
Practical Parallel Algorithms for

Graph Coloring Problems in

Numerical Optimization

Assefaw Hadish Gebremedhin

Thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor Scientiarum

Department of Informatics

University of Bergen

Norway

February 2003

Acknowledgements

This work was financially supported by the University of Bergen through a

research fellowship at the Department of Informatics.

I am indebted to many people for their contribution to the successful

completion of this work.

I would first like to thank my advisor Professor Fredrik Manne for his

support and guidance throughout the work with this thesis. Fredrik has

always been encouraging, meticulous in reading my drafts, generous with

his time, and his advices on both academic and non-academic matters have

been invaluable.

I would also like to thank the other people whom I had the pleasure of

working with on parts of this thesis. Thanks to Alex Pothen for facilitating

my visit to Old Dominion University, Virginia, USA in the spring of 2001,

for making the stay enjoyable, and for our continued collaboration since

then. Thanks also to the Pothen family for their hospitality. I thank Jens

Gustedt, Isabelle Guérin Lassous and Jan Arne Telle for our joint research

work and friendship.

Thanks to friends and colleagues at the Department of Informatics for

creating a warm and reliable working place. I also thank all my fellow coun-

trymen living and studying in Bergen for their friendship and the memorable

get-togethers.

I am grateful to my parents Hadish Gebremedhin and Alganesh Tsegay,

my sisters Menen and Wintana, my brothers Theodros, Fasil, Alula and

Eyob for their support and encouragement.

Finally, I thank my wife Tsigeweini for her love, support and patience.

Without her constant encouragement and never-fading understanding, I

could not have done this.

I dedicate this thesis to our little daughter Melody with love.

Bergen, February 2003

Assefaw Hadish Gebremedhin

1 Introduction

Partitioning a set of objects into groups according to certain rules is a funda-

mental process in mathematics and computer science. Often, the rules that

determine whether or not a pair of objects can belong to the same group

are conceptually simple. Graph coloring is one mathematical abstraction for

such partitioning rules.

A graph represents binary relationships. It can be visualized as a dia-

gram consisting of points called vertices, and lines called edges. A vertex

represents some physical entity or abstract concept. An edge, which joins

exactly two vertices, represents the relationship between them.

In its standard form, the graph coloring problem deals with assigning

colors to the vertices of a graph such that adjacent vertices receive different

colors and the number of colors used is minimized. This problem and its

variants model a wide range of real-world problems in scientific, engineer-

ing and computing applications. For example, timetabling and scheduling,

frequency assignment to mobile telephones, register allocation in compilers,

printed circuit testing, computation of sparse Jacobian and Hessian matri-

ces, partitioning of tasks in parallel computation, are just a few of the many

areas in which some variant of the graph coloring problem is used as an

effective model.

Among the examples mentioned above, computation of sparse derivative

matrices is an application area considered in this study. The computation

of Jacobian and Hessian matrices is a phase required in many numerical

optimization algorithms. Automatic differentiation and finite differencing

are two widely used techniques for computing, or estimating, the entries of

these matrices. The computation involved in using the techniques can be

made efficient by exploiting matrix structures such as sparsity and symme-

try. This leads to several types of partitioning problems that can naturally

be modeled using variants of the graph coloring problem.

This thesis is mainly about developing algorithms for solving different

graph coloring problems. The coloring problems of our concern are all be-

lieved to be intractable. Therefore, we focus on finding polynomial-time

algorithms that yield sub-optimal solutions. In particular, we emphasize

greedy algorithms that give usable solutions quickly.

Like many other industrial problems, the graph coloring instances in

our cases can be of very large size. One way of handling large-scale prob-

lems effectively is by using parallel computers. A parallel computer consists

of several processors that work on different parts of a common problem.

Today, parallel computers consisting of hundreds of processors are commer-

1

cially available. The basic idea behind parallel computation is to carry out

several tasks simultaneously and thereby reduce execution time. A success-

ful application of this idea requires, among other things, developing paral-

lel algorithms—algorithms that handle the task-division, coordination, and

communication among the processors. Most of the coloring algorithms de-

veloped in this thesis are parallel.

In general, the design and analysis of algorithms, sequential as well as

parallel, presumes the existence of an underlying computation model. Unlike

the sequential case, there is currently no single unifying standard model

for parallel computation. The literature contains an abundant number of

models. Among them, the Bulk Synchronous Parallel (BSP) model stands

out for being proposed as a standard bridging model between hardware

and software in parallel computation. The introduction of BSP stimulated

several studies that lead to various adaptations of the model along different

directions. The Coarse Grained Multicomputer (CGM) model is one such

adaptation. Inspired by the BSP and CGM models, in this study, we propose

a new model called the Parallel Resource-Optimal (PRO) model. The PRO

model is proposed in an attempt to further narrow the gap between theory

and practice in developing efficient and scalable parallel algorithms.

In summary, this thesis deals primarily with the design, analysis, and

implementation of practical parallel algorithms for a variety of graph color-

ing problems. Besides the standard coloring problem, we consider several

specialized variants that arise in the computation of sparse Jacobian and

Hessian matrices. Secondarily, it is concerned with the development of a

simple and effective parallel computation model suitable for theoretical as

well as practical purposes. The thesis consists of the following five papers:

I. A.H. Gebremedhin and F. Manne. Scalable Parallel Graph Coloring

Algorithms. Concurrency: Practice and Experience. 2000; 12:1131-

1146.

II. A.H. Gebremedhin, F. Manne and A. Pothen. Graph Coloring in

Optimization Revisited. January 2003. To be submitted.

III. A.H. Gebremedhin, F. Manne and A. Pothen. Parallel Distance-k

Coloring Algorithms for Numerical Optimization. In B. Monien and

R. Feldmann (Eds.): Proceedings of the 8th International Euro-Par

Conference, Paderborn, Germany, August 2002, volume 2400 of Lec-

ture Notes in Computer Science, pages 912-921. Springer-Verlag 2002.

2

IV. A.H. Gebremedhin, I.Guérin Lassous, J. Gustedt and J.A. Telle.

Graph Coloring on Coarse Grained Multicomputers. Discrete Applied

Mathematics, to appear.

A preliminary version appeared In U. Brandes and D. Wagner (Eds):

Proceedings of WG 2000, 26th International Workshop on Graph-

Theoretic Concepts in Computer Science, Konstanz, Germany, June

2000, volume 1928 of Lecture Notes in Computer Science, pages 184-

195. Springer-Verlag 2000.

V. A.H. Gebremedhin, I.Guérin Lassous, J. Gustedt and J.A. Telle.

PRO: a Model for Parallel Resource-Optimal Computation. In Pro-

ceedings of HPCS’02, 16th Annual International Symposium on High

Performance Computing Systems and Applications, Moncton, Canada,

June 2002, pages 106-113. IEEE Computer Society Press 2002.

The versions of Papers I, IV and V included in this thesis are content-

wise identical to the published versions. Paper III is slightly extended from

its published form: it includes more experimental results and proofs that

were omitted for space considerations. Paper II is planned to be submitted

for publication; unlike the other papers, it is written with a broader audience

in mind.

The topics addressed by Papers I–V can be classified into three groups:

• parallel algorithms for the standard graph coloring problem (Paper I),

• application of graph coloring in sparse Jacobian and Hessian compu-

tation (Papers II and III), and

• parallel computation models (Papers IV and V).

The purpose of this common introduction is to highlight the main re-

sults in each paper and to put the results in context. It is organized as

follows. In Section 2 we discuss some parallel processing issues relevant for

the subsequent presentation of the papers. In Sections 3–5, we consider the

three topics listed above in their respective order. In particular, in each

section, a concise summary of the corresponding paper(s) is given. Paper

IV has aspects that make it relevant to both the first and the last topic.

It is, however, presented under the last topic in Section 5. We conclude

the common introduction in Section 6 with some remarks. The body of the

thesis, Papers I–V, follows thereafter.

3

2 Multiprocessor parallel computing

The ever increasing need for faster solutions and for solving large scale prob-

lems is one of the major driving forces behind parallel computing. The

primary objective here is to achieve increased computational speed by em-

ploying a number of processors concurrently.

Concurrent computation can be done at different levels. Our focus is on

using a multiprocessor parallel computer where a number of processors com-

municate and cooperate to solve a common computational problem. Mul-

tiprocessor parallel computation involves three key ingredients: hardware,

software (programming languages, operating systems and compilers), and

parallel algorithms [18]. One can use these ingredients as basis for classify-

ing the different kinds of models used in the context of parallel processing.

Specifically, we identify three distinct, and yet closely related, categories of

models called parallel architecture, parallel programming, and parallel com-

putation (algorithmic) model. These categories are introduced merely to

frame the discussion in the rest of the current section. The discussion fo-

cuses on issues relevant to the presentation of the thesis papers.

2.1 Parallel architecture models

Parallel computers are often divided into different architectural classes de-

pending on such issues as control mechanism (SIMD and MIMD computers),

address space organization (shared address space and message-passing archi-

tectures) and interconnection network (static and dynamic networks). More

information on each of these classes can be found in books such as [9, 19].

2.2 Parallel programming models

From a programming point of view, shared address space1 programming

(SASP) and message-passing programming (MPP) are perhaps the two most

widely used models in contemporary parallel computation.

In the SASP model, programs are viewed as a collection of processes ac-

cessing a central pool of shared variables. Data exchange among the proces-

sors is achieved by reading from, and writing to, the shared variables. This

programming style is naturally suited to the shared-address-space architec-

ture. In the MPP model, programs are viewed as a collection of processes

with private local variables and the ability to exchange data via explicit mes-

1The phrases ‘shared address space’ and ‘shared memory’ are often used interchange-

ably, both in the literature and here in this thesis. There is, however, a difference in

meaning: the former does not require memory to be physically shared.

4

sage passing. In this model, no variables are shared among processors. Each

processor uses its local variables for computation, and whenever necessary,

it sends data to, or receives data from, other processors. This programming

model fits naturally to distributed-memory computers.

In using the SASP and MPP models, there is usually a trade-off in the

choice to be made. MPP requires considerably more programming effort

than SASP. This is mainly because MPP requires the data structures in

a program to be explicitly partitioned whereas SASP does not. Moreover,

SASP supports incremental parallelization of an existing sequential appli-

cation whereas MPP does not. On the other hand, applications developed

using MPP are likely to be more scalable than SASP based applications.

Currently, OpenMP [23] and MPI [21] are generally considered to be the

standards for writing portable parallel programs using the SASP and MPP

models, respectively. OpenMP, in which the parallel algorithms presented

in Papers I and III are implemented, is a directive-based fork-join model

for SASP. The fact that OpenMP can be used to write parallel programs

relatively easily makes its usage appealing2.

The experimental work reported in Papers I and III is performed on a

Cray Origin 2000 [24], a machine that supports both SASP and MPP. In this

machine, memory is physically distributed among the processors. However,

for operational purposes, it behaves as a shared memory computer with

the operating system taking care of maintaining memory consistency. This

enables any processor to use the entire memory of the system.

2.3 Parallel computation models

A computation model is required to serve two major purposes [1]. First, it is

used to describe a real entity, namely, a computer. As such, a computation

model attempts to capture the essential features of a machine while ignoring

less important details of its implementation. Second, it is used as a tool for

analyzing problems and expressing algorithms. In this sense, the model is

not necessarily linked to any real computer but rather to an understanding

of computation.

In the realm of sequential computation, the Random Access Machine

(RAM) is a standard model that has succeeded in achieving both of these

purposes. It serves as an effective model for hardware designers, algorithm

developers and programmers alike. When it comes to parallel computation,

there is no such unifying standard model. This is mainly due to the complex

2OpenMP dedicated conference series such as EWOMP and WOMPAT could be cited

as indicators for the increasing interest in using OpenMP.

5

set of issues inherent in parallel computation.

The natural parallel analogue of RAM, the PRAM, is an overly simplis-

tic model for parallel computation. It is mainly of theoretical interest as it

fails to capture the features of existing parallel computers. The Bulk Syn-

chronous Parallel (BSP) model [26] is a relatively recent model, proposed

to serve as a standard ‘bridging model’ between hardware (machine archi-

tecture) and software (algorithm design and programming). As opposed to

the PRAM, parallel algorithms in the BSP model are organized in distinct

computation and communication phases. Moreover, unlike the PRAM, the

BSP model made parallel computation to be coarse grained, a concept we

will make more precise shortly. Later, a variant of the BSP called the Coarse

Grained Multicomputer (CGM) model was proposed [4, 11, 12]. The CGM

model added a strictly coarse grained communication requirement to the

BSP model. The CGM model uses fewer number of parameters than the

BSP model, a feature that simplifies analysis to a certain extent.

In Paper V we propose a new parallel computation model called the

Parallel Resource-Optimal (PRO) model. The PRO model inherits the ad-

vantages offered by the BSP and CGM models. It compromises between

theoretical and practical considerations in the design of optimal and scal-

able parallel algorithms. Paper V is introduced in Section 5. However, since

the BSP and CGM models are mentioned rather briefly in the paper, we dis-

cuss the key attributes of the two models in Sections 2.3.2 and 2.3.3 below.

The two models are presented here as defined in [4].

We proceed in this section by first recapitulating the main features of

the well known PRAM model, which is the model used in Papers I and III

for theoretical runtime analysis. In the same section we include a discussion

of a related complexity class. A good introduction to the PRAM model and

parallel algorithm design using the model can be found in books such as

[1, 16].

2.3.1 PRAM

The PRAM is an idealized parallel computation model. In its standard

form, it consists of an arbitrarily large number of processors and a shared

memory of unbounded size that is uniformly accessible to all processors.

The processors share a common clock and operate in lockstep, but they may

execute different instructions in each cycle. The PRAM is therefore a model

for a synchronous shared memory MIMD computer. The PRAM can be

classified into different subclasses depending on how simultaneous memory

accesses are handled. For example, a subclass that allows simultaneous read

6

access, but not write access, to a single memory location is called concurrent

read exclusive write (CREW) PRAM.

The PRAM is a model for fine-grain computation as it supposes that

the number of processors can be arbitrarily large. Usually, it is assumed

that the number of processors is a polynomial in the input size. However,

practical parallel computation is typically coarse-grain. In particular, on

most existing parallel machines, the number of processors is several orders

of magnitude less than the input size.

