of the vertex v in the graph
G[Vi]. Notice that any vertex in G can be chosen to be v1 in the case of ID and SD
orderings.
Coleman and Moré [30] showed that algorithm SEQ-W that uses an ID ordering

requires two colors on bipartite graphs and hence is optimal for this class of graphs.
They also showed that this is not the case for SL ordering by giving an example of a
bipartite graph on n vertices in which SEQ using an SL ordering could require n/3+1
colors.
It should be pointed out that there exists an ordering of the vertices in which SEQ

would use the optimal number of colors. To see this, consider an optimal coloring
φ : V → {1, 2, . . . , p} of a graph G = (V,E). Let the vertices be ordered such that the
sequence {φ(vi)} is nondecreasing, i.e., φ(vi) ≤ φ(vi+1) for 1 ≤ i ≤ n−1. Note that in
such an ordering, vertices of each color class are listed consecutively. It is then easy to
see that if the vertices were to be colored afresh in the order just described, algorithm
SEQ would produce a coloring with an optimal number of colors. The problem while

694 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

a b

b c

f e

a d

2 3

1 6

4 5

b c

f e

a d

3 2

4 6

1 5

Fig. 11.2 Two vertex orderings of a graph with different values for maximum back-degree; the
maximum back-degree in (a) is three and in (b) is two (which is optimal).

using SEQ, of course, is finding an ordering among the n! possibilities that would
produce an optimal coloring. The fact that there exists an ordering in which SEQ

would use the optimal number of colors is unlike a number of other problems in
optimization in which a greedy algorithm provided with the “right ordering” might
still fail to yield an optimal solution.

11.2. The Coloring Number. In a given ordering of the vertices of a graph, let
the back-degree of a vertex vi be the number of adjacent vertices to vi that precede vi in
the ordering. Using the notation introduced in section 11.1, the back-degree of vertex
vi is the same as d(vi, G[Vi]), a quantity that is also referred to as the incidence degree
of vertex vi. For a given graph G = (V,E), let Bπ(G) denote the maximum back-
degree in vertex ordering π : V ↔ {1, 2, . . . , n}. Clearly, different vertex orderings
may result in different maximum back-degrees. As an illustration, Figure 11.2 shows
two different vertex orderings in a graph. The maximum back-degree in the ordering
shown in part (a) is three and the corresponding value in part (b) is two.
The quantity minπ{Bπ(G)}, where the minimum is taken over the n! possible

vertex orderings, is of special interest. Let this quantity be denoted by B∗(G). For the
graph shown in Figure 11.2, the ordering shown in part (b) is optimal, i.e., B∗(G) = 2.
Consider the coloring algorithm SEQ in which the vertex ordering used is such

that B∗(G) is attained. With such an ordering, in each step i of SEQ, vertex vi has at
most B∗(G) already colored neighbors and hence can be colored using one value from
the set {1, 2, . . . , B∗(G)+ 1}. Thus B∗(G)+ 1 colors suffice to color G. Motivated by
this fact, the quantity B∗(G)+ 1 is known in the literature as the coloring number of
G and is denoted by col(G). The name coloring number was first used by Erdös and
Hajnal [40]. As we will shortly see, the graph parameter B∗(G) is also of interest in
contexts other than coloring.
The coloring number may appear to be an intractable graph parameter as the

minimum is evaluated over n! possible orderings. However, this was proven to be
not the case independently by Finck and Sachs [42] and Matula [93]. Theorem 11.4
reflects this fact. It states that the number of colors required by algorithm SEQ on a
graph G with an SL ordering is the coloring number of G. Recall that an SL ordering
can be computed in linear time in the number of edges in a graph.

Theorem 11.4. Every graph G satisfies

col(G) = BSL(G) + 1.

GRAPH COLORING FOR COMPUTING DERIVATIVES 695

Proof. By definition, col(G) = B∗(G) + 1. Clearly B∗(G) ≤ BSL(G). Hence
col(G) ≤ BSL(G)+1. We now show that the inequality holds in the opposite direction
as well, thus implying equality.
Consider an SL ordering S = v1, v2, . . . , vn of the vertices of G. Clearly, for every

i < n, col(G) ≡ col(G[Vn]) ≥ col(G[Vi]); furthermore, col(G[Vi]) ≥ δ(G[Vi]) + 1,
since the back-degree of vertex vi in the subsequence v1, v2, . . . , vi of S is its ordinary
degree in G[Vi], which in turn is equal to δ(G[Vi]) since S is an SL ordering. Hence
col(G) ≥ maxi{δ(G[Vi])}+ 1. The quantity on the right side of the inequality in the
preceding statement is precisely BSL(G) + 1. Thus we have col(G) ≥ BSL(G) + 1,
which completes the proof.
Matula [93] and Szekeres and Wilf [113], independently, have related the color-

ing number of a graph to yet another seemingly intractable graph parameter. The
parameter we are referring to is the maximum minimum degree in an induced sub-
graph of a graph, where the maximum is taken over all possible induced subgraphs.
In a given graph G = (V,E), since there are 2n possible subsets of V , computing the
maximum minimum degree in an induced subgraph of G appears to be intractable.
Theorem 11.5 shows this is not the case. Let H ⊆ G denote a nonempty induced
subgraph of G.

Theorem 11.5. Every graph G satisfies

col(G) = max
H⊆G

{δ(H)}+ 1.