Despite its serious deviation from the nature of real parallel comput-

ers, the PRAM model is sometimes used for theoretical runtime analysis. A

PRAM-analysis gives an idea on the ‘computational parallelism’ rendered by

an algorithm, leaving communication costs aside. Such an analysis should be

supported by empirical results in order to make reasonable conclusions. In

Papers I and III we use the PRAM model for theoretical analyses and sup-

port the claims with experimental results. It should, however, be noted that

the algorithms in Paper I and III are not actually PRAM-algorithms. First,

they do not assume lockstep synchronization. Second, they are developed

in a coarse-grain setting.

The class NC On the PRAM model, a parallel algorithm is considered

‘efficient’ if its running time is polylogarithmic, i.e., O(log kn) for some fixed

constant k, while the number of processors it uses is polynomial in the

input size n. The class of problems that can be solved by such efficient

parallel algorithms is called NC [16]. By simulation, an NC-algorithm can

be converted into a polynomial time sequential algorithm. Thus, the class

NC is included in the class P, i.e., NC ⊆ P. On the other hand, whether or

not P ⊆ NC is an open problem in complexity theory. The general belief

is that P 6⊆ NC, and hence that there are problems in P that do not have

NC-algorithms. The class of P-complete problems consists of the most likely

candidates for such problems. Informally, a problem is said to be P-complete

if an NC-algorithm for it implies that all problems in P have NC-algorithms.

The NC versus P-complete dichotomy on PRAM suffers from several

drawbacks. Most importantly, the dichotomy excludes practical paralleliz-

ability in a coarse-grain setting and secondly it does not take work optimal-

ity into account. A more detailed discussion of these drawbacks is given in

Paper V. Moreover, the experimental results reported in Papers I and III

demonstrate the relevance of developing coarse-grain algorithms.

7

2.3.2 The BSP model

A BSP computer is a collection of processor/memory modules connected by

a router that can deliver messages in a point to point fashion between the

processors. A BSP-algorithm is divided into a sequence of supersteps sep-

arated by barrier synchronizations. A superstep has distinct computation

and communication phases. In a computation phase the processors perform

computation on data that exists locally at the beginning of the superstep.

In a communication phase, data is exchanged among the processors via the

router. The BSP model uses the four parameters, n, p, L, and g. Parameter

n is the problem size, p is the number of processors, L is the minimum time

between synchronization steps (measured in basic computation units), and

g is the ratio of overall system computational capacity (number of computa-

tion operations) per unit time divided by the overall system communication

capacity (number of messages of unit size that can be delivered by the router)

per unit time.

In a superstep, a processor may send (and receive) at most h messages.

Such a communication pattern is called an h-relation and the basic task of

the router is to realize arbitrary h-relations.

2.3.3 The CGM model

The CGM model is a specialization of the BSP model in which the number

of parameters involved is reduced to just two—p and n—making theoretical

analysis relatively simpler. The CGM model is a collection of p processors,

each with O(n/p) local memory, interconnected by a router that can de-

liver messages in a point to point fashion. A CGM algorithm consists of

an alternating sequence of computation rounds and communication rounds

separated by barrier synchronizations. A computation round is equivalent

to the computation phase of a superstep in the BSP model. A communica-

tion round consists of a single h-relation with h ≤ n/p. In other words, all

the information sent from one processor to another in one communication

round is packed into one long message, thereby minimizing communication

overhead.

The CGM model is used for designing parallel algorithms for coarse grain

systems, in particular, in the case where n� p. Usually, a lower bound on

n/p, e.g. n/p ≥ pδ, for some δ > 0, is required [4]. The value of δ depends

on the nature of the problem for which a parallel algorithm is sought. The

goodness of a CGM parallel algorithm is often measured by the number of

communication rounds it uses [4].

8

3 Parallel algorithms for standard graph coloring

- Paper I

In the simplest case, the graph coloring problem asks for an assignment

of positive integers (called colors) to the vertices of a simple, connected,

undirected graph such that no two adjacent vertices are assigned the same

color and the total number of colors used is minimized.

The graph coloring problem is NP-hard. The current best known ap-

proximation ratio for the problem is O(n (log log n)2

(log n)3
), where n is the number

of vertices in the graph. Moreover, it is known to be not approximable

within n1/7−ε for any ε > 0 [3].

Despite these rather pessimistic theoretical results, greedy coloring heuris-

tics are often found to be effective in practice. In some applications, these

heuristics find colorings that are within small additive constants of the opti-

mal coloring [6, 17]. The number of colors used by a greedy heuristic depends

on the order in which the vertices are visited and the choice of color made at

each step. If the smallest possible color is chosen at each step, the number of

colors used by any such sequential greedy heuristic is at most ∆ + 1, where

∆ is the maximum degree in the graph. For some applications, this bound

can be quite acceptable, especially if the coloring is obtained quickly.

Such greedy heuristics are inherently sequential and consequently dif-

ficult to parallelize. Specifically, the problem of coloring the vertices of a

graph in a prespecified order and using the smallest possible color at each

step is known to be P-complete [13].

Paper I deals with parallelizing greedy heuristics using the shared-address-

space programming model in a coarse-grain setting. Similar previous efforts

focused on using the message-passing programming model on distributed-

memory parallel computers. These efforts yielded no speedup [2, 17]. The

algorithms presented in Paper I overcome this shortcoming.

In Paper I we present a new parallel algorithm that colors a graph G =

(V,E) using at most ∆ + 1 colors and has an expected parallel runtime

O(|E|/p) on a CREW PRAM for any number of processors p such that

p ≤ |V |/
√

2|E|.

The algorithm consists of three phases. The first two phases are parallel

while the last one is sequential. In the first phase, the vertex set is sim-

ply equally partitioned among the p available processors. Each processor

colors its block of vertices paying attention to already colored (local and

non-local) vertices. In this scenario, a pair of adjacent vertices residing on

different processors may be colored concurrently, and possibly get the same

color, thereby leading to an inconsistency. In the second phase, inconsis-

9

tencies are detected in parallel. In the final sequential phase, the detected

inconsistencies are rectified.

In the same paper we present a second algorithm that extends this idea

to reduce the number of colors used. The reduction in the number of colors

is obtained by dividing the first phase of the algorithm just described into

two coloring steps. In the improved algorithm, the coloring in the first step

is used to determine an ordering for a coloring in the second step.

Both algorithms are well suited for the shared address space program-

ming model and are implemented using OpenMP. In agreement with the

theoretical analyses, timing results obtained from experiments conducted

on the Origin 2000 using a modest number of processors and graphs from fi-

nite element methods and eigenvalue computation show that the algorithms

yield speedup.

4 Graph coloring and efficient computation of sparse

derivative matrices

Computing a derivative matrix, i.e. a Jacobian or a Hessian, is a phase re-

quired in many numerical optimization algorithms. In large scale problems,

this phase often constitutes an expensive part of the entire computation.

Hence, efficient methods that exploit matrix structure such as sparsity and

symmetry are often required. Finite difference and automatic differentia-

tion (AD) are two widely used methods in the efficient determination of the

elements of derivative matrices. In using these methods, the main goal is to

minimize the number of function evaluations or AD passes required. The

pursuit of this goal gives rise to several matrix partitioning problems.

Since the early 70’s a considerable amount of research work has been done

in the field of sparse derivative matrix computation [5, 6, 7, 8, 10, 14, 15, 20,

22, 25]. Early studies in this field, such as [10, 22, 25], used matrix oriented

approaches. Later, following the pioneering work of Coleman and Moré

[6], graph theoretic approaches proved to be advantageous in understanding,

analyzing and solving the matrix problems. In particular, graph coloring—

in its several variations—was found to be an effective model. However,

existing algorithms and software for such coloring problems are developed for

uniprocessor (sequential) computers. Currently, there is a need for parallel

coloring algorithms that can be used to aid the solution of large-scale PDE-

constrained optimization problems on parallel computers. Paper II is an

expository work for, and Paper III is a first step towards, addressing this

need in a flexible manner.

10

Matrix Partition Scheme Entries Prob. Formulation
Nonsym. 1d direct all P1 D2 coloring (II)
Sym. 1d direct all P2 D 3

2
coloring [7]

Nonsym. 2d direct all P3 D 3

2
bicoloring [8]

Sym. 1d subst. all P4 acyclic coloring [5]
Nonsym. 2d subst. all P5 acyclic bicoloring [8]
Nonsym. 1d direct some P6 restricted D2 coloring (II)
Sym. 1d direct some P7 restricted D 3

2
coloring (II)

Nonsym. 2d direct some P8 restricted D 3

2
bicoloring (II)

Sym. 1d subst. some P9 not treated
Nonsym. 2d subst. some P10 not treated

Table 1: Overview of partition/coloring problems considered in Paper II.

4.1 Unifying Framework – Paper II

In the literature, one finds several types of coloring problems character-

izing different types of matrix partitioning problems. Understanding the

similarities and differences among these problems greatly simplifies the de-

velopment of algorithms—sequential or parallel—for solving them. Paper II

aims at contributing to this end.

The nature of a partitioning problem in the context of efficient compu-

tation of sparse derivative matrices depends on the type of the underlying

matrix and the scenario under which the matrix computation is carried out.

Specifically, the particular problem depends on,

1. whether the matrix to be computed is symmetric or nonsymmetric,

2. whether a one-dimensional partition (involving only columns or rows)

or a two-dimensional partition (involving both columns and rows) is

used,

3. whether the evaluation scheme employed is direct (solves a diagonal

system) or substitution based (solves a triangular system), and

4. whether all of the nonzero entries of the matrix or only some of them

need to be determined.

The factors outlined above are mutually orthogonal to each other—

potentially resulting in 24 different cases. Within our framework, ten of

these correspond to practically meaningful partitioning problems whereas

the remaining six do not. In Paper II, we use a unified graph theoretic

framework to study eight of these problems; the remaining two are not con-

sidered due to their sophistication. The upper part of Table 1 gives an

11

overview of the problems considered in the paper and the respective color-

ing formulations used. The lower part shows the cases not treated in the

paper.

Paper II is a review as well as research paper that integrates known and

new formulations. In the paper we give the necessary background to mo-

tivate and formally introduce the matrix partitioning problems, and then

develop their equivalent graph coloring formulations. Problems P1–P5 have

been studied previously whereas P6–P8 are investigated for the first time.

The motivation for introducing the new problems and the corresponding re-

stricted coloring formulations is the fact that the computation of a specified

subset of the nonzero entries of a matrix—for instance, for preconditioning

purposes—can be carried out even more efficiently than the computation of

all of the nonzero entries.

In formulating problems P1–P8 as coloring problems, we use a bipartite

graph to represent a nonsymmetric matrix and an adjacency graph to rep-

resent a symmetric matrix. In the case of nonsymmetric matrices, bipartite

graph based formulations are shown to be attractive in terms of flexibil-

ity and storage space requirement in comparison with known formulations

based on intersection graphs.

The major contributions made in Paper II can be summarized as follows.

• We propose distance-2 coloring as an alternative, more flexible, for-

mulation for problem P1 as compared to the distance-1 coloring for-

mulation of Coleman and Moré [6] for the same problem.

• We expose the interrelationship among the coloring formulations of

problems P1 through P5 and identify distance-2 coloring as as a generic

model.

• For problems P3 and P5, based on the previously known relationship

to graph bicoloring [8], we observe a connection to finding a vertex

cover in a graph.

• Using the insight gained from the unified graph theoretic treatment, we

develop several simple, sequential, heuristic algorithms for the coloring

formulations of problems P1 through P5.

• We formulate the partitioning problems arising in the computation of

a subset of the entries of a matrix (i.e. problems P6–P8) as restricted

coloring problems.

12

4.2 Parallel Algorithms – Paper III

In Paper III, we develop several shared address space parallel algorithms

for the coloring formulations of problems P1 and P2. The algorithms are

straightforward extensions of the algorithm for the standard (distance-1)

graph coloring problem presented in Paper I. However, in the cases where

the graph to be colored is relatively dense, randomization is used as a sup-

plementary tool to improve scalability. Our PRAM-analyses show that the

algorithms give almost linear speedup for sparse graphs that are large rel-

ative to the number of processors. The algorithms are implemented using

OpenMP and results from experiments conducted on the Origin 2000 us-

ing various large graphs show that the algorithms indeed yield reasonable

speedup for a modest number of processors.

5 A new parallel computation model

5.1 Graph coloring on the CGM model – Paper IV

The aim of Paper IV is to adapt the shared address space algorithm for

the standard graph coloring problem given in Paper I to the CGM model.

The CGM model used is basically the same as the CGM model described in

Section 2.3.3 except for the fact that the quality of an algorithm is measured

not using communication rounds but rather using an explicit analysis of the

overall computation and communication cost involved. Particularly, a CGM

algorithm is considered efficient if the parallel runtime of the algorithm,

taking both communication and computation costs into account, yields a

speedup (relative to the complexity of the best known sequential algorithm)

that is a linear function in the number of processors used.

In Paper IV we present such an efficient CGM algorithm that colors a

connected graph G = (V,E) using at most ∆ + 1 colors, where ∆ is the

maximum degree in G. The algorithm is given in two variants: randomized

and deterministic. It is shown that on a p-processor CGM model, where

|E|/p > p2, the proposed algorithms have a parallel running time O(|E|/p)

and an overall (computation and communication) cost O(|E|). These bounds

correspond to the average and worst case for the randomized and determin-

istic versions, respectively.

In comparison with the original algorithm in Paper I, the CGM color-

ing algorithm in Paper IV is more complicated. Some of the factors that

contribute to the complexity are distributed-memory related issues such as

data distribution, communication overhead, and load balancing. In terms

of the underlying algorithmic idea, a key difference between the algorithms

13

of Paper I and IV is that the latter uses recursion.

5.2 The PRO model – Paper V

The notion of ‘efficiency’ of a CGM algorithm as used in Paper IV motivated

us to refine the definition of the model itself. One of the goals was to keep

the number of parameters in the refined model as low as possible and at

the same time make the algorithm design objective more precise. Another

goal was to find a model that can serve as a design scheme for the algorithm

developer, i.e., a model that identifies the features of a parallel algorithm

that contribute to its practical scalability on different architectures. The

PRO model is partly a result of this effort.

The novel idea behind the PRO model is the focus on relative resource

optimality and the use of granularity as a quality measure. In this model,

the design and analysis of a parallel algorithm is done relative to the com-

plexity of a specific underlying sequential algorithm. The parallel algorithm

is required to be time and space optimal with respect to the complexity

of the reference sequential algorithm. As a consequence of its optimality,

a PRO-algorithm yields linear speedup. The quality of a PRO-algorithm

is measured by an attribute of the model called granularity function. This

function, which is expressed in terms of the input size, shows the number of

processors that can be employed without sacrificing optimality.

In Paper V, the PRO model is defined formally and it is systematically

compared with a selection of other models, including BSP and CGM. The

paper also presents PRO-algorithms for matrix multiplication and one-to-

all broadcast to illustrate how the model is used in algorithm design and

analysis.

6 Conclusion

The first algorithm introduced in Paper I, and later applied in Paper III,

can be seen as a parallelization technique of general interest. The technique

consists of (i) breaking up a given problem into p, not necessarily inde-

pendent, subproblems of almost equal sizes, (ii) solving the p subproblems

concurrently using p processors, and (iii) resolving any inconsistencies that

may result due to the interdependence among the p subproblems sequen-

tially. The technique assumes that resolving an inconsistency can be done

locally. The success of the technique depends on the overall time spent on

detecting and resolving inconsistencies. Papers I and III demonstrate the

effectiveness of the technique in developing shared-address-space parallel al-

14

gorithms for various coloring problems. In these papers, we also showed

different ways, including randomization, by which the technique can be en-

hanced in the context of coloring problems. In Paper IV we extended the

basic idea behind the technique to develop an efficient CGM-algorithm for

standard graph coloring. This algorithm suggests a way for extending the

parallelization technique mentioned earlier. Specifically, if the inconsisten-

cies that could result from (ii) can be determined a priori, then (iii) can be

replaced by a recursive application of the technique.

In Paper II we revisited the role of graph coloring in modeling matrix

partitioning problems that arise in numerical estimation of sparse Jacobian

and Hessian matrices. We used a unified graph theoretic framework for

dealing with the matrix problems in a flexible manner. As a result, we

developed several simple and effective sequential heuristic algorithms. In

Paper III, some of these algorithms were parallelized using the shared ad-

dress space programming model. The work in Papers II and III can serve

as basis for further design and implementation of parallel algorithms for the

various coloring problems.

In Paper V we proposed PRO as a candidate model for the design and

analysis of efficient, scalable and portable parallel algorithms. Verifying its

utility needs further exploration, both theoretical and experimental.

For more specific directions for further work on each of the topics ad-

dressed in this thesis, the reader is referred to the concluding remarks given

at the end of each paper.

References

[1] S. G. Akl. Parallel Computation. Prentice Hall, New Jersey, USA, 1997.

[2] J. R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C. L.

Martin. A comparison of parallel graph coloring algorithms. Technical

Report Tech. Rep. SCCS-666, Northeast Parallel Architecture Center,

Syracuse University, 1995.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-

Spaccamela, and M. Protasi. Complexity and Approximation. Springer,

Berlin, Germany, 1999.

[4] E. Caceres, F. Dehne, A. Ferreira, P. Locchini, I. Rieping, A. Roncato,

N. Santoro, and S. W. Song. Efficient parallel graph algorithms for

coarse grained multicomputers and BSP. In The 24th International

15

Colloquium on Automata Languages and Programming, volume 1256 of

LNCS, pages 390–400. Springer Verlag, 1997.

[5] T. F. Coleman and J. Cai. The cyclic coloring problem and estimation

of sparse Hessian matrices. SIAM J. Alg. Disc. Meth., 7(2):221–235,

April 1986.

[6] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices

and graph coloring problems. SIAM J. Numer. Anal., 20(1):187–209,

February 1983.

[7] T. F. Coleman and J. J. Moré. Estimation of sparse Hessian matrices

and graph coloring problems. Math. Program., 28:243–270, 1984.

[8] T. F. Coleman and A. Verma. The efficient computation of sparse Jaco-

bian matrices using automatic differentiation. SIAM J. Sci. Comput.,

19(4):1210–1233, July 1998.

[9] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architec-

ture. Morgan Kaufmann Publishers, San Francisco, California, 1999.

[10] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of

sparse Jacobian matrices. J. Inst. Math. Appl., 13:117–119, 1974.

[11] F. Dehne. Coarse grained parallel algorithms. Algorithmica Special

Issue on “Coarse grained parallel algorithms”, 24(3/4):173–176, 1999.

[12] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computa-

tional geometry for coarse grained multicomputers. International Jour-

nal on Computational Geometry, 6(3):379–400, 1996.

[13] R. Greenlaw, H.J. Hoover, and W. L. Ruzzo. Limits to Parallel Com-

putation: P-Completeness Theory. Oxford University Press, New York,

USA, 1995.

[14] S. Hossain and T. Steihaug. Computing a sparse Jacobian matrix by

rows and columns. Optimization Methods and Software, 10:33–48, 1998.

[15] S. Hossain and T. Steihaug. Reducing the number of AD passes for com-

puting a sparse Jacobian matrix. In G. Corliss, C. Faure, A. Griewank,

L. Hascoët, and U. Naumann, editors, Authomatic Differentiation of Al-

gorithms: From Simulation to Optimization, pages 263 – 270. Springer,

2002.

[16] J. Jájá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

16

[17] M. T. Jones and P. E. Plassmann. A parallel graph coloring heuristic.

SIAM J. Sci. Comput., 14(3):654–669, May 1993.

[18] H. F. Jordan and G. Alaghband. Fundamentals of Parallel Processing.

Prentice Hall, New Jersey, USA, 2003.

[19] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to

Parallel Computing. The Benjamin/Cummings Publishing Company,

Inc., California, 1994.

[20] S. T. McCormick. Optimal approximation of sparse Hessians and its

equivalence to a graph coloring problem. Math. Program., 26:153–171,

1983.

[21] MPI. Message-passing interface standard. http://www.mpi-forum.org/.

[22] G. N. Newsam and J. D. Ramsdell. Estimation of sparse Jacobian

matrices. SIAM J. Alg. Disc. Meth., 4:404–418, 1983.

[23] OpenMP. A proposed industry standard API for shared memory pro-

gramming. http://www.openmp.org/.

[24] Parallab. High Performance Computing Laboratory.

http://www.parallab.uib.no/.

[25] M. J. D. Powell and PH. L. Toint. On the estimation of sparse Hessian

matrices. SIAM J. Numer. Anal., 16(6):1060–1074, December 1979.

[26] L. G. Valiant. A bridging model for parallel computation. Communi-

cations of the ACM, 33(8):103–111, 1990.

17

Scalable parallel graph coloring algorithms

Assefaw Hadish Gebremedhin∗ Fredrik Manne

Abstract

Finding a good graph coloring quickly is often a crucial phase in

the development of efficient, parallel algorithms for many scientific

and engineering applications. In this paper we consider the problem

of solving the graph coloring problem itself in parallel. We present a

simple and fast parallel graph coloring heuristic that is well suited for

shared memory programming and yields an almost linear speedup on

the PRAM model. We also present a second heuristic that improves

on the number of colors used. The heuristics have been implemented

using OpenMP. Experiments conducted on an SGI Cray Origin 2000

super computer using very large graphs from finite element methods

and eigenvalue computations validate the theoretical run-time analysis.

Key words: graph coloring; parallel algorithms; shared memory

programming; OpenMP

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway. {assefaw,

Fredrik.Manne}@ii.uib.no

1

1 Introduction

The graph coloring problem (GCP) deals with assigning labels (called colors)

to the vertices of a graph such that adjacent vertices do not get the same

color. The primary objective is to minimize the number of colors used. The

GCP arises in a number of scientific computing and engineering applications.

Examples include, among others, time tabling and scheduling [14], frequency

assignment [6], register allocation [3], printed circuit testing [8], parallel

numerical computation [1], and optimization [4]. Coloring a general graph

with the minimum number of colors is known to be an NP-hard problem [7],

thus one often relies on heuristics to obtain a usable solution.

In a parallel application a graph coloring is usually performed in order

to partition the work associated with the vertices into independent subtasks

such that the subtasks can be performed concurrently. Depending on the

amount of work associated with each vertex, there are basically two coloring

strategies one can pursuit. In the first strategy the emphasis is on mini-

mizing the number of colors whereas in the second the focus is on speed.

Ascertaining which is more appropriate depends on the underlying problem

one is trying to solve.

If the task associated with each vertex is computationally expensive

then it is crucial to use as few colors as possible. There exist several time-

consuming (iterative) local improvement heuristics for addressing this need.

Some of these heuristics have been shown to be parallelizable [14].

If, on the other hand, the task associated with each vertex is fairly small

and one repeatedly has to find new graph colorings then the overall time

to perform the colorings might take up a significant portion of the entire

computation. See [16] for an example of this case. In such a setting it is

more important to compute a usable coloring fast than spending time on

reducing the number of colors. For this purpose there exist several linear

time, or close to linear time, sequential greedy coloring heuristics. These

heuristics have been found to be effective in coloring graphs that arise from

a number of applications [4, 11]. Because of their inherent sequential nature,

however, these heuristics are difficult to parallelize.

This paper focuses mainly on the latter strategy where the goal is to

develop scalable parallel coloring heuristics based on greedy methods. Pre-

vious work on developing such algorithms has been performed on distributed

memory computers using explicit message-passing. The speedup obtained

from these efforts has been discouraging [1]. The main justification for using

these algorithms has been access to more memory and thus the ability to

solve problems with very large graphs. It is to be noted that the current

2

availability of shared memory computers where the entire memory can be

accessed by any processor makes this argument less significant now.

The development of shared memory computers has been accompanied

by the emergence of new shared memory programming paradigms of which

OpenMP has become one of the most successful and widely used [17]. OpenMP

is a directive-based, fork-join model for shared memory parallelism.

In this paper we present a fast and scalable parallel graph coloring algo-

rithm suitable for the shared memory programming model. In our context,

scalability of a parallel algorithm is a measure of its capacity to increase

speedup as the number of processors is increased for a given problem size.

Our algorithm is based on first performing a parallel pseudo-coloring of the

graph. The prefix “pseudo” is used to reflect that the coloring might contain

adjacent vertices that are colored with the same color. To remedy this we

perform a second parallel step where any inconsistencies in the coloring are

detected. These are then resolved in a final sequential step. An analysis

on the PRAM model using p processors for a graph with n vertices and m

edges shows that the expected number of conflicts from the first stage is

low and for p ≤ n
√

2m
the algorithm is expected to provide a nearly linear

speedup. We also extend this idea and present a second parallel algorithm

that potentially uses fewer colors.

The presented algorithms have been implemented in Fortran90 using

OpenMP on a Cray Origin 2000 super computer. Experimental results on

a number of very large graphs show that the algorithms yield good speedup

and produce colorings of comparable quality to that of their sequential coun-

terparts. The fact that we are using OpenMP makes our implementation

significantly simpler and easier to verify than if we had used a distributed

memory programming environment such as MPI.

The rest of this paper is organized as follows. In Section 2 we give

some background on the graph coloring problem and previous efforts made

to solve it in parallel. In Section 3 we describe our new parallel graph

coloring algorithms and analyze their performance on the PRAM model.

Synchronization overhead and OpenMP issues related to our implementation

are discussed in Section 4. In Section 5 we present and discuss results from

experiments performed on the Cray Origin 2000. Finally, in Section 6 we

give concluding remarks.

2 Background

In this section we give a brief overview of previous work done on the devel-

opment of fast coloring heuristics, both sequential and parallel. We begin

3

by introducing some graph notation used in this paper.

For a graph G = (V,E), we denote |V | by n, |E| by m, and the degree

of a vertex vi by deg(vi). Moreover, the maximum, minimum, and average

degree in a graph are denoted by ∆, δ, and δ respectively.

As mentioned in Section 1 there exist several fast sequential coloring

heuristics that are very effective in practice. These algorithms are all based

on the same general greedy framework: a vertex is selected according to

some predefined criterion and then colored with the smallest valid color.

The selection and coloring continues until all the vertices in the graph are

colored.

Some of the suggested coloring heuristics under this general framework

include Largest-Degree-First-Ordering (LFO) [18], Incidence-Degree-Ordering

(IDO) [4], and Saturation-Degree-Ordering (SDO) [2]. These heuristics

choose at each step a vertex v from the set of uncolored vertices with the

maximum “degree”. In LFO, the standard definition of degree of a vertex

is used. In IDO, incidence degree is defined as the number of already col-

ored adjacent vertices, whereas in SDO one only considers the number of

differently colored adjacent vertices. First Fit (FF) is yet another, simple

variant of the general greedy framework. In FF, the next vertex from some

arbitrary ordering is chosen and colored. In terms of quality of coloring,

these heuristics can in most cases be ranked in an increasing order as FF,

LFO, IDO, and SDO. Note that for a graph G the number of colors used by

any sequential greedy algorithm is bounded from above by ∆ + 1. On the

average, however, it has been shown that for random graphs FF is expected

to use no more than 2χ(G) colors, where χ(G) is the chromatic number1

of G [10]. In terms of run time, FF is clearly O(m), LFO and IDO can be

implemented to run in O(m), and SDO in O(n2) [2, 11].

When it comes to parallel graph coloring, a number of the existing fast

heuristics are based on the observation that an independent set of vertices

can be colored in parallel. A general parallel coloring scheme based on this

observation is outlined in Figure 1.

Depending on how the independent set is chosen and colored, Scheme 1

specializes into a number of variants. The Parallel Maximal Independent set

(PMIS) coloring is one variant. This is a heuristic based on Luby’s maximal

independent set finding algorithm [15]. Other variants are the asynchronous

parallel heuristic by Jones and Plassmann (JP) [11], and the Largest-Degree-

First(LDF) heuristic developed independently by Gjertsen Jr. et al. [12] and

Allwright et al. [1].

1The chromatic number of a graph is the optimal number of colors required to color it.

4

Scheme 1

ParallelColoring(G = (V,E))
begin

U ← V
G′ ← G
while (G′ is not empty) do in parallel

Find an independent set I in G′

Color the vertices in I
U ← U \ I
G′ ← graph induced by U

end-while
end

Figure 1: A parallel coloring heuristic

Allwright et al. made an experimental, comparative study by implement-

ing the PMIS, JP, and LDF coloring algorithms on both SIMD and MIMD

parallel architectures [1]. They report that they did not get speedup for any

of these algorithms.

Jones and Plassmann [11] do not report on obtaining speedup for their

algorithms either. They state that “the running time of the heuristic is only

a slowly increasing function of the number of processors used”.

3 Block Partition Based Coloring Heuristics

In this section we present two new parallel graph coloring heuristics and give

their performance analysis on the PRAM model. Our heuristics are based

on dividing the vertex set of the graph into p successive blocks of equal size.