Proof. Let k = maxH⊆G{δ(H)}. We claim that the graph G = (V,E) itself has a
vertex of degree at most k, for otherwise the minimum degree in G, δ(G), is strictly
greater than k, contradicting the definition of k. Let vn be a vertex with degree ≤ k
in the graph G and let Hn−1 = G[V − {vn}]. By assumption, Hn−1 has a vertex
of degree at most k. Let vn−1 be one of them and let Hn−2 = G[V − {vn, vn−1}].
Continue in this manner to obtain the ordering v1, v2, . . . , vn of the vertices of G.
It is then clear that in such an ordering the maximum back-degree of a vertex is at
most k. Hence col(G) ≤ k + 1.
We now prove that the inequality holds in the other direction as well. For any

H ⊆ G, clearly col(G) ≥ col(H) and col(H) ≥ δ(H) + 1, since the back-degree of
the last vertex in any ordering of the vertices of H is just its ordinary degree in H,
which is at least δ(H). Thus col(G) ≥ k + 1. The theorem follows since col(G) is
shown to be both less than or equal to and greater than or equal to the quantity
maxH⊆G{δ(H)}+ 1.
Clearly, the coloring number of a graph is a tighter upper bound on its chromatic

number than the bound ∆+1; i.e., for any graph G the inequalities χ(G) ≤ col(G) ≤
∆(G) + 1 hold. Moreover, col(G) = ∆(G) + 1 if and only if G has a ∆(G)-regular
connected component.
A graph G for which col(G) ≤ k+1 has also been called k-degenerate by Lick and

White [88]. (A graph is k-degenerate if every induced subgraph has minimum degree
at most k.) A related concept has been studied in the social and biological network
literature as the k-core of a graph [21, 105]. The k-core of a graph is a maximal
induced subgraph in which every vertex has at least k neighbors in the subgraph. A
k-core of a graph can be computed by a linear-time algorithm that visits the vertices
in the reverse of an SL ordering. A paper by Ramadan, Tarafdar, and Pothen [109]
extends the definition of the k-core to a hypergraph and discusses the k-cores of
protein interaction graphs and protein complex hypergraphs. The coloring number of
a graph is also closely related to the arboricity of the graph [37].

696 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

11.3. Bounds for theChromaticNumber. Since computing the chromatic num-
ber χ(G) of a general graphG is NP-hard, we consider bounding it with more tractable
graph parameters.

Upper Bounds. As we have already seen, the coloring number col(G) is a linear-
time computable upper bound for the chromatic number χ(G) of a graph G. We have
also seen that ∆(G) + 1 is another easy to compute (but weaker) upper bound for
χ(G). If G is a complete graph or an odd cycle, then in fact χ(G) = ∆(G) + 1. In
all other cases, Brooks’s theorem tells us that the general bound ∆(G) + 1 can be
improved by 1.

Theorem 11.6 (Brooks’s theorem). Let G be a connected graph. If G is neither
complete nor an odd cycle, then χ(G) ≤ ∆(G).
For a proof of Brooks’s theorem, see, e.g., Diestel [37].

Lower Bounds. The size of the largest clique in G, ω(G), is one obvious lower
bound for χ(G). Another, less obvious, lower bound comes from the fact that a
graph coloring is a vertex partition into independent sets. If G does not contain an
independent set of size s+1, then in every coloring of G at most s vertices get the same
color. Hence, χ(G) ≥ |V |/α(G), where α(G) is the size of the largest independent set
in G = (V,E). Combining the two, one gets the following improved lower bound:

χ(G) ≥ max{ω(G), |V |/α(G)}.

For many graphs the bound just given is a weak one. Moreover, both ω(G) and
α(G) are NP-hard to determine. By considering a more general class of subgraphs
than cliques, Hajós [57] obtained a further improved lower bound (whose computation
is not known to be polynomial). In particular, Hajós showed that χ(G) ≥ k if and
only if G has a k-constructible subgraph. For further discussion on Hajós’s and other
lower bounds, see, e.g., Diestel [37] or Toft [115].

11.4. Theoretical Results on Coloring Problems. In this last subsection, we
provide an overview of various results in the graph theory literature on some of the
coloring problems addressed in this paper. Our main objective here is to point the
interested reader to relevant references.
Each of the NP-hardness results stated in the next paragraph has been mentioned

elsewhere in this paper; here the results are presented together for convenience.
Lin and Skiena [89] proved that the distance-k graph coloring problem is NP-hard

for every fixed integer k ≥ 1. The proof relies on the equivalence between distance-k
coloring of G and distance-1 coloring of Gk. Coleman and Moré [31] showed that the
star coloring problem is NP-hard even if the graph is bipartite. Coleman and Verma
[32] showed that the problem of finding a star bicoloring using the fewest colors is
also NP-hard. Further, the acyclic coloring problem was proven to be NP-hard by
Coleman and Cai [27].
For a general graph on n vertices, the first approximation algorithm for distance-1

coloring, with an approximation ratio ofO(n 1
log n), was obtained by Johnson [72]. This

was later improved to O(n(log log n
log n)

2
) by Wigderson [121] and to O(n(log log n

log n)
3
) by

Berger and Rompel [14]. The current best known approximation ratio isO(n (log log n)2

(log n)3),
a result due to Halldórsson [59]. Based on Wigderson’s algorithm, Karger, Motwani,
and Sudan [75] considered approximate graph coloring using semidefinite program-
ming techniques. On the negative side, Bellare, Goldreich, and Sudan [12] showed
that distance-1 coloring is not approximable within O(n1/7−ε) for any ε > 0, unless P
= NP.