We call this a block partitioning. We assume that the vertices are listed in a

random order and thus no effort is made to minimize the number of crossing

edges. A crossing edge is an edge whose end points end up in two different

blocks. Obviously, because of the existence of crossing edges, the coloring

subproblems defined by each block are not independent.

3.1 The First Algorithm

The strategy we employ consists of three phases. In the first phase, the

input vertex set V of the graph G = (V,E) is partitioned into p blocks

as {V1, V2, . . . , Vp} such that |Vi| = n/p, 1 ≤ i ≤ p. The vertices in each

block are then colored in parallel using p processors. The parallel coloring

5

comprises of n/p parallel steps with synchronization barriers at the end of

each step. When coloring a vertex, all its previously colored neighbors, both

the local ones and those found on other blocks, are taken into account. In

doing so, two processors may simultaneously attempt to color vertices that

are adjacent to each other. If these vertices are given the same color, the

resulting coloring becomes invalid and hence we call the coloring obtained

a pseudo coloring. In the second phase, each processor pi checks whether

vertices in Vi are assigned valid colors by comparing the color of a vertex

against all its neighbors that were colored at the same parallel step in the first

phase. This checking step is also done in parallel. If a conflict is discovered,

one of the end points of the edge in conflict is stored in a table. Finally,

in the third phase, the vertices stored in this table are colored sequentially.

Algorithm 1 provides the details of this strategy and is given in Figure 2.

Algorithm 1

BlockPartitionBasedColoring(G, p)
begin
1. Partition V into p equal blocks V1 . . . Vp, where bn

p c ≤ |Vi| ≤ d
n
p e

for i = 1 to p do in parallel
for each vj ∈ Vi do

assign the smallest legal color to vertex vj

barrier synchronize
end-for

end-for
2. for i = 1 to p do in parallel

for each vj ∈ Vi do
for each neighbor u of vj that has been colored at the same
parallel step do

if color(vj) = color(u) then
store min {u, vj} in table A

end-if
end-for

end-for
end-for

3. Color the vertices in A sequentially
end

Figure 2: Block partition based coloring

6

3.1.1 Analysis

Our analysis is based on the PRAM model. Without loss of generality we

assume that n/p, the number of vertices per processor, is an integer. Let

the vertices on each processor be numbered from 1 to n/p and the parallel

time used for coloring be divided into n/p time slots. The processors are

synchronized at the end of each time unit tj. This means, at each time unit

tj, processor pi colors vertex vj ∈ Vi, 1 ≤ j ≤ n/p and 1 ≤ i ≤ p.

Our first result gives an upper bound on the expected number of conflicts

(denoted by K) created at the end of Phase 1 of Algorithm 1 for a graph in

which the vertices are listed in a randomly permuted order.

Lemma 3.1 The expected number of conflicts created at the end of Phase

1 of Algorithm 1 is at most δ(p−1)
2 (n

n−1) ≈ δ(p−1)
2 .

Proof : Consider a vertex x ∈ V that is colored at time unit tj, 1 ≤

j ≤ n/p. Since the neighbors of x are randomly distributed, the expected

number of neighbors of x that are concurrently colored at time unit tj is

given by
p− 1

n− 1
deg(x) (1)

If we sum (1) over all vertices in G we count each pair of adjacent vertices

that are colored simultaneously twice. Moreover each term in the sum rep-

resents only a potential conflict since two adjacent vertices could be colored

simultaneously and yet be assigned different colors. The sum thus gives an

upper bound on the expected number of conflicts. Therefore, we have

E[K] ≤ (1/2)
∑

x∈V

p− 1

n− 1
deg(x) (2)

= (1/2)
p − 1

n − 1
(2m) (3)

= (1/2)δ(p− 1)(n/n− 1) (4)

In going from (3) to (4), the identity δ =

∑

v∈V
deg(v)

n = 2m
n is used. Note

that for large values of n, (n/n− 1) ≈ 1 and the result follows.

2

We now look at the expected run time2 of Algorithm 1. To do so, we

introduce a graph attribute called relative sparsity r, defined as r = n2

m .

Note that 1/r, the ratio of the actual number of edges to the total possible

number of edges, shows the density of the graph. The following lemma states

2We use the prefix E to identify expected time complexity expressions.

7

that for bounded degree graphs and for p ≤
√

r
2 , Algorithm 1 provides an

almost linear speedup compared to the sequential First Fit algorithm.

Lemma 3.2 On a CREW PRAM, Algorithm 1 colors the input graph con-

sistently in EO(∆n/p) time when p ≤
√

r
2 and in EO(∆δp) time when

p >
√

r
2 .

Proof : Note first that since Phase 3 resolves all the conflicts that are

discovered in Phase 2, the coloring at the end of Phase 3 is a valid one.

Both Phase 1 and 2 require concurrent read capability and thus the required

PRAM is CREW. The overall time required by Algorithm 1 is T = T1+T2+

T3, where Ti is the time required by Phase i. Both Phase 1 and 2 consist

of n/p parallel steps. The number of operations in each parallel step is

proportional to the degree of the vertex under investigation which is bounded

from above by ∆. Thus, T1 = T2 = O(∆n/p). The time required by the

sequential step (Phase 3) is T3 = O(∆K) where K is the number of conflicts

discovered in Phase 2. From Lemma 3.1, E[K] = O(δp). Substituting yields

T = T1 + T2 + T3 = EO(∆(n/p + δp)) (5)

The overall time T is thus determined by how n/p compares with δp.

Using the identity δ = 2m
n , we see that for p ≤

√

n2

2m =
√

r
2 , the term n/p

dominates giving an overall running time of EO(∆n/p). For p >
√

r
2 , the

term δp dominates and the overall time becomes EO(∆δp).

2

For most practical applications and currently available parallel comput-

ers we expect that both δ � n and p � n implying that n > p2δ and thus

giving an overall time complexity of O(∆n/p) for Algorithm 1.

The number of colors used by Algorithm 1 is bounded from above by

∆ + 1. This follows since the conflicts that arise in Phase 1 are resolved

sequentially. However, we note that there exist instances where the col-

oring produced by Algorithm 1 can be arbitrarily worse than that of the

sequential FF algorithm. To see this, consider a complete bipartite graph

G = (V1, V2, E) with |V1| = |V2| = n/2, where the vertices in V1 are ordered

before the vertices in V2 and with p = 2. For this setting Algorithm 1 will

use n
2 + 1 colors while sequential FF will color the graph optimally using 2

colors.

8

3.2 The Second Algorithm

In this section we show how Algorithm 1 can be modified to use fewer colors.

Our method is motivated by the idea behind Culberson’s Iterated Greedy

coloring heuristic (IG) [5]. IG is based on the following result, stated here

without proof.

Lemma 3.3 (Culberson) Let C be a k-coloring of a graph G, and π

a permutation of the vertices such that if C(vπ(i)) = C(vπ(l)) = c, then

C(vπ(j)) = c for i < j < l. Then, applying the First Fit algorithm to G

where the vertices have been ordered by π will produce a coloring using k or

fewer colors.

From Lemma 3.3, we see that if FF is re-applied on a graph where the

vertex set is ordered such that vertices belonging to the same color class3 in

the previous coloring are listed consecutively, the new coloring is better or

at least as good as the previous coloring. There are many ways in which the

vertices of a graph can be arranged satisfying the condition of Lemma 3.3.

One such ordering is the reverse color class ordering [5]. In this ordering,

the color classes are listed in reverse order of their introduction. This has

a potential for reducing the number of colors used since one now proceeds

by first coloring vertices that could not be colored with low values in the

previous coloring.

Our improved coloring heuristic uses Lemma 3.3 and consists of 4 phases,

one more phase than Algorithm 1. The first phase is the same as Phase 1

of Algorithm 1. Let the coloring number used by this phase be ColNum.

During the second phase, the pseudo coloring of the first phase is used to get

a reverse color class ordering of the vertices. The second phase consists of

ColNum steps. In each step k, the vertices of color class ColNum−k−1 are

colored afresh in parallel in a similar manner as in Phase 1. The remaining

two phases are the same as Phases 2 and 3 of Algorithm 1. The method just

described (Algorithm 2) is outlined in Figure 3.

Each color class at the end of Phase 1 is a pseudo independent set. In

particular any edge within a color class results from a “conflict” edge from

Phase 1. Hence a new block partitioning of the vertices of each color class

results in only a few crossing edges. In other words, the number of conflicts

expected at the end of Phase 2 (K2) should be much smaller than the number

of conflicts at the end of Phase 1 (K1). Thus, in addition to improving the

quality of the coloring, Phase 2 should also provide a significant reduction

in the number of conflicts. Note that conflict checking and removal steps

3Vertices of the same color constitute a color class.

9

Algorithm 2

ImprovedBlockPartitionBasedColoring(G, p)
begin
1. As Phase 1 of Algorithm 1
{At this point we have the pseudo independent
sets ColorClass(1) . . . ColorClass(ColNum) }

2. for k = ColNum down to 1 do
Partition ColorClass(k) into p equal blocks V ′

1 . . . V ′

p

for i = 1 to p do in parallel
for each vj ∈ V ′

i do
assign the smallest legal color to vertex vj

end-for
end-for

end-for
3. As Phase 2 of Algorithm 1
4. As Phase 3 of Algorithm 1

end

Figure 3: Modified block partition based coloring

are included in Phases 3 and 4 to ensure that any remaining conflicts are

resolved.

The following result gives a bound on the expected number of conflicts

at the end of Phase 2 of Algorithm 2.

Lemma 3.4 The expected number of conflicts created at the end of Phase

2 of Algorithm 2 is at most 2p2∆(∆+1)
n ≈ 2p2∆2

n .

Proof : From Lemma 3.1, the expected number of conflicts at the end of

Phase 1 is approximately bounded by δp/2. Noting that there are m edges

in the input graph G to Algorithm 2, at the end of Phase 1, the probability

that an arbitrary edge in G is in “conflict” is expected to be no more than
δp
2m = p/n. Now consider a color class w from the coloring obtained at the

end of Phase 1 of Algorithm 2. Let G′ = (V ′, E′) be the graph induced by

the vertices of this color class and let n′ = |V ′|,m′ = |E′|. Further, let x be

a vertex in G′ and deg′(x) its degree. From the above discussion, we expect

that deg′(x) ≤ p
ndeg(x). Using the same argument as in Lemma 3.1, the

expected number of neighbors of x that are concurrently colored at time unit

tj, for 1 ≤ j ≤ n′/p, is p−1
n′
−1deg′(x). Thus the number of conflicts created

10

due to the vertices of color class w (denoted by K ′) is bounded as follows.

E[K ′] ≤
∑

x∈V ′

p(p− 1)

n(n′ − 1)
deg(x) (6)

=
p

n
(p− 1)

∑

x∈V ′ deg(x)

n′ − 1
(7)

≤
2p2∆

n
(8)

Recall that there are at most ∆+1 colors at the end of Phase 1. Therefore,

K2, the total number of expected conflicts at the end of Phase 2 , is

E[K2] ≤
2p2∆(∆ + 1)

n
(9)

2

Noting that ∆(∆ + 1) ≈ ∆2, (9) can be rewritten as E[K2] ≤ (
√

2p
√

n/∆
)
2
.

This indicates that if
√

2p <
√

n/∆, the expected number of conflicts at the

end of Phase 2 is less than 1.

4 Implementation Issues

In this section we address the problem of synchronization overhead and

illustrate how OpenMP is used in our Fortran90 implementations.

4.1 Synchronization Overhead

The barrier synchronization in Phase 1 of Algorithm 1 is introduced to

identify the parallel step tj (1 ≤ j ≤ n/p) during which a vertex is col-

ored. This information is used for two purposes: (i) in Phase 1 to identify

already colored neighbors of a vertex, and (ii) in Phase 2 to identify the

neighbors of a vertex that are colored at the same parallel step as itself.

Although the barrier enables us to realize these purposes, its implementa-

tion typically incurs an undesirable large overhead. To overcome this we

have developed an asynchronous version of Algorithm 1 (and consequently

of Algorithm 2). In the asynchronous version we consider all the neighbors

of a vertex under investigation, irrespective of the parallel step during which

they are colored. This is done first when determining the color of a vertex

and then when checking for consistency of coloring. We have implemented

and tested both the asynchronous and synchronous versions of Algorithm

1. In the synchronous version, an OpenMP library routine was utilized to

realize barrier synchronization. The obtained results show that the asyn-

chronous version runs faster by a factor of 3 to 5. The relative slow-down

11

!$omp parallel do schedule(static, Bsize) !$omp parallel do schedule(static, Bsize)
private(i) shared(vertex) private(i) shared(vertex)
do i = 1, number of vertices do i = 1, number of vertices
call assign color synch(vertex(i)) call assign color asynch(vertex(i))
call mp barrier enddo

enddo

Figure 4: OpenMP-sketch of Phase 1 of Algorithm 1, synchronous (left) and
asynchronous (right)

factor of the synchronous version depends on how often the OpenMP barrier

routine is called. Particularly for a given graph, the relative time spent on

synchronization increases with the number of processors.

4.2 OpenMP

Figure 4 provides a sketch of Phase 1 of both the synchronous and asyn-

chronous versions of Algorithm 1. Here the vertices are stored in the integer

array vertex and the number of vertices per processor is stored in the variable

Bsize. The routines assign color synch(i) and assign color asynch(i), syn-

chronous and asynchronous versions respectively, assign the smallest valid

color to vertex i. It should be noted that even though the synchronous

algorithm visits fewer vertices both when determining the color of a ver-

tex and when checking for consistency, it incurs an extra initial overhead

since one must determine for each of value of p which vertices to check.

The routine mp barrier is an OpenMP library routine that enables barrier

synchronization.

In addition to the standard OpenMP directives we have used data dis-

tribution directives provided by SGI to ensure that most cache misses are

satisfied from local memory.

We disallow access to a memory location while it is being written by

using the ATOMIC directive in OpenMP. This makes accessing the color of

any vertex without reading garbage values possible in Phase 1.

5 Experimental Results

In this section, we experimentally demonstrate the performance of the asyn-

chronous versions of Algorithms 1 and 2. In Section 5.1 we introduce the test

graphs used in the experiments and in Section 5.2 we present and discuss

the experimental results. The experiments have been performed on a Cray

Origin 2000, a CC-NUMA machine consisting of 128 MIPS R10000 proces-

sors. The algorithms have been implemented in Fortran90 and parallelized

12

Set Problem n m ∆ δ δ
√

r
2

χFF χIDO

Set I mrng2 1,017,253 2,015,714 4 2 4 506 5 5
Set I mrng3 4,039,160 8,016,848 4 2 4 1008 5 5
Set II 598a 110,971 741,934 26 5 13 91 11 9
Set II m14b 214,765 1,679,018 40 4 16 117 13 10
Set III dense1 19,703 3,048,477 504 116 309 8 122 122
Set III dense2 218,849 121,118,458 1,640 332 1,107 14 377 376

Table 1: Test Graphs.

using OpenMP[17]. We have also implemented the sequential versions of FF

and IDO to use as benchmarks.

In these experiments, the block partitioning is based on the ordering of

the vertices as provided in the input graph. In other words, no random

permutation is done on the ordering of the vertices prior to partitioning.

5.1 Test Graphs

The test graphs used in our experiments are divided into three categories

as Problem Set I, II, and III (see Table 1). Problem Sets I and II consist

of graphs (matrices) that arise from finite element methods [13]. Problem

Set III consists of matrices that arise in eigenvalue computations [16]. In

addition to providing some statistics about the structure of the test graphs,

Table 1 also lists the number of colors required when coloring the graphs

using our sequential FF and IDO implementations (shown under columns

χFF and χIDO, respectively).

5.2 Discussion

Algorithm 1. Table 2 lists results obtained using the asynchronous ver-

sion of Algorithm 1. The number of blocks (processors) is given in column

p. Columns χ1 and χ3 give the number of colors used at the end of Phases

1 and 3, respectively. The number of conflicts that arise in Phase 1 are

listed under the column labeled K. The column labeled δ(p−1)
2 gives the

theoretically expected upper bound on the number of conflicts as predicted

by Lemma 3.1. The time in milliseconds required by the different phases are

listed under T1, T2, T3, and the last column Ttot gives the total time used.

The column labeled Spar lists the speedup obtained compared to the time

used by running Algorithm 1 on one processor (Spar(p) = Ttot(1)
Ttot(p)). The last

column, SseqFF , gives the speedup obtained by comparing against a straight

forward sequential FF algorithm (SseqFF (p) = T1(1)
Ttot(p)).

The results in column K of Table 2 show that, in general, the number

of conflicts that arise in Phase 1 is small and grows as a function of the

13

Problem p χ1 χ3 K d

δ(p−1)

2
e T1 T2 T3 Ttot Spar SseqFF

mrng2 1 5 5 0 0 1190 1010 0 2200 1 0.6
mrng2 2 5 5 0 2 1130 970 0 2100 1.1 0.6
mrng2 4 5 5 0 5 430 280 0 710 3.1 1.7
mrng2 8 5 5 8 11 260 200 0 460 4.8 2.6
mrng2 12 5 5 18 17 200 130 0 330 6.7 3.6

mrng3 1 5 5 0 0 4400 3400 0 7800 1 0.6
mrng3 2 5 5 2 2 2250 1600 0 3850 2 1.1
mrng3 4 5 5 4 5 1300 1000 0 2300 3.4 1.9
mrng3 8 5 5 0 11 630 800 0 1430 5.5 3.1
mrng3 12 5 5 12 17 430 480 0 910 8.6 4.8

598a 1 11 11 0 0 100 80 0 180 1 0.6
598a 2 12 12 4 7 55 40 0 95 2 1.1
598a 4 12 12 12 20 40 20 0 60 3 1.7
598a 8 12 12 36 46 28 15 0 43 4.2 2.3
598a 12 12 12 42 72 20 15 0 35 5.2 2.9

m14b 1 13 13 0 0 200 180 0 380 1 0.5
m14b 2 13 13 2 8 130 120 0 250 1.5 0.8
m14b 4 14 14 14 23 80 50 0 130 3 1.5
m14b 8 13 13 16 53 48 26 0 74 5 2.7
m14b 12 13 13 36 83 40 20 0 60 6.4 3.3

dense1 1 122 122 0 0 200 290 0 490 1 0.4
dense1 2 142 142 30 155 110 140 0 250 2 0.8
dense1 4 137 137 94 464 69 72 0 141 3.5 1.4
dense1 8 129 129 94 1082 53 44 1 97 5.6 2.1
dense1 12 121 124 78 1700 55 90 1 145 3.4 1.4

dense2 1 377 377 0 0 9200 13200 0 22400 1 0.4
dense2 2 382 382 68 553 5160 8040 3 13203 1.7 0.7
dense2 4 400 400 98 1659 2600 4080 4 6684 3.4 1.4
dense2 8 407 407 254 3871 1590 2280 11 3881 5.8 2.4
dense2 12 399 399 210 6083 1090 1420 8 2518 9 3.7

Table 2: Experimental results for Algorithm 1.

number of blocks (or processors) p. This agrees well with the result from

Lemma 3.1. We see that for the relatively dense graphs the actual number

of conflicts is much less than the bound given by Lemma 3.1.

The run times obtained show that Algorithm 1 performs as predicted

by Lemma 3.2. Particularly, the time required for re-coloring incorrectly

colored vertices is observed to be practically zero (in the order of a few

microseconds) for all our test graphs. This is not surprising as the obtained

value of K is negligible compared to the number of vertices in a given graph.

As results in columns T1 and T2 indicate, the time used to detect conflicts

is approximately the same as the time used to do the initial coloring. This

makes the running time of the algorithm using one processor approximately

double that of the sequential FF. This in turn reduces the speedup obtained

compared to the sequential FF by a factor of 2. The speedup obtained

compared to running the parallel algorithm on one processor gets its best

14

Problem p χ1 χ2 χ4 K1 K2 T1 T2 T3 T4 Ttot Spar S2seqFF

mrng2 1 5 5 5 0 0 1050 1700 820 0 3570 1 0.8
mrng2 2 5 5 5 0 0 950 1350 650 0 2650 1.4 1.0
mrng2 4 5 5 5 2 0 470 840 310 0 1620 2.2 1.7
mrng2 8 5 5 5 16 0 300 500 200 0 1000 3.6 2.8
mrng2 12 5 5 5 12 0 250 400 170 0 820 4.4 3.4

mrng3 1 5 5 5 0 0 3700 9500 2600 0 15800 1 0.8
mrng3 2 5 5 5 0 0 1890 4100 1200 0 7190 2.2 1.8
mrng3 4 5 5 5 0 0 1100 2700 750 0 4550 3.5 2.9
mrng3 8 5 5 5 4 0 540 1800 450 0 2790 5.6 4.7
mrng3 12 5 5 5 24 0 450 1900 300 0 2650 6 5.0

598a 1 11 10 10 0 0 100 200 75 0 375 1 0.8
598a 2 12 10 10 14 0 65 105 37 0 207 1.8 1.5
598a 4 11 10 10 22 0 35 90 20 0 145 2.6 2.1
598a 8 12 11 11 40 0 30 99 25 0 154 2.4 2.0
598a 12 12 11 11 50 0 30 110 15 0 155 2.4 2.0

m14b 1 13 11 11 0 0 200 520 190 0 910 1 0.8
m14b 2 13 12 12 2 0 105 240 80 0 425 2.1 1.7
m14b 4 14 12 12 6 0 70 160 40 0 270 3.4 2.7
m14b 8 13 12 12 12 0 45 120 25 0 190 4.8 3.8
m14b 12 13 11 11 22 0 53 150 20 0 223 4 3.2

dense1 1 122 122 122 0 0 180 250 180 0 610 1 0.7
dense1 2 135 122 122 26 0 100 180 140 0 420 1.5 1.0
dense1 4 132 122 122 40 0 80 100 70 0 250 2.5 1.7
dense1 8 126 122 122 104 0 70 80 30 0 180 3.4 2.4
dense1 12 123 121 122 150 2 40 760 30 0 830 0.7 0.5

dense2 1 377 376 376 0 0 9920 13700 7500 0 31120 1 0.8
dense2 2 376 376 376 66 0 5200 6220 4200 0 15620 2 1.5
dense2 4 394 376 376 112 0 2700 3600 2100 0 8400 3.7 2.8
dense2 8 398 376 376 164 0 2000 2000 1800 0 5800 5.4 4.0
dense2 12 399 376 376 232 2 1100 1700 900 0 3700 8.4 6.4

Table 3: Experimental results for Algorithm 2.

values for the two largest graphs mrng3 and dense2.

We see that the number of colors used by Algorithm 1 varies with the

number of processors used. Comparing column χ3 of Table 2 and column

χFF of Table 1, we see that the deviation of χ3 from χFF is at most 1 for

graphs from Problem Set I and II and at most 16% for the two graphs from

Problem Set III.

Algorithm 2. Table 3 lists results of the asynchronous version of Algo-

rithm 2. The number of colors used at the end of Phases 1 and 2 are listed

in columns χ1 and χ2, respectively. The coloring at the end of Phase 2 is

not guaranteed to be conflict-free. Phases 3 and 4 detect and resolve any

remaining conflicts. Column χ4 lists the number of colors used at the end

of Phase 4. The number of conflicts at the end of Phases 1 and 2 are listed

under K1 and K2, respectively. The time elapsed (in milliseconds) in the

15

various stages are given in columns T1, T2, T3, T4, and Ttot. In order not to

obscure speedup results, the time required to build the color classes prior

to Phase 2 is not included in T2. In general the time used for this purpose

is in the order of 20% of T1. Speedup values in column Spar are calcu-

lated as in the corresponding column of Table 2. The column S2seqFF gives

speedups as compared to Culberson’s IG restricted only to two iterations

(S2seqFF = T1(1)+T2(1)
Ttot(p)).

Results in column χ2 confirm that Phase 2 of Algorithm 2 reduces the

number of colors used by Phase 1. This is especially true for test graphs from

Problem Sets II and III, which contain relatively denser graphs than Problem

Set I. Comparing the results in column χ2 with the results in columns χFF

and χIDO of Table 1, we see that in general the quality of the coloring

obtained using Algorithm 2 is never worse than that of sequential FF and in

most cases comparable with that of the IDO algorithm. IDO is known to be

one of the most effective coloring heuristics [4]. We also observe that, unlike

Algorithm 1, the number of colors used by Algorithm 2 remains reasonably

stable as the number of processors is increased.

From column K2 we see that the number of conflicts that remain after

Phase 2 of Algorithm 2 is zero for almost all test graphs and values of p.

The only occasion where we obtained a value other than zero for K2 was

using p = 12 for the graphs dense1 and dense2. These results agree well

with the claim in Lemma 3.4.

Figure 5 shows the speedup obtained for the problem dense2 using Algo-

rithm 1 and 2 and how the obtained results compare with the ideal speedups.

6 Conclusion

We have presented two new parallel graph coloring heuristics suitable for

shared memory programming and analyzed their performance using the

PRAM model.

The heuristics have been implemented using OpenMP and experiments

conducted on an SGI Cray Origin 2000 super computer using very large

graphs validate the theoretical analysis.

The first heuristic is fast, simple and yields reasonably good speedup for

graphs of practical interest run on a realistic number of processors. Gener-

ally, the number of colors used by this heuristic never exceeds ∆ + 1. For

relatively dense graphs, the number of colors used by the heuristic increases

slightly as more processors are applied.

The second heuristic is relatively slower, yields reasonable speedup and

improves on the quality of coloring obtained from the first one in that it uses

16

0 2 4 6 8 10 12
0

2

4

6

8

10

12

number of processors (p)

sp
ee

du
p

(s
)

s=p
s=p/2
s=2p/3
s

par
(Alg1)

s
seqFF

(Alg1)
s

par
(Alg2)

s
2seqFF

(Alg2)

Figure 5: Comparison of speedup curves for dense2.

fewer colors. The number of colors used is also more stable as the number

of processors is increased. For the test graphs used in this experiment, the

number of colors used by this heuristic is in most cases comparable with

that of sequential IDO.

One of the main arguments against using OpenMP has been that it does

not give as good speedup as a more dedicated message passing implemen-

tation using MPI. The results in this paper show an example where the

opposite is true, the OpenMP algorithms have better speedup than existing

message passing based algorithms. Moreover, implementing the presented

algorithms in a message passing environment would have required a consid-

erable effort and it is not clear if this would have led to efficient algorithms.

Implementing these algorithms using OpenMP is a relatively straight for-

ward task as all the communication is hidden from the programmer.

We point out that in a recent development the algorithms presented in

this paper have been adapted to the CGM model [9].

We believe that the general idea in these coloring heuristics of allowing

17

inconsistency for the sake of concurrency can be applied to develop parallel

algorithms for other graph problems and we are currently investigating this

in problems related to sparse matrix computations.

Acknowledgements We thank the referees for their helpful comments

and George Karypis for making the test matrices in Problem Sets I and II

available.

References

[1] J.R. Allwright, R. Bordawekar, P.D. Coddington, K. Dincer, and C. L.

Martin. A comparison of parallel graph coloring algorithms. Technical

Report SCCS-666, Northeast Parallel Architecture Center, Syracuse

University, 1995.

[2] D. Brelaz. New methods to color the vertices of a graph. Communica-

tions of the ACM, 22(4), 1979.

[3] G.J. Chaitin, M. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins,

and P. Markstein. Register allocation via coloring. Computer Lan-

guages, 6:47–57, 1981.

[4] T.F. Coleman and J.J. Moré. Estimation of sparse Jacobian matrices

and graph coloring problems. SIAM Journal on Numerical Analysis,

20(1):187–209, 1983.

[5] J.C. Culberson. Iterated greedy graph coloring and the difficulty land-

scape. Technical Report TR 92-07, Department of Computing Science,

The University of Alberta, Edmonton, Alberta, Canada, June 1992.

[6] A. Gamst. Some lower bounds for a class of frequency assignment prob-

lems. IEEE Transactions of Vehicular Technology, 35(1):8–14, 1986.

[7] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H.

Freeman, New York, 1979.

[8] M.R. Garey, D.S. Johnson, and H.C. So. An application of graph col-

oring to printed circuit testing. IEEE Transactions on Circuits and

Systems, 23:591–599, 1976.

[9] A.H. Gebremedhin, I.G. Lassous, J. Gustedt, and J.A. Telle. Graph

coloring on a coarse grained multiprocessor. To be presented at WG

2000, 26th International Workshop on Graph-Theoretic Concepts in

Computer Science, June 15–17, 2000, Konstantz, Germany.

18

[10] G.R. Grimmet and C.J.H. McDiarmid. On coloring random graphs.

Mathematical Proceedings of the Cambridge Philosophical Society,

77:313–324, 1975.

[11] M.T. Jones and P.E. Plassmann. A parallel graph coloring heuristic.