GRAPH COLORING FOR COMPUTING DERIVATIVES 697

A planar graph can be distance-1 colored using four colors. This fact, best known
as the four color theorem, is perhaps one of the most famous results in graph theory.
After challenging mathematicians for nearly a century, the theorem was proved by
Appel and Haken in 1976 [7, 10]. However, due to its length, its extensive use of
computer verification, and its omission of details, the proof of Appel and Haken has
been subject to criticism. In response, the authors published a revised version of the
proof a decade later [8, 9]. Jensen and Toft [71] cited a 1994 manuscript of Robertson,
Sanders, Seymour, and Thomas that presents a new, highly simplified proof of the
four color theorem. For further information on the four color theorem, see the recent
books by Fritsch and Fritsch [43] and Wilson [122].
Since every planar graph has a vertex of degree at most five, one can give a

linear-time algorithm for finding a distance-1 coloring of a planar graph that uses at
most six colors: run algorithm SEQ with an SL ordering. A linear-time algorithm
that finds a distance-1 coloring of a planar graph using five colors was presented by
Matula, Shiloach, and Tarjan [95, 96] and independently by Chiba, Nishizeki, and
Saito [25]. Also, a linear-time algorithm that uses five colors is implicit in a recent
proof of the theorem “every planar graph is five colorable” given by Thomassen [114].
Deciding whether a planar graph of maximum degree four can be distance-1 colored
using three colors is NP-complete [71].
Wegner [119] studied distance-k (k ≥ 2) chromatic numbers of planar graphs

having maximum degree at most three and proved that for k = 2 eight colors suffice,
whereas seven is the best possible. Recently, Agnarsson and Halldórsson [3] studied
distance-k coloring of planar graphs. They showed that a planar graph having a suf-
ficiently large maximum degree ∆ can be distance-2 colored using at most �9∆/5�
colors. The authors also showed that for a fixed integer k ≥ 1, the distance-k chro-
matic number of a planar graph is O(∆�k/2�). Agnarsson, Greenlaw, and Halldórsson
[2] studied distance-k coloring of chordal graphs and showed that for even integers k,
the problem is not approximable within a factor of |V |1/2−ε for any ε > 0.
Acyclic colorings were first defined and studied by Grünbaum [56]. Grünbaum

asked whether the acyclic chromatic number χa(G) of a graph G satisfies the inequal-
ity χa(G) ≤ ∆ + 1. A negative answer to this question was given by Erdös, who
proved probabilistically the existence of graphs where χa(G) ≥ ∆4/3−ε [71]. Alon,
McDiarmid, and Reed [6] showed (again by probabilistic methods) that there exists a
constant c1 > 0 such that χa(G) ≤ c1 ·∆4/3. The same authors also showed that there
is a constant c2 > 0 such that there exist graphs with χa(G) > c2 ·∆4/3 · (log∆)−1/3

for infinitely many ∆. There are a few studies concerning χa(G) for specific values of
∆. It is clear that χa(G) ≤ 2 if and only if G is a forest. Grünbaum [56] proved that
χa(G) ≤ 4 for ∆ = 3, and χa(G) ≤ 6 for ∆ = 4. The latter bound was reduced from
six to five by Burstein [23]. Kostochka [82] proved that it is NP-complete to decide
whether a given graph G satisfies χa(G) ≤ 3.
Grünbaum [56] also proved that every planar graph admits an acyclic coloring

using at most nine colors. After a series of improvements [4, 81, 98] the number was
finally reduced to five by Borodin [19]. Borodin’s proof is similar to the proof of
the four color theorem in that there are 450 reducible configurations that need to be
checked.
Star coloring has been recently studied by Albertson et al. [5] who show that every

acyclic coloring that uses q colors can be refined to a star coloring with at most 2q2−q
colors. They also prove that planar graphs have star colorings with at most 20 colors
and exhibit an example in which 10 colors are required. This is an improvement on
the upper bounds 80 and 30, obtained earlier by Fertin, Raspaud, and Reed [41] and

698 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

Neśetŕil and Ossan de Mendez [102], respectively. The problem of deciding whether
a planar bipartite graph has a star coloring with at most three colors was shown to
be NP-complete in [5].

12. Conclusion.

12.1. Summary. We have studied the efficient computation of sparse Jacobian
and Hessian matrices using finite difference and automatic differentiation techniques.
In this context, we considered a variety of matrix partitioning problems that can be
classified along four axes. The first axis corresponds to whether the matrix to be com-
puted is nonsymmetric (Jacobian) or symmetric (Hessian). The second axis relates to
whether the matrix partition used is unidirectional (involving either columns or rows)
or bidirectional (involving both columns and rows). The third axis corresponds to
whether the matrix entries are determined directly (by solving a diagonal system of
equations) or via substitution (by solving a triangular system of equations). The last
axis shows whether all the entries of the matrix need to be computed or just a subset
of them suffices for preconditioning purposes. Out of the sixteen possibilities this sce-
nario suggests, ten cases correspond to meaningful problems within our framework,
and eight of them are addressed in this paper.
Building upon several pioneering papers that have been published in the last

twenty years, we have developed a unifying graph-theoretic framework for studying
these matrix partitioning problems.
Our problem formulations and algorithms are based on robust and space-efficient

graph representations of the sparsity structure of matrices: The Jacobian is repre-
sented by its bipartite graph, and the Hessian by its adjacency graph.
We showed that the distance-2 graph coloring problem is a generic model for

the various matrix partitioning problems. Our approach provides fresh insight into
the matrix partitioning problems, leading to several simple and effective heuristic
algorithms. Among others, we developed fast star coloring heuristics, sketched a
new heuristic algorithm for the acyclic coloring problem, and suggested a scheme for
solving bicoloring problems.
We have also shown a hypergraph coloring formulation for the unidirectional

Jacobian computation problem. This alternative formulation may be helpful in partial
matrix computation for preconditioning purposes.
In the case of unidirectional Jacobian computation via a direct method, we showed

experimentally the advantages offered by the new partial distance-2 coloring formu-
lation as compared to the previously known distance-1 coloring formulation. In com-
puting the Hessian using a direct method, we demonstrated a time/quality trade-off
between two star coloring algorithms.
In general, most of the algorithms in the literature for solving the coloring prob-

lems considered in this paper rely on first transforming the input graph G = (V,E)
to some denser graph G′ = (V,E′), E′ ⊇ E, such that a distance-1 coloring of G′

is equivalent to the particular coloring problem on G [27, 31, 32]. In contrast, the
algorithms proposed in this paper solve the particular coloring problem directly on
G. The main advantages offered by our approach include: smaller storage space re-
quirement, the possibility to mix-and-match methods, and ease of developing more
efficient algorithms and flexible software.
Our primary emphasis has been on computational methods that treat a column

or a row of a matrix as an indivisible unit and that partition the columns or rows (or
both). However, we have briefly reviewed methods that do not fit this framework.
We formulated one of these methods, element isolation, as a specialized edge coloring
in the bipartite graph of the Jacobian.

GRAPH COLORING FOR COMPUTING DERIVATIVES 699

We have also included a detailed discussion of effective vertex orderings for greedy
coloring, a discussion of the coloring number of a graph and its significance in various
contexts, and a brief review of relevant theoretical results from the graph coloring
literature.

12.2. Recent Development. During the time this paper was under review or in
press, we have made progress on two fronts. First, we have implemented the acyclic
coloring algorithm sketched in section 6.1.3 and developed a new algorithm for the
star coloring problem; both algorithms are based on the paradigm of maintaining two-
colored subgraphs. A paper that discusses these algorithms, and their implementation
and performance has been submitted elsewhere [48]. Our implementations of the
new acyclic and star coloring algorithms are currently being incorporated into the
automatic differentiation software ADOL-C [118]. Second, we have implemented the
various vertex orderings discussed in section 11.1, each tailored for the distance-k
(k = 1, 2) coloring problem. In a future paper, we plan to report experimental results
demonstrating the impact of the various ordering techniques when sequential coloring
algorithms are applied to large-scale problems. All software we develop will be made
publicly available.

12.3. Further Work. This work can be followed up along several directions,
some of which we list below. We hope that these problems will attract the attention
of our readers.

1. The new algorithms for star bicoloring (section 5.4) and acyclic bicoloring
(section 6.2.3) suggested in this paper need to be implemented.

2. New algorithms need to be designed and implemented for the newly consid-
ered partial matrix computation problems (section 8).

3. One of the motivations for the current study has been the need to develop
parallel algorithms for solving partitioning problems in large-scale optimiza-
tion contexts. In previous work [45, 47] we developed shared-memory parallel
algorithms for the distance-2 and star coloring problems. Some of the ideas
in these algorithms have recently been extended to design and implement
distributed memory parallel algorithms for the distance-1 and the distance-2
coloring problems [18, 20]. Based on these early experiences and the cur-
rent study, scalable distributed-memory parallel algorithms for the various
coloring problems need to be designed and implemented.

4. In the case of bidirectional partitioning problems, based on the known rela-
tionship to graph bicoloring, we have argued that finding a “small”-size vertex
cover in a preprocessing step contributes to making the overall computation
more efficient (section 5.4). Loosely speaking, the desired vertex cover has
to favor high-degree vertices from both vertex sets of the bipartite graph. A
precise characterization of the “optimum” vertex cover required is an issue
that we are currently studying.

5. The maximum number of nonzeros in a row of a Jacobian is a lower bound
on the number of colors required to distance-2 color the column vertices of
the associated bipartite graph Gb = (V1, V2, E). A tighter lower bound is the
size of a maximal clique in the graph G2

b [V2] (section 3.5.2). How can one
find such a clique and its size quickly?

6. What nontrivial lower bounds can be given for star coloring (section 4)? for
star bicoloring (section 5)? for acyclic coloring (section 6.1)? for acyclic
bicoloring (section 6.2)?

7. Are there special graph classes for which these problems are tractable or have
good upper bounds?

700 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

8. This paper dealt with coloring formulations of Jacobian and Hessian com-
putation problems where the sparsity pattern is not necessarily regular. In
cases where the pattern is regular, such as Jacobians or Hessians that arise
in discretization of structured grids, the resulting coloring problems can be
solved optimally in polynomial time (see, e.g., the work of Goldfarb and
Toint [52]). A closer look at coloring problems for such structured graphs is
a worthwhile issue.

9. For the variant of edge coloring discussed in section 10.3, the maximum degree
in the set of row vertices of the bipartite graph is a lower bound for the fewest
colors needed. What upper bound can be given? What exact/approximation
algorithm can be designed?

10. Star coloring a planar graph requires at most twenty colors, and an example
is known for which ten colors are needed (section 11.4). Reducing the gap
between the lower bound and the upper bound is an open problem.

Graph coloring for efficiently computing Jacobians and Hessians represents one
of the earliest applications of combinatorial methods in numerical optimization. This
is but one of the problems in the emerging research area of combinatorial scientific
computing, an area where combinatorial models and algorithms are used to solve
problems in scientific computing. Our broader hope is that this article provides an
impetus for the formulation and solution of many more combinatorial problems in
scientific computing.