SIAM Journal of Scientific Computing, 14(3):654–669, May 1993.

[12] R.K. Gjertsen Jr., M.T. Jones, and P. Plassman. Parallel heuristics for

improved, balanced graph colorings. Journal of Parallel and Distributed

Computing., 37:171–186, 1996.

[13] G. Karypis. Private Communication.

[14] G. Lewandowski. Practical Implementations and Applications Of Graph

Coloring. PhD thesis, University of Wisconsin-Madison, August 1994.

[15] M. Luby. A simple parallel algorithm for the maximal independent set

problem. SIAM Journal on Computing, 15(4):1036–1053, 1986.

[16] F. Manne. A parallel algorithm for computing the extremal eigenvalues

of very large sparse matrices (extended abstract). Lecture Notes in

Computer Science, Springer, 1541:332–336, 1998.

[17] OpenMP. A proposed industry standard API for shared memory pro-

gramming. http://www.openmp.org/.

[18] D.J.A. Welsh and M.B. Powell. An upper bound for the chromatic num-

ber of a graph and its application to timetabling problems. Computer

Journal, 10:85–86, 1967.

19

Graph Coloring in Optimization Revisited

Assefaw Hadish Gebremedhin ∗ Fredrik Manne Alex Pothen†

Abstract

We revisit the role of graph coloring in modeling a variety of ma-

trix partitioning problems that arise in numerical determination of

large sparse Jacobian and Hessian matrices. The problems considered

in this paper correspond to the various scenarios under which a matrix

computation, or estimation, may be carried out, i.e., the particular

problem depends on whether the matrix to be computed is symmet-

ric or nonsymmetric, whether a one-dimensional or a two-dimensional

partition is to be used, whether a direct or a substitution based eval-

uation scheme is to be employed, and whether all nonzero entries of

the matrix or only a subset need to be computed. The resulting com-

plex partitioning problems are studied within a unified graph theoretic

framework where each problem is formulated as a variant of a coloring

problem. Our study integrates existing coloring formulations with new

ones. As far as we know, the estimation of a subset of the nonzero en-

tries of a matrix is investigated for the first time. The insight gained

from the unified graph theoretic treatment is used to develop and an-

alyze several new heuristic algorithms.

Key words: Sparsity, symmetry, Jacobians, Hessians, finite differ-

ences, automatic differentiation, matrix partitioning problems, graph

coloring problems, NP-completeness, approximation algorithms

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway. {assefaw,

fredrikm}@ii.uib.no
†Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162

USA. pothen@cs.odu.edu and ICASE, NASA Langley Research Center, Hampton, VA

23681-2199 USA. pothen@icase.edu

1

1 Introduction

Algorithms for solving nonlinear systems of equations and numerical opti-

mization problems that rely on derivative information require the repeated

estimation of Jacobian and Hessian matrices. Since this usually constitutes

an expensive part of the entire computation, efficient methods for estimat-

ing these matrices via finite difference (FD) or automatic differentiation

(AD) techniques are needed. It should be noted that FD techniques find

an approximation whereas AD techniques enable exact (within the limits of

machine precision) computation. For brevity, we use the term ‘estimation’

in referring to both cases. In applying AD and FD techniques, if the spar-

sity structure of the desired matrix is known a priori, or can be determined

easily, the nonzero entries can be estimated efficiently. The objective in such

an efficient estimation is to minimize the number of function evaluations or

AD passes required.

This objective calls for a variety of matrix partitioning problems. The

particular problem depends on whether the required matrix is symmetric or

nonsymmetric, whether a one-dimensional partition (involving only columns

or rows) or a two-dimensional partition (involving both columns and rows)

is used, whether the entries are evaluated using a direct method or via

substitution, and finally, whether all the nonzero entries of the matrix or

only a subset of them need to be determined.

Several studies have demonstrated the usefulness of graph coloring in

modeling the matrix partitioning problems of our concern [4, 7, 8, 9, 17, 18,

23]. However, these studies have been rather disintegrated: a typical study

in this field focuses on one type of matrix, a specific numerical method, and a

particular evaluation scheme. This has at least two consequences. First, the

inherent similarity among the various partitioning problems gets obscured.

Second, it makes the identification of a generic formulation difficult thereby

hindering the development of algorithms and software in a flexible manner.

The main purpose of this paper is to study the various matrix parti-

tioning problems within a unified graph theoretic framework. We consider

eight different partitioning problems. For each matrix partitioning problem,

we develop an equivalent graph coloring formulation. To our knowledge,

the problems in partial matrix estimation, where a specified subset of the

nonzero entries is to be determined, are studied for the first time. In full

matrix estimation, the case in which all the nonzero entries are to be deter-

mined, we use known coloring formulations for all problems except for the

estimation of a nonsymmetric matrix using a one-dimensional partition via

a direct method. For this problem, we propose distance-2 graph coloring as

2

Matrix 1D Partition 2D Partition Method

Jacobian distance-2 coloring distance- 3
2 bicoloring Direct

Hessian distance- 3
2 coloring NA Direct

Jacobian NA acyclic bicoloring Substitution
Hessian acyclic coloring NA Substitution

Table 1: Graph coloring formulations for estimating all nonzero entries of
derivative matrices. The Jacobian and the Hessian are represented by their
bipartite and adjacency graphs, respectively. NA stands for not applicable.

an alternative formulation to the known distance-1 coloring formulation [7].

The motivation for the distinction between full and partial matrix estima-

tion is the fact that the computation in the latter case can be carried out

even more efficiently.

Table 1 summarizes the coloring formulations used in this paper. The

formulations for one-dimensional estimation of the Hessian are due to Cole-

man and Moré [8] and Coleman and Cai [4] and those for two-dimensional

estimation of the Jacobian are due to Coleman and Verma [9].

In our work, for all the matrix partitioning problems, we rely on a bipar-

tite graph representation for a nonsymmetric matrix and an adjacency graph

representation for a symmetric matrix. We show that these representations

are robust and flexible—they are decoupled from the eventual technique to

be employed and the matrix entries to be computed. This is in contrast with

the column intersection graph representation [7] of a nonsymmetric matrix

which targets at determining all the nonzero entries of the matrix using a

one-dimensional column partition. Moreover, the space required for storing

the column intersection graph of matrix A is proportional to the number

of non-zeros in AT A, whereas the space required for storing the bipartite

graph of A is proportional to the number of non-zeros in A.

Using our graph representations, we identify the distance-2 graph col-

oring problem as a unifying generic model for the various one-dimensional

matrix partitioning problems, i.e., the coloring problem in a particular case

is some relaxed variant of the distance-2 coloring problem. In the case of

two-dimensional partitioning problems, we build upon the known relation-

ship to graph bicoloring and observe a connection to finding a vertex cover

in a graph.

All of the problems listed in Table 1 are known to be NP-hard [4, 8, 9, 21].

We use the insight gained from the interrelationship among these problems

to develop several simple heuristic algorithms for finding sub-optimal solu-

tions.

3

The rest of this paper is organized as follows. Section 2 is a detailed intro-

duction to the partitioning problems that arise in full matrix estimation. In

Section 3 we rigorously develop the equivalent graph problem formulations

and discuss their interrelationship. Section 4 deals with the graph theoretic

formulation of partitioning problems in partial matrix estimation. In Sec-

tion 5 we compare formulations based on bipartite graph with formulations

based on column intersection graph. In Section 6 we present and analyze

various greedy heuristic algorithms. We conclude the paper in Section 7

with some remarks and point out avenues for further work.

2 Background

2.1 Finite Differences and Partitioning Problems

Given a continuously differentiable function F : Rn → Rm, the Jacobian of

F at the point x is the m× n matrix whose (i, j) entry J(x)ij = F ′(x)ij =
∂fi

∂xj
(x), where f1(x), f2(x), . . . , fm(x) are the components of F (x). Let A

denote the Jacobian matrix F ′(x). An estimate for the jth column of A,

denoted henceforth by aj , can be obtained from the forward difference ap-

proximation,

Aej = aj =
∂

∂xj
F (x) ≈

1

h
[F (x + hej)− F (x)], 1 ≤ j ≤ n, (1)

where ej is the jth unit vector and h is a positive step length. Other finite

difference approximations of higher order, such as central differences, could

also be used to estimate A. In any case, if F (x) is already evaluated, an

approximation to aj is obtained with one additional function evaluation.

Thus, if each column of A is computed independently, n additional function

evaluations will be required. However, by exploiting the sparsity structure of

A, the required number of function evaluations can be reduced significantly.

The sparsity structure of A is often easily available and the goal here is

to exploit this to estimate the nonzero entries of A using as few function

evaluations as possible under the assumption that evaluating F (x) is more

efficient than evaluating the components fi(x), 1 ≤ i ≤ m, separately.

Given a twice continuously differentiable function f : Rn → R, the

Hessian of f at the point x is the n × n symmetric matrix whose (i, j)

entry H(x)ij = ∇2f(x)ij = ∂2f(x)
∂xi∂xj

. When ∇f is available, ∇2f can be

approximated by applying Formula (1) to the function F = ∇f . Again,

we assume that evaluating the gradient ∇f(x) as a single entity is more

desirable than evaluating the components ∂1f(x), . . . , ∂nf(x) separately.

4

Let di be the binary vector obtained by adding some unit vectors ej,

j ∈ {1, 2, . . . , n}, together. The problem of estimating a sparse derivative

matrix, Jacobian or Hessian, using FD can then be stated as follows. Given

the sparsity structure of a matrix A find vectors d1, d2, . . . , dp such that

the products Ad1, Ad2, . . . , Adp enable the determination of all the nonzero

entries of A.

Specifying the vectors Ad1, Ad2, . . . , Adp gives rise to a system of linear

equations where the unknowns are the nonzero elements of A. If the choice

of the vectors di is such that the resulting system of equations can be ordered

to a diagonal form, then we say that A is directly determined by the vectors

di. If, on the other hand, the vectors di are chosen such that the system of

equations can be ordered to a triangular form, then the unknowns can be

determined via substitution.

In both a direct and a substitution based determination, minimizing the

number of function evaluations corresponds to minimizing the number of

vectors p. There is a trade-off in the choice of methods. A direct method is

more restrictive and hence requires more function evaluations compared to

a substitution method. On the other hand, a substitution method is subject

to numerical instability, whereas a direct method is not. Moreover, in terms

of parallel computation, direct methods offer straightforward parallelization

since the estimates can be read off directly from each row of a matrix-vector

product, whereas substitution methods have less parallelism since there are

more dependencies among the computations required to obtain the matrix

entries. In the next two paragraphs (Sections 2.1.1 and 2.1.2), we consider

minimizing p in a direct and substitution based evaluation, respectively.

2.1.1 Direct estimation

In a direct determination of a matrix A, note that for each nonzero element

aij, there is a vector d in the set {d1, d2, . . . , dp} such that aij = (Ad)i, where

(Ad)i is the ith component of the vector Ad. Thus, each nonzero matrix

element aij can be read off from some component of the vector Ad.

The problems that arise in the direct, efficient estimation of sparse Ja-

cobian and Hessian matrices can thus be stated as follows.

Problem 2.1 Given the sparsity structure of a general matrix A ∈ Rm×n,

find the fewest vectors d1, d2, . . . , dp such that Ad1, Ad2, . . . , Adp determine

A directly.

Problem 2.2 Given the sparsity structure of a symmetric matrix A ∈ Rn×n,

find the fewest vectors d1, d2, . . . , dp such that Ad1, Ad2, . . . , Adp determine

A directly.

5

Curtis et al. [12] were the first to observe that, while using a direct

method, a group of columns can be determined by one evaluation of Ad if

no two columns in this group have a nonzero in the same row position. Such

columns are structurally orthogonal, since their pairwise inner products are

zero. Powell and Toint [26] later showed that, in the case of Hessian estima-

tion, the number of function evaluations can be reduced further by consid-

ering symmetry. The following two notions define the underlying partitions

used in these methods [8].

Definition 2.3 A partition of the columns of a matrix A is said to be

consistent with a direct determination of A if whenever aij is a nonzero

element of A then the group containing aj has no other column with a

nonzero in row i.

Definition 2.4 A partition of the columns of a symmetric matrix A is sym-

metrically consistent with a direct determination of A if whenever aij is a

nonzero element of A then either the group containing aj has no other col-

umn with a nonzero in row i, or the group containing ai has no other column

with a nonzero in row j.

Let {C1, C2, . . . , Cp} be a consistent partition. With each group Ck,

associate a binary vector dk having components δj = 1 if aj belongs to Ck,

and δj = 0 otherwise. Then,

Adk =
∑

aj∈Ck

aj .

If aij 6= 0 and column aj ∈ Ck, then aij = (Adk)i. Thus, all the nonzero

entries of A can be determined with p evaluations of Adk.

When A is symmetric, a symmetrically consistent partition is sufficient

to determine A directly: if aj is the only column in its group with a nonzero

in row i then aij can be determined as discussed above; alternatively, if ai

is the only column in its group with a nonzero in row j then aji can be

determined.

If a consistent partition (rather than a symmetrically consistent one) is

used to compute a symmetric matrix A, the estimate for aij may actually

be different from that of aji due to truncation error. Thus, using a sym-

metrically consistent partition to compute half of the nonzero elements of

a matrix and determining the other half by symmetry is preferable both

in terms of reducing computational work and ensuring that the computed

matrix is indeed symmetric.

6

Using Definitions 2.3 and 2.4, Problems 2.1 and 2.2 can be restated as

follows. In the remainder of this paper, we shall use the acronym MPP to

refer to a matrix partitioning problem.

Problem 2.5 (MPP1) Given the sparsity structure of a matrix A ∈ Rm×n,

find a consistent partition of the columns of A with the fewest number of

groups.

Problem 2.6 (MPP2) Given the sparsity structure of a symmetric matrix

A ∈ Rn×n, find a symmetrically consistent partition of the columns of A with

the fewest number of groups.

2.1.2 Estimation via substitution

In estimating a matrix A via a substitution method, the vectors d1, . . . , dp

are chosen such that the system of equations defined by the products

Ad1, . . . , Adp allows the determination of the unknowns via a substitution

process. A partition suitable for a substitution method needs to fulfill more

relaxed requirements compared to a direct method and hence results in

smaller number of groups. In the FD context, this fact has been especially

used when estimating a symmetric matrix since substitution can be effec-

tively combined with the exploitation of symmetry [4]. For a nonsymmetric

matrix, the advantage offered by a substitution method over a direct method

is not so pronounced. An example of a substitution method for a nonsym-

metric matrix can be found in [18].