Acknowledgments. This work was begun when Assefaw Gebremedhin visited
Alex Pothen at Old Dominion University for a semester during his Ph.D. study at the
University of Bergen, Norway; Fredrik Manne was Assefaw’s advisor. Paul Hovland
and Rob Bisseling, who served on Assefaw’s thesis examination committee, read ear-
lier versions of some of the sections of this paper and suggested several improvements
and new problems to consider. Rob Bisseling has also read a recent version of this
paper and shared his constructive remarks with us. Trond Steihaug at the University
of Bergen has given us many helpful comments. Tom Coleman encouraged our work
on graph coloring for optimization, even when others had felt that “it has all been
done already.” Paul Hovland and Lois McInnes have been enthusiastic about using
this work in their software for AD and optimization. Our work on partial estimation
problems were stimulated by conversations with Bill Spotz at Sandia National Labs.
Bruce Hendrickson, Erik Boman, Robert Preis (currently at the University of Pader-
born, Germany), and other members of the Discrete Algorithms Group at Sandia
National Labs have discussed these results with us during Alex Pothen’s sabbatical
visits to Sandia. Dinesh Kaushik gave us some insight on the runtime of a finite
difference code for computing the numerical values of the entries of a large, sparse
Jacobian matrix. Randy LeVeque and Michael Overton have read an earlier version of
this paper and given us helpful feedback and encouragement. The anonymous referees
have provided helpful comments on presentation. This paper has been shaped and
improved by our interactions with these supportive colleagues, and our thanks go to
all of them.

REFERENCES

[1] A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Schieber, and M. Sudan,
Efficient routing and scheduling algorithms for optical networks, in Proceedings of the
5th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 1994,
pp. 412–423.

GRAPH COLORING FOR COMPUTING DERIVATIVES 701

[2] G. Agnarsson, R. Greenlaw, and M. M. Halldórsson, On powers of chordal graphs and
their colorings, Congr. Numer., 100 (2000), pp. 41–65.

[3] G. Agnarsson and M. M. Halldórsson, Coloring powers of planar graphs, SIAM J. Discrete
Math., 16 (2003), pp. 651–662.

[4] M. O. Albertson and D. M. Berman, The acyclic chromatic number, Congr. Numer., 17
(1976), pp. 51–69.

[5] M. O. Albertson, G. G. Chappell, H. A. Kierstead, A. Kündgen, and R. Ramamurthi,
Coloring with no 2-colored P4’s, Electron. J. Combin., 11 (2004), article R26.

[6] N. Alon, C. McDiarmid, and B. Reed, Acyclic coloring of graphs, Random Structures
Algorithms, 2 (1991), pp. 277–288.

[7] K. Appel and W. Haken, Every planar map is four colorable, Part I: Discharging, Illinois
J. Math., 21 (1977), pp. 429–490.

[8] K. Appel and W. Haken, The four color proof suffices, Math. Intell., 8 (1986), pp. 10–20.
[9] K. Appel and W. Haken, Every Planar Map Is Four Colorable, AMS, Providence, RI, 1989.
[10] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable, Part II: Reducibility,

Illinois J. Math., 21 (1977), pp. 491–567.
[11] O. Axelsson and U. Nävert, On a graphical package for nonlinear partial differential equa-

tion problems, in Proceedings of the IFIP Congress 77, B. Gilchrist, ed., Information
Processing, North-Holland, Amsterdam, 1977, pp. 103–108.

[12] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs and nonapproximability—
towards tight results, SIAM J. Comput., 27 (1998), pp. 804–915.

[13] C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989.
[14] B. Berger and J. Rompel, A better performance guarantee for approximate graph coloring,

Algorithmica, 5 (1990), pp. 459–466.
[15] J. Bialogrodzki, Path coloring and routing in graphs, in Graph Colorings, M. Kubale, ed.,

Contemp. Math. 352, AMS, Providence, RI, 2004, pp. 139–152.
[16] C. Bischof, A. Carle, P. Khademi, and A. Mauer, ADIFOR 2.0: Automatic differentiation

of Fortran 77 programs, IEEE Comput. Sci. Engrg., 3 (1996), pp. 18–32.
[17] C. Bischof, L. Roh, and A. Mauer, ADIC: An extensible automatic differentiation tool for

ANSI-C, Software—Practice and Experience, 27 (1997), pp. 1427–1456.
[18] E. Boman, D. Bozdağ, U. Catalyurek, A. H. Gebremedhin, and F. Manne, A scalable

parallel graph coloring algorithm for distributed memory computers, in Proceedings of
Euro-Par 2005 Parallel Processing, J. Cunha and P. Medeiros, eds., Lecture Notes in
Comput. Sci. 3648, Springer-Verlag, Berlin, 2005, pp. 241–251.

[19] O. V. Borodin, On acyclic colorings of planar graphs, Discrete Math., 25 (1979), pp. 211–236.
[20] D. Bozdağ, U. Catalyurek, A. H. Gebremedhin, F. Manne, E. Boman, and F. Özgüner,

A parallel distance-2 graph coloring algorithm for distributed memory computers, in Pro-
ceedings of HPCC-05, the 2005 International Conference on High Performance Comput-
ing and Communications, L.T. Yang et al., eds., Lecture Notes in Comput. Sci. 3726,
Springer-Verlag, Berlin, 2005, pp. 796–806.

[21] B. J. Breitkreutz, C. Stark, and M. Tyers, Osprey: A network visualization system,
Genome Bio., 4 (2003), article R22.

[22] D. Brélaz, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251–
256.

[23] M. I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobsc. Akad. Nauk Gruzin.
SSR, 93 (1979), pp. 21–24 (in Russian, with Georgian and English summaries).

[24] G. J. Chaitin, M. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. Mark-

stein, Register allocation via coloring, Comput. Lang., 6 (1981), pp. 47–57.
[25] N. Chiba, T. Nishizeki, and N. Saito, A linear 5-coloring algorithm for planar graphs, J.

Algorithms, 2 (1981), pp. 317–327.
[26] T. F. Coleman, Large Sparse Numerical Optimization, Lecture Notes in Comput. Sci. 165,

Springer-Verlag, New York, 1984.
[27] T. F. Coleman and J.-Y. Cai, The cyclic coloring problem and estimation of sparse Hessian

matrices, SIAM J. Algebraic Discrete Methods, 7 (1986), pp. 221–235.
[28] T. F. Coleman, B. Garbow, and J. J. Moré, Software for estimating sparse Jacobian

matrices, ACM Trans. Math. Software, 10 (1984), pp. 329–347.
[29] T. F. Coleman, B. Garbow, and J. J. Moré, Software for estimating sparse Hessian ma-

trices, ACM Trans. Math. Software, 11 (1985), pp. 363–377.
[30] T. F. Coleman and J. J. Moré, Estimation of sparse Jacobian matrices and graph coloring

problems, SIAM J. Numer. Anal., 20 (1983), pp. 187–209.
[31] T. F. Coleman and J. J. Moré, Estimation of sparse Hessian matrices and graph coloring

problems, Math. Program., 28 (1984), pp. 243–270.

702 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

[32] T. F. Coleman and A. Verma, The efficient computation of sparse Jacobian matrices using
automatic differentiation, SIAM J. Sci. Comput., 19 (1998), pp. 1210–1233.

[33] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, Automatic Differ-
entiation of Algorithms: From Simulation to Optimization, Springer-Verlag, New York,
2002.

[34] J. Culberson, Graph coloring page, http://www.cs.ualberta.ca/∼joe/Coloring/index.html.
[35] A. R. Curtis, M. J. D. Powell, and J. K. Reid, On the estimation of sparse Jacobian

matrices, J. Inst. Math. Appl., 13 (1974), pp. 117–119.
[36] T. Davis, University of Florida Sparse Matrix Collection, NA Digest, 97 (1997); http://www.

cise.ufl.edu/research/sparse/matrices.
[37] R. Diestel, Graph Theory, 2nd ed., Springer-Verlag, New York, 2000.
[38] P. Duchet, Hypergraphs, in Handbook of Combinatorics, Volume I, R. L. Graham, M. Gröt-

schel, and L. Lovász, eds., MIT Press, Cambridge, MA, 1996, pp. 381–432.
[39] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström, Recursive blocked algorithms

and hybrid data structures for dense matrix library software, SIAM Rev., 46 (2004),
pp. 3–45.

[40] P. Erdös and A. Hajnal, On chromatic number of graphs and set systems, Acta. Math.
Acad. Sci. Hungar., 17 (1966), pp. 61–99.

[41] G. Fertin, A. Raspaud, and B. Reed, On star coloring of graphs, in Graph-Theoretic
Concepts in Computer Science, 27th International Workshop, Lecture Notes in Comput.
Sci. 2204, Springer-Verlag, Berlin, 2001, pp. 140–153.

[42] H. J. Finck and H. Sachs, Über eine von H.S. Wilf angegebene Schranke für die chromatische
Zahl endlicher Graphen, Math. Nachr., 39 (1969), pp. 373–386.

[43] R. Fritsch and G. Fritsch, The Four Color Theorem: History, Topological Foundations,
and Idea of Proof, Springer-Verlag, New York, 1998.

[44] A. Gamst, Some lower bounds for a class of frequency assignment problems, IEEE Trans.
Vehicular Tech., 35 (1986), pp. 8–14.

[45] A. H. Gebremedhin, Practical Parallel Algorithms for Graph Coloring Problems in Numer-
ical Optimization, Ph.D. thesis, University of Bergen, Norway, 2003.

[46] A. H. Gebremedhin and F. Manne, Scalable parallel graph coloring algorithms, Concurrency:
Practice and Experience, 12 (2000), pp. 1131–1146.

[47] A. H. Gebremedhin, F. Manne, and A. Pothen, Parallel distance-k coloring algorithms for
numerical optimization, in Euro-Par 2002 Parallel Processing, B. Monien and R. Feld-
mann, eds., Lecture Notes in Comput. Sci. 2400, Springer-Verlag, Berlin, 2002, pp. 912–
921.

[48] A. H. Gebremedhin, A. Tarafdar, F. Manne, and A. Pothen, New Acyclic and Star Col-
oring Algorithms with Application to Computing Hessians, Tech. Report, Old Dominion
University, Norfolk, VA, 2005.

[49] U. Geitner, J. Utke, and A. Griewank, Automatic computation of sparse Jacobians by
applying the method of Newsam and Ramsdell, in Computational Differentiation: Tech-
niques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, and A. Griewank, eds.,
SIAM, Philadelphia, 1996, pp. 161–172.

[50] R. Giering and T. Taminski, Recipes for Adjoint Code Construction, Tech. Report 212,
Max-Planck Institut für Meteorologie, Hamburg, 1996.

[51] R. K. Gjertsen Jr., M. T. Jones, and P. E. Plassmann, Parallel heuristics for improved,
balanced graph colorings, J. Parallel Distrib. Comput., 37 (1996), pp. 171–186.

[52] D. Goldfarb and P. L. Toint, Optimal estimation of Jacobian and Hessian matrices that
arise in finite difference calculations, Math. Comp., 43 (1984), pp. 69–88.

[53] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differenti-
ation, SIAM, Philadelphia, 2000.

[54] A. Griewank and G. F. Corliss, eds., Automatic Differentiation of Algorithms: Theory,
Implementation, and Application, SIAM, Philadelphia, 1991.

[55] A. Griewank, D. Juedes, and J. Utke, ADOL-C: A package for the automatic differentia-
tion of algorithms written in C/C++, ACM Trans. Math. Software, 22 (1996), pp. 131–
167.

[56] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math., 14 (1973), pp. 390–408.
[57] G. Hajós, Über eine Konstruktion nicht n-färbbarer Graphen, Wiss. Z. Martin-Luther-Univ.

Halle-Wittenberg Math.-Nat. Reihe, 10 (1961), pp. 116–117.
[58] J. Hall, J. Hartline, A. R. Karlin, J. Saia, and J. Wilkes, On algorithms for efficient

data migration, in Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 2001, pp. 620–629.