In this paper, we concentrate on using a substitution method for a sym-

metric matrix. To illustrate the fact that a partition used in a substitution

method requires fewer groups than that used in a direct method, consider

the 4× 4 symmetric matrix H shown in Figure 1.

X X

X X X

X X X

X X

Figure 1: The structure of a 4× 4 symmetric matrix

For matrix H, any partition consistent with a direct determination re-

quires at least three groups. One such partition is {(h1, h4), (h2), (h3)},

where hj is the jth column of H. However, if we do not insist on de-

termining the elements directly, two groups would suffice. For example

{(h1, h3), (h2, h4)}. The two matrix-vector products corresponding to the

7

two groups yield a system of eight equations involving the nonzero entries of

H. Note that, due to symmetry, nonzero element hij can be identified with

hji, and hence, there are effectively seven unknowns in the system. This

system can be ordered to a triangular form and be solved via substitution.

In general, a partition of the columns of a symmetric matrix induces a

substitution method if there is an ordering of the matrix unknowns such

that all unknowns can be solved for, in that order, using symmetry and

previously solved elements.

We now formally define such a partition and then state the corresponding

partitioning problem.

Definition 2.7 A partition of the columns of a symmetric matrix A is said

to be substitutable if there exists an ordering on the elements of A such that

for every nonzero aij , either aj is in a group where all the nonzeros in row

i, from other columns in the same group, are ordered before aij or ai is in

a group where all the nonzeros in row j, from other columns in the same

group, are ordered before aij.

Problem 2.8 (MPP3) Given the sparsity structure of a symmetric matrix

A ∈ Rn×n, find a substitutable partition of the columns of A with the fewest

number of groups.

2.2 Automatic Differentiation and Partitioning Problems

Automatic differentiation (AD) is a chain rule based technique for evaluating

the derivatives of functions defined by computer programs. The two basic

modes of operation of AD, known as forward and reverse mode, correspond

to a bottom-up and a top-down strategy of accumulating partial derivatives

of elementary functions that define the computational scheme of the function

to be differentiated. A treatment of the technical details of AD is beyond

the scope of this paper, but the interested reader is referred to, for instance,

the books [14] and [10].

What is of interest for us is that, as in the FD setting, the efficient

computation of matrices using AD gives rise to partitioning problems in

which structural orthogonality continues to be the partition-criterion. In

particular, one can use the forward mode to compute a group of columns

of a matrix A from the product Ad1, where the vector d1 has nonzeros in

positions corresponding to columns of A that are structurally orthogonal.

Furthermore, in the reverse mode, a group of structurally orthogonal rows

of A can be computed from the vector-matrix product d2
T A, where d2 is

8

an appropriately defined vector. This means that one can potentially take

advantage of the sparsity available in columns and in rows.

One way of exploiting sparsity in columns and rows is to separately par-

tition the columns and rows of the matrix and use the partition which gives

the minimum number of groups. For a symmetric matrix, a row partition

is equivalent to a column partition, but for a nonsymmetric matrix, the two

partitions may differ considerably. For example, consider an n × n matrix

where all the entries on the diagonal and the first row are nonzero, and the

rest of the matrix entries are all zero. For such a matrix structure, a column

partition requires n groups whereas a row partition requires just two groups.

However, an approach based on a separate row and column partition is

not always satisfactory. For example, consider an n × n matrix where all

of the elements in the first row, first column, and the diagonal are nonzero

and the rest of the entries are all zero. For such a structure, a row partition

requires n groups and so does a column partition. However, using a combined

row and column partition, three groups are enough to determine all the

nonzero entries of the matrix. First, separately evaluate the entries in the

first column and the first row (two groups). Then, since the remaining

(n− 1)× (n− 1) matrix is diagonal, determine all entries by one evaluation.

Thus, three groups (two column and one row) suffice to determine all the

nonzero entries.

In Sections 2.2.1 and 2.2.2 we consider such a computation of a nonsym-

metric matrix using the combined modes of AD via direct and substitution

methods. We call a partition that involves both rows and columns a two-

dimensional partition as opposed to a one-dimensional partition in which

either only rows or only columns are involved. Note that a two-dimensional

partition does not make sense for computing a symmetric matrix. In par-

ticular, a symmetry-exploiting one-dimensional partition is sufficient.

2.2.1 Direct computation

Consider the vectors d1, d2, . . . , dp in Problem 2.1 as the p columns of the

n× p matrix D. An alternative way of posing the problem would then be:

given the structure of a matrix A ∈ Rm×n, find a matrix D ∈ Rn×p with

the least value of p such that the product AD determines A directly. By the

same token, the problem that arises in the two-dimensional efficient direct

computation of a Jacobian can be posed as follows.

Problem 2.9 Given the sparsity structure of the matrix A ∈ Rm×n, find

matrices D1 ∈ Rn×p1 and D2 ∈ Rm×p2 such that AD1 and DT
2 A together

determine A directly and the value p = p1 + p2 is minimized.

9

Hossain and Steihaug [17] studied Problem 2.9 and reformulated it as a

partitioning problem by using the notion of consistent row-column partition

in which the entire set of rows and columns is partitioned into two respec-

tive set of groups. Coleman and Verma [9] also studied the same problem

and identified a similar two-dimensional partition problem. Their notion of

partition differs from that of Hossain and Steihaug in that it partitions only

a subset of the columns and the rows of the matrix that suffice for the direct

determination of the entries. The following concepts were used to formalize

the requirements.

Definition 2.10 A bipartition of a matrix A is a pair (ΠC ,ΠR) where ΠC is

a column partition of a subset of the columns of A and ΠR is a row partition

of a subset of the rows of A.

Definition 2.11 A bipartition (ΠC ,ΠR) of a matrix A is consistent with a

direct determination if for every nonzero entry aij of A, either column j is in

a group of ΠC which has no other column having a nonzero in row i, or row

i is in a group of ΠR which has no other row having a nonzero in column j.

The number of column and row groups in a consistent bipartition cor-

responds to the number of forward and reverse AD passes, respectively,

required to compute the nonzero entries directly. To see this, observe that

a nonzero aij can be determined either from a column group where column

j is the only column with a nonzero in row i, or from a row group where

row i is the only row with a nonzero in column j. Hence, assuming that the

computational costs involved in the forward and reverse modes of AD are

of the same order, in an efficient method, the value |ΠC |+ |ΠR| is required

to be as small as possible1.

Thus Problem 2.9 can be reformulated as follows.

Problem 2.12 (MPP4) Given the sparsity structure of a matrix A ∈

Rm×n, find a bipartition (ΠC ,ΠR) of A consistent with a direct determi-

nation such that |ΠC |+ |ΠR| is minimized.

2.2.2 Computation via Substitution

In using a substitution method in the AD context, the requirement on the

bipartition can be relaxed so as to obtain fewer number of groups compared

1In this paper, we are concerned only with computational cost; however, in general,

the forward mode requires less memory space than the reverse mode.

10

Matrix 1D Partition 2D Partition Method

Jacobian MPP1 MPP4 Direct
Hessian MPP2 NA Direct
Jacobian NA MPP5 Substitution
Hessian MPP3 NA Substitution

Table 2: Partitioning problems in estimating/computing all nonzero entries
of derivative matrices using FD and AD. The entry NA denotes that the
case is not applicable.

with that in a direct method. We state the following definition used by

Coleman and Verma [9] to subsequently give the fifth matrix partitioning

problem of our concern.

Definition 2.13 A bipartition (ΠC ,ΠR) of a matrix A is consistent with a

determination by substitution if there exists an ordering on the elements of

A such that for every nonzero entry aij , either column j is in a group where

all nonzeros in row i, from other columns in the group, are ordered before

aij or row i is in a group where all the nonzeros in column j, from other

rows in the group, are ordered before aij .

Problem 2.14 (MPP5) Given the sparsity structure of a matrix A ∈

Rm×n, find a bipartition (ΠC ,ΠR) of A consistent with a determination

by substitution such that |ΠC |+ |ΠR| is minimized.

Problems MPP1 through MPP5 are summarized in Table 2. Note that

the problems in Table 2 are formulated independent of the numerical tech-

nique used. For example, MPP1 could arise in using FD or only the forward

mode of AD.

2.3 Other Methods

The matrix estimation methods considered in this paper rely on a one-

dimensional or a two-dimensional partition (symmetrically) consistent with

a direct or a substitution-based determination. However, approaches where

this is not necessarily the case have also been suggested. For instance,

direct methods that allow structurally non-orthogonal columns to reside in

the same group and/or allow columns to reside in several groups have been

suggested [8, 25, 26]. McCormick [23] gives a classification of direct methods

for estimating a symmetric matrix, including those that do not necessarily

rely on consistent partitions.

11

In another direction, Hossain [16] suggests a technique for a direct esti-

mation of a Jacobian in which the rows are first grouped into blocks that de-

fine ‘segmented’ columns and then the segments are partitioned into groups

each of which consists of structurally independent segments. It is shown

that, for some matrix structures, such an approach may reduce the num-

ber of function evaluations compared with an approach that does not use

segmentation.

3 Graph Formulations

Problems MPP1 through MPP5 are combinatorial and several previous stud-

ies have demonstrated the usefulness of graph theoretic approaches in an-

alyzing and solving them [4, 7, 8, 9, 17, 23]. In this section, we integrate

these approaches within a unified framework. In addition, we propose a

new, more flexible, graph formulation for problem MPP1. The graph for-

mulation of each matrix problem depends on the choice of the graph used

to represent the matrix structure. In Section 3.2 we describe our graph rep-

resentations which will be used to develop the equivalent graph problems

in Sections 3.3 through 3.5. In Section 3.6 we show how the various graph

problems obtained relate with one another. We start this section by defining

some basic graph theoretic concepts. Other graph concepts will be defined

later as required.

3.1 Basic Definitions

A graph G is an ordered pair (V,E) where V is a finite and nonempty

set of vertices and E is a set of unordered pairs of distinct vertices called

edges. If (u, v) ∈ E, vertices u and v are said to be adjacent ; otherwise

they are called non-adjacent. A path of length l in a graph is a sequence

v1, v2, . . . , vl+1 of distinct vertices such that vi is adjacent to vi+1, for 1 ≤

i ≤ l. Two distinct vertices are said to be distance-k neighbors if the shortest

path connecting them has length at most k; otherwise they are called non-

distance-k neighbors. The number of distance-k neighbors of a vertex u is

referred to as the degree-k of u.

In a graph G = (V,E), a set of vertices C ⊆ V is said to cover a set of

edges F ⊆ E if for every edge e ∈ F , at least one of the endpoints of e is

in C. If the set C covers the entire E, it is called a vertex cover. The set

of vertices I ⊆ V is called an independent set if no pair of vertices in I are

adjacent to each other.

A graph G = (V,E) is bipartite if its vertex set V can be partitioned into

12

two disjoint sets V1 and V2 such that every edge in E connects a vertex from

V1 to a vertex from V2. We denote a bipartite graph by Gb = (V1, V2, E).

3.2 Representing Matrix Structures Using Graphs

Bipartite graph Let A be an m× n matrix with rows r1, r2, . . . , rm and

columns a1, a2, . . . , an. We define the bipartite graph Gb(A) of A as Gb(A) =

(V1, V2, E) where V1 = {r1, r2, . . . , rm}, V2 = {a1, a2, . . . , an}, and (ri, aj) ∈

E whenever aij is a nonzero element of A, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Note that Gb(A) is a space-efficient representation for a nonsymmetric

matrix A. To see this, notice that the number of vertices |V1|+ |V2| = m+n,

and the number of edges |E| = nnz(A), where nnz(A) is the number of

nonzeros in A. Also, note that the graph can be constructed by reading off

the entries of the matrix without any further computation.

Adjacency graph Let A ∈ Rn×n be a symmetric matrix with nonzero

diagonal elements and let its columns be a1, a2, . . . , an. The adjacency graph

of A is G(A) = (V,E) where V = {a1, a2, . . . , an}, and (ai, aj) ∈ E whenever

aij is a nonzero element of A, for 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j. Note

that G(A) is a space-efficient, symmetry-exploiting, graph representation

of the symmetric matrix A with no explicit representation for the edges

corresponding to the nonzero diagonal elements. In particular, the number

of vertices is n and the number of edges is 1
2(nnz(A)−n). This is in contrast

to 2n and nnz(A), respectively, had a bipartite graph representation been

used.

For the symmetric matrix of our interest, the Hessian matrix, the as-

sumption that the diagonals are nonzero is reasonable in many contexts. In

particular, the Hessian is usually positive definite [4].

To simplify notation, we shall use ai both when referring to the ith

column of the matrix A and the corresponding vertex in G(A) or Gb(A).

Column intersection graph Our graph formulations for problems MPP1

through MPP5 are based on the bipartite and adjacency graph representa-

tions discussed above. However, in the literature, other graph representa-

tions have also been used. In particular, Coleman and Moré [7] used the

column intersection graph Gc(A) to represent a nonsymmetric matrix A. In

Gc(A) = (V,E), the columns of A constitute the vertex set V , and an edge

(ai, aj) is in E whenever columns ai and aj have nonzero entries at the same

row position, i.e. whenever ai and aj are not structurally orthogonal.

13

3.3 Distance-k Graph Coloring

A distance-k p-coloring, or (k, p)-coloring for short, of a graph G = (V,E) is

a mapping φ : V → {1, 2, . . . , p} such that φ(u) 6= φ(v) whenever u and v are

distance-k neighbors. The minimum possible value of p in a (k, p)-coloring

of a graph G is called its k-chromatic number, and is denoted by χk(G).

A (k, p)-coloring of G = (V,E) is called partial if it involves only a subset

of the vertices; in particular, a partial (k, p)-coloring of G = (V,E) on W ,

W ⊂ V , is a mapping φ : W → {1, 2, . . . , p} such that φ(u) 6= φ(v) whenever

u and v are distance-k neighbors.

The distance-k graph coloring problem (DkGCP) asks for an optimal

(k, p)-coloring of a graph: given a graph G and an integer k, find a (k, p)-

coloring of G such that p is minimized.

Notice that a (k, p)-coloring of G = (V,E) partitions the set V into p

groups (called color classes) U1, U2, . . . , Up, where Ui = {u ∈ V : φ(u) = i}.

Each color class is a distance-k independent set, i.e., no pair of distinct

vertices consists of distance-k neighbors. Noting this, a natural question

arises—can the matrix partitioning problems MPP1 through MPP5 be re-

lated to the DkGCP for some value of k?