[59] M. M. Halldórsson, A still better performance guarantee for approximate graph coloring,
Inform. Process. Lett., 45 (1993), pp. 19–23.

GRAPH COLORING FOR COMPUTING DERIVATIVES 703

[60] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,
3rd ed., Morgan-Kaufmann, San Francisco, 2002.

[61] S. Hossain, On the Computation of Sparse Jacobian Matrices and Newton Steps, Ph.D.
thesis, Tech. Report 146, Department of Informatics, University of Bergen, Norway, 1998.

[62] S. Hossain and T. Steihaug, Computing a sparse Jacobian matrix by rows and columns,
Optim. Methods Softw., 10 (1998), pp. 33–48.

[63] S. Hossain and T. Steihaug, Reducing the number of AD passes for computing a sparse
Jacobian matrix, in Automatic Differentiation of Algorithms: From Simulation to Opti-
mization, G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, eds., Springer-
Verlag, New York, 2002, pp. 263–270.

[64] S. Hossain and T. Steihaug, Sparsity issues in computation of Jacobian matrices, in Pro-
ceedings of the 2002 International Symposium on Symbolic and Algebraic Computation,
T. Mora, ed., ACM, New York, 2002, pp. 123–130.

[65] S. Hossain and T. Steihaug, Optimal Direct Determination of Sparse Jacobian Matrices,
Tech. Report 254, Department of Informatics, University of Bergen, Norway, 2003.

[66] P. D. Hovland, Personal communication, 2004.
[67] P. D. Hovland, Combinatorial problems in automatic differentiation, presented at the SIAM

Workshop on Combinatorial Scientific Computing, 2004.
[68] P. D. Hovland, Automatic Differentiation of Parallel Programs, Ph.D. thesis, University of

Illinois at Urbana-Champaign, Urbana, IL, 1997.
[69] P. D. Hovland and L. C. McInnes, Parallel simulation of compressible flow using automatic

differentiation and PETSc, Parallel Comput., 27 (2001), pp. 503–519.
[70] D. Hysom and A. Pothen, A scalable parallel algorithm for incomplete factor precondition-

ing, SIAM J. Sci. Comput., 22 (2001), pp. 2194–2215.
[71] T. Jensen and B. Toft, Graph Coloring Problems, Wiley-Interscience, New York, 1995.
[72] D. S. Johnson,Worst case behaviour of graph coloring algorithms, Congr. Numer., 10 (1974),

pp. 513–527.
[73] M. T. Jones and P. E. Plassmann, A parallel graph coloring heuristic, SIAM J. Sci. Comput.,

14 (1993), pp. 654–669.
[74] M. T. Jones and P. E. Plassmann, Scalable iterative solution of sparse linear systems,

Parallel Comput., 20 (1994), pp. 753–773.
[75] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidefinite pro-

gramming, J. ACM, 45 (1998), pp. 246–265.
[76] D. K. Kaushik, Personal communication, 2004.
[77] D. K. Kaushik, D. E. Keyes, and B. F. Smith, On the interaction of architecture and

algorithm in the domain-based parallelization of an unstructured grid incompressible flow
code, in Proceedings of the 10th International Conference on Domain Decomposition
Methods, AMS, Providence, RI, 1998, pp. 311–319.

[78] D. E. Keyes, P. D. Hovland, L. C. McInnes, and W. Samyono, Using automatic dif-
ferentiation for second-order matrix-free methods in PDE-constrained optimization, in
Automatic Differentiation of Algorithms: From Simulation to Optimization, G. Corliss,
C. Faure, A. Griewank, L. Hascoët, and U. Naumann, eds., Springer-Verlag, New York,
2001, pp. 35–50.

[79] D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of ap-
proaches and applications, J. Comput. Phys., 193 (2004), pp. 357–397.

[80] A. V. Kosowski and K. Manuszewski, Classical coloring of graphs, in Graph Colorings,
M. Kubale, ed., Contemp. Math. 352, AMS, Providence, RI, 2004, pp. 1–19.

[81] A. V. Kostochka, Acyclic 6-coloring of planar graphs, Metody Diskret. Analiz., 28 (1976),
pp. 40–56 (in Russian).

[82] A. V. Kostochka, Upper Bounds of Chromatic Functions of Graphs, Ph.D. thesis, Novosi-
birsk, 1978 (in Russian).

[83] M. Krivelevich and B. Sudakov, The chromatic number of random hypergraphs, Random
Structures Algorithms, 12 (1998), pp. 381–483.

[84] S. O. Krumke, M. V. Marathe, and S. S. Ravi, Models and approximation algorithms for
channel assignment in radio networks, Wireless Networks, 7 (2001), pp. 567–574.

[85] M. Kubale, Graph colouring, in Encyclopedia of Microcomputers, Vol. 8, A. Kent and
J. Williams, eds., Marcel Dekker, New York, 1991, pp. 47–69.

[86] M. Kubale, Graph Colorings, AMS, Providence, RI, 2004.
[87] S. L. Lee and P. D. Hovland, Sensitivity analysis using parallel ODE solvers and automatic

differentiation in C: SensPVODE and ADIC, in Automatic Differentiation of Algorithms:
From Simulation to Optimization, G. Corliss, C. Faure, A. Griewank, L. Hascoët, and
U. Naumann, eds., Springer-Verlag, New York, 2001, Chap. 26, pp. 223–229.

704 A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN

[88] D. R. Lick and A. T. White, k-degenerate graphs, Canad. J. Math., 22 (1970), pp. 1082–
1096.

[89] Y. L. Lin and S. S. Skiena, Algorithms for square roots of graphs, SIAM J. Discrete Math.,
8 (1995), pp. 99–118.

[90] L. Lovász and M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
[91] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J.

Comput., 15 (1986), pp. 1036–1053.
[92] B. Manvel, Extremely greedy coloring algorithms, in Graphs and Applications, Proceedings

of the 1st Colorado Symposium on Graph Theory, F. Harary and J. Maybee, eds., John
Wiley, New York, 1985, pp. 257–270.

[93] D. W. Matula, A min-max theorem for graphs with application to graph coloring, SIAM
Rev., 10 (1968), pp. 481–482.

[94] D. W. Matula, G. Marble, and J. Isaacson, Graph coloring algorithms, in Graph Theory
and Computing, R. Read, ed., Academic Press, New York, 1972, pp. 109–122.

[95] D. W. Matula, Y. Shiloach, and R. E. Tarjan, Two Linear-Time Algorithms for Five-
Coloring a Planar Graph, Tech. Report STAN-CS-80-830, Computer Science Department,
Stanford University, Stanford, CA, 1980.

[96] D. W. Matula, Y. Shiloach, and R. E. Tarjan, Analysis of two linear-time algorithms for
five-coloring a planar graph, Congr. Numer., 33 (1981), p. 407 (abstract).

[97] S. T. McCormick, Optimal approximation of sparse Hessians and its equivalence to a graph
coloring problem, Math. Program., 26 (1983), pp. 153–171.

[98] J. Mitchem, Every planar graph has an acyclic 8-coloring, Duke Math. J., 41 (1974), pp. 177–
181.

[99] R. Motwani, Average-case analysis of algorithms for matchings and related problems, J.
ACM, 41 (1994), pp. 1329–1356.

[100] U. Naumann, Cheaper Jacobians by simulated annealing, SIAM J. Optim., 13 (2002), pp. 660–
674.

[101] U. Naumann, Optimal accumulation of Jacobian matrices by elimination methods on the dual
computational graph, Math. Program., 99 (2004), pp. 399–421.

[102] J. Neśetŕil and P. Ossan de Mendez, Colorings and homomorphisms of minor closed
classes, in Discrete and Computational Geometry: The Goodman-Pollack Festschrift,
B. Aronov, S. Basu, J. Pach, and M. Sharir, eds., Springer-Verlag, Berlin, 2003, pp. 651–
664.

[103] G. N. Newsam and J. D. Ramsdell, Estimation of sparse Jacobian matrices, SIAM J.
Algebraic Discrete Methods, 4 (1983), pp. 404–418.

[104] J. J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[105] W. Nooy, A. Mrvar, and V. Batageli, Exploring Social Network Analysis with Pajek,

Cambridge University Press, Cambridge, UK, 2004.
[106] B. Norris, S. Balay, S. Benson, L. Freitag, P. D. Hovland, L. C. McInnes, and

B. Smith, Parallel components for PDEs and optimization: Some issues and experi-
ences, Parallel Comput., 28 (2002), pp. 1811–1831.

[107] M. J. D. Powell and P. L. Toint, On the estimation of sparse Hessian matrices, SIAM J.
Numer. Anal., 16 (1979), pp. 1060–1074.

[108] P. Raghavan and E. Upfal, Efficient routing in all-optical networks, in Proceedings of
the 26th Symposium on the Theory of Computing (STOC’94), ACM, New York, 1994,
pp. 134–143.

[109] E. Ramadan, A. Tarafdar, and A. Pothen, A hypergraph model for the yeast protein
complex network, in Proceedings of the IPDPS Workshop on High Performance Compu-
tational Biology, CD-ROM, IEEE, 2004.

[110] N. Rostaing, S. Dalmas, and A. Galligo, Automatic differentiation in Odyssee, Tellus,
45a (1993), pp. 558–568.

[111] Y. Saad, ILUM: A multi-elimination ILU preconditioner for general sparse matrices, SIAM
J. Sci. Comput., 17 (1996), pp. 830–847.

[112] J. Schmidt-Pruzan, E. Shamir, and E. Upfal, Random hypergraph coloring algorithms and
the weak chromatic number, J. Graph Theory, 8 (1985), pp. 347–362.

[113] G. Szekeres and H. S. Wilf, An inequality for the chromatic number of a graph, J. Combin.
Theory, 4 (1968), pp. 1–3.

[114] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 62 (1994),
pp. 180–181.

[115] B. Toft, Coloring, stable sets and perfect graphs, in Handbook of Combinatorics, Vol. I,
R. L. Graham, M. Grötschel, and L. Lovász, eds., MIT Press, Cambridge, UK, 1996,
pp. 233–288.

GRAPH COLORING FOR COMPUTING DERIVATIVES 705

[116] M. Trick, Network resources for coloring a graph, http://mat.gsia.cmu.edu/COLOR/
color.html.

[117] V. V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.
[118] A. Walther, ADOL-C: A Package for Automatic Differentiation of Algorithms Written in

C/C++, http://www.math.tu-dresden.de/wir/project/adolc/.
[119] G. Wegner, Graphs with Given Diameter and a Coloring Problem, Tech. Report, University

of Dortmund, Germany, 1977.
[120] D. J. A. Welsh and M. B. Powell, An upper bound for the chromatic number of a graph

and its application to timetabling problems, Comput. J., 10 (1967), pp. 85–86.
[121] A. Wigderson, Improving the performance guarantee for approximate graph coloring, J.

ACM, 30 (1983), pp. 729–735.
[122] R. A. Wilson, Graphs, Colourings, and the Four-Colour Theorem, Oxford University Press,

Oxford, 2002.
[123] L. A. Wolsey, Integer Programming, Wiley-Interscience, New York, USA, 1998.
[124] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete

Methods, 2 (1981), pp. 77–79.