Recall that structural orthogonality is the criterion used in a consistent

partition of the columns (or rows) of a matrix. The following two simple

observations provide the graph theoretic equivalents of structural orthogo-

nality in matrices.

Lemma 3.1 Let A ∈ Rm×n be a matrix and Gb(A) = (V1, V2, E) be its

bipartite graph. Two columns (or rows) of A are structurally orthogonal if

and only if the corresponding vertices in Gb(A) are non-distance-2 neighbors.

Proof: We prove the statement for columns; a similar argument can be

used to prove the case for rows. Assume that vertices ai and aj in V2 are

non-distance-2 neighbors. Thus, by definition, there is no path ai, rk, aj in

Gb for any rk ∈ V1, 1 ≤ k ≤ m. In terms of matrix A, this means that

there is no k ∈ [1, m] such that both aki and akj are nonzero. Hence, by

definition, ai and aj are structurally orthogonal.

To prove the ‘only if’ part of the statement, assume that columns ai

and aj are structurally orthogonal. Then, by definition, there is no k ∈

[1, m] such that aki 6= 0 and akj 6= 0. This implies that there is no path

ai, rk, aj in Gb(A), for any 1 ≤ k ≤ m. Hence, by definition, ai and aj are

non-distance-2 neighbors. 2

14

Similarly, one can prove the following statement for the case of a sym-

metric matrix and its adjacency graph representation.

Lemma 3.2 Let A ∈ Rn×n be a symmetric matrix with nonzero diagonal

elements and let G(A) = (V,E) be its adjacency graph. Two columns in A

are structurally orthogonal if and only if the corresponding vertices in G(A)

are non-distance-2 neighbors.

Lemmas 3.1 and 3.2 provide a partial answer to our question regarding

the relationship between the matrix partitioning problems and the DkGCP.

As discussed in the forthcoming sections, distance-2 coloring is a generic

model in efficient derivative matrix estimation using methods that rely on

one-dimensional column or row partition.

3.4 Coloring Problems in Direct Methods

In this subsection we consider problems MPP1, MPP2, and MPP4.

By Lemma 3.1, finding a consistent partition of the columns of a matrix

A is equivalent to finding a partial distance-2 coloring of Gb(A) = (V1, V2, E)

on V2. The following result formalizes the equivalence.

Theorem 3.3 Let A be a nonsymmetric matrix and Gb(A) = (V1, V2, E)

be its bipartite graph representation. A mapping φ is a partial distance-2

coloring of Gb(A) on V2 if and only if φ induces a consistent partition of the

columns of A.

In view of Theorem 3.3, Problem MPP1 is equivalent to the following

graph coloring problem (GCP).

Problem 3.4 (GCP1) Given the bipartite graph Gb(A) = (V1, V2, E) rep-

resenting the sparsity structure of a matrix A ∈ Rm×n, find a partial (2,p)-

coloring of Gb(A) on V2 with the least value of p.

For matrices with a few dense rows, a row partition may yield fewer

groups than a column partition. Consequently, the matrix problem one

needs to solve is MPP1 applied on AT . In such cases, our graph formula-

tion becomes handy—the equivalent problem is to find a partial distance-2

coloring on the vertex set V1.

By Lemma 3.2, finding a consistent partition of the columns of a symmet-

ric matrix A is equivalent to finding a distance-2 coloring of the adjacency

graph G(A). This equivalence was in fact first observed by McCormick

[23]. However, as has been stated earlier, the symmetry present in A can be

15

exploited to further reduce the number of groups (colors) required. Thus,

we now consider the graph coloring formulation of the partitioning problem

where A is symmetric (MPP2).

Consider a symmetric matrix A with nonzero diagonal elements and let

aij, i 6= j, be any nonzero element in A. Further, let aki, k 6= i, j and

ajl, l 6= i, j, k be any other two nonzero elements. By Definition 2.4, in a

symmetrically consistent partition of A,

• columns ai and aj should belong to two different groups (this is because

both aii and ajj are nonzero), and

• columns aj and ak should belong to two different groups, or columns

ai and al should belong to two different groups.

Coleman and Moré [8] gave an equivalent characterization of the afore-

mentioned conditions in terms of a coloring of the associated adjacency

graph. Specifically, they introduced the notion of distance- 3
2 coloring2, de-

fined below.

Definition 3.5 A mapping φ : V → {1, 2, . . . , p} is a (3
2 , p)-coloring of the

graph G = (V,E) if φ is (1, p)-coloring of G and every path of length three

uses at least three colors.

The name ‘distance- 3
2 coloring’ is chosen to reflect that it is in a sense

‘in-between’ distance-1 and distance-2 colorings. In particular, a distance-
3
2 coloring is a relaxed distance-2 and a restricted distance-1 coloring. As

an illustration, observe that a distance-1 coloring requires two colors for

every path of length one, a distance-2 coloring requires three colors for every

path of length two, and a distance- 3
2 coloring is a distance-1 coloring further

restricted to require three colors for every path of length three (see Figure 2).

Note that a 4-cycle requires two, three, and four colors in a distance-1, a

distance- 3
2 and a distance-2 coloring, respectively.

The following theorem formalizes the connection between symmetrically

consistent partition and distance- 3
2 coloring. The result follows directly from

the discussion that led to the definition of (3
2 , p)-coloring.

Theorem 3.6 [Coleman and Moré [8]]

Let A be a symmetric matrix with nonzero diagonal elements and G(A) =

(V,E) be its adjacency graph representation. A mapping φ is a (3
2 , p)-

coloring of G(A) if and only if φ induces a symmetrically consistent partition

of the columns of A.

2Coleman and Moré used the term path-coloring.

16

2 1 2 3 1 2 1 31

1 2

2 1

1 2

34

1 2

32

Figure 2: Distance-1, 2, and 3
2 coloring of paths and a 4-cycle.

By Theorem 3.6, the following problem is equivalent to MPP2.

Problem 3.7 (GCP2) Given the adjacency graph G(A) = (V,E) repre-

senting the sparsity structure of a symmetric matrix A ∈ Rn×n with nonzero

diagonal elements, find a (3
2 , p)-coloring of G(A) with the least value of p.

Our next problem, MPP4, aims at finding a bipartition with the fewest

number of groups consistent with a direct determination. When a nonsym-

metric matrix A is represented by its bipartite graph Gb(A) = (V1, V2, E),

we have shown that a column partition consistent with a direct determina-

tion can be obtained by finding a partial distance-2 coloring of Gb on V2.

We now consider how this coloring has to be modified to capture a biparti-

tion consistent with a direct determination. Notice that the coloring we are

looking for should meet the following conditions.

• The sets V1 and V2 should use disjoint set of colors.

• Some vertices may not be involved in the determination of any nonzero

entry of the underlying matrix. Such vertices are assigned a ‘neutral’

color (say color zero).

• Since every nonzero matrix entry has to be determined, for every edge

in E, at least one of the endpoints has to be assigned a nonzero color.

• A nonzero matrix entry may be determined either from a positively

colored column vertex or a positively colored row vertex. This sug-

gests that the coloring condition sought here is some relaxation of the

distance-2 coloring requirement imposed in the case of one-dimensional

partition.

The following definition, introduced by Coleman and Verma [9], albeit

using a different terminology, formalizes the conditions listed above. The

subsequent theorem establishes the equivalence between the matrix and

graph problems.

17

Definition 3.8 Let Gb = (V1, V2, E) be a bipartite graph. A mapping

φ : [V1, V2] → {0, 1, . . . , p} is a distance- 3
2 bicoloring of Gb if the following

conditions hold.

1. If u ∈ V1 and v ∈ V2, then φ(u) 6= φ(v) or φ(u) = φ(v) = 0.

2. If (u, v) ∈ E, then φ(u) 6= 0 or φ(v) 6= 0.

3. If vertices u and v are adjacent to vertex w with φ(w) = 0, then

φ(u) 6= φ(v).

4. Every path of three edges uses at least three colors.

Theorem 3.9 [Coleman and Verma[9]]

Let A be an m×n matrix and Gb(A) = (V1, V2, E) be its bipartite graph. The

mapping φ : [V1, V2] → {0, 1, . . . , p} is a distance- 3
2 p-bicoloring if and only

if φ induces a bipartition (ΠC ,ΠR) of A, with |ΠC | + |ΠR| = p, consistent

with a direct determination.

Thus MPP4 is equivalent to the following graph problem.

Problem 3.10 (GCP4) Given the bipartite graph Gb(A) = (V1, V2, E)

representing the sparsity structure of an m× n matrix A, find a distance- 3
2

p-bicoloring of Gb(A) with the least value of p.

3.5 Coloring Problems in Substitution Methods

In this subsection, we consider problems MPP3 and MPP5. To formulate

MPP3 as a graph problem, we introduce the notion of acyclic coloring.

Coleman and Cai [4] established the connection between acyclic3 coloring

and the estimation of a symmetric matrix using a substitution method.

Acyclic coloring had been studied earlier by Grünbaum [15] in a different

context.

Definition 3.11 A mapping φ : V → {1, 2, . . . , p} is an acyclic p-coloring

of a graph G = (V,E) if φ is (1, p)-coloring and every cycle in G uses at

least three colors.

Theorem 3.12 [Coleman and Cai [4]]

Let A be a symmetric matrix with nonzero diagonal elements and G(A) =

(V,E) be its adjacency graph representation. A mapping φ is an acyclic

p-coloring of G(A) if and only if φ induces a substitutable partition of the

columns of A.

3Coleman and Cai use the term cyclic coloring to refer to what is known as acyclic

coloring in the graph theoretic literature.

18

Consider the 5 × 5 symmetric matrix and its adjacency graph depicted

in Figure 3. An optimal acyclic coloring that uses three colors is shown. It

can be verified that this induces a substitutable partition of the columns.

By contrast, a symmetric partition consistent with a direct determination

(a distance- 3
2 coloring) would have required four groups (colors).

X X

X X X

X X X

X X

X

a

b c

de

1

1

2 3

2

 X

X

XX

a b c d e

Figure 3: A 5×5 symmetric matrix and an acyclic coloring of its adj. graph

In view of Theorem 3.12, MPP3 is equivalent to the following graph

problem.

Problem 3.13 (GCP3) Given the adjacency graph G(A) = (V,E) repre-

senting the sparsity structure of a symmetric matrix A ∈ Rn×n with nonzero

diagonal elements, find an acyclic p-coloring of G(A) with the least value of

p.

The relationship between bicoloring and bipartition, established by The-

orem 3.9, coupled with that between acyclic coloring and substitutable par-

tition, established by Theorem 3.12, suggests that ‘acyclic bicoloring’ might

be the right graph model for MPP5. Coleman and Verma [9] showed that

this was indeed the case.

Definition 3.14 Let Gb = (V1, V2, E) be a bipartite graph. A mapping

φ : [V1, V2] → {0, 1, . . . , p} is an acyclic bicoloring of Gb if the following

conditions hold.

1. If u ∈ V1 and v ∈ V2, then φ(u) 6= φ(v) or φ(u) = φ(v) = 0.

2. If (u, v) ∈ E, then φ(u) 6= 0 or φ(v) 6= 0.

3. If vertices u and v are adjacent to vertex w with φ(w) = 0, then

φ(u) 6= φ(v).

4. Every cycle uses at least three colors.

19

Matrix 1D Partition 2D Partition Method

Jacobian distance-2 coloring distance- 3
2 bicoloring Direct

Hessian distance- 3
2 coloring NA Direct

Jacobian NA acyclic bicoloring Substitution
Hessian acyclic coloring NA Substitution

Table 3: Graph coloring formulations for estimating all nonzero entries of
derivative matrices. The Jacobian and the Hessian are represented by their
bipartite and adjacency graphs, respectively. NA stands for not applicable.

Theorem 3.15 [Coleman and Verma [9]]

Let A be an m×n matrix and Gb(A) = (V1, V2, E) be its bipartite graph. The

mapping φ : [V1, V2] → {0, 1, . . . , p} is an acyclic p-bicoloring if and only if

φ induces a bipartition (ΠC ,ΠR) of A, with |ΠC |+ |ΠR| = p, consistent with

determination by substitution.

By Theorem 3.15, the following coloring problem is equivalent to MPP5.

Problem 3.16 (GCP5) Given the bipartite graph Gb(A) = (V1, V2, E)

representing the sparsity structure of an m × n matrix A, find an acyclic

p-bicoloring of Gb(A) with the least value of p.

Table 3 (the same table was given in Section 1) summarizes the graph

coloring problems that arise in efficient derivative matrix estimation.

3.6 Distance-k Chromatic Numbers

In this subsection, we expose the inter-relationship among the various col-

orings introduced thus far and show that distance-2 coloring is the most

general among them.

The power of a graph gives an alternative view to the DkGCP. The kth

power of a graph G = (V,E) is the graph Gk = (V, F) where (u, v) ∈ F if

and only if u and v are distance-k neighbors in G. The following equivalence

follows immediately.

Lemma 3.17 Let Gk be the kth power of graph G. A mapping φ is a (k, p)-

coloring of G if and only if it is a (1, p)-coloring of Gk.

A particular implication of Lemma 3.17 is that distance-2 coloring of a

graph is equivalent to distance-1 coloring of the square of the graph. This

establishes the equivalence between GCP1, our bipartite graph based for-

mulation of MPP1, and the distance-1 coloring formulation, which uses the

20

column intersection graph, suggested by Coleman and Moré [7]. Specifically,

as has been shown in [7], the column intersection graph Gc(A) of a matrix

A is isomorphic to the adjacency graph of AT A. We note that Gc(A) is

in fact the subgraph of Gb(A)2 induced by the vertices in V2. For a graph

G = (V,E), let the graph induced by U ⊆ V be denoted by G[U].

Lemma 3.18 Let Gb(A) = (V1, V2, E) and Gc(A) = (V2, E
′) be the bipartite

and column intersection graphs of matrix A. Then, Gc = Gb
2[V2].

Observe that the distance-1 neighbors of a vertex in a graph G form a

clique in the square of the graph. A clique is a set of vertices in which the

vertices are mutually adjacent to each other. This observation immediately

provides a lower bound on χ2(G), the 2-chromatic number of G. Let ∆

denote the maximum degree-1 in G.

Lemma 3.19 For any graph G, χ2(G) ≥ ∆ + 1.

Proof: Observe that the cardinality of a maximum clique in the square

graph G2 is ∆ + 1. 2

Further, the conditions required by distance-1 coloring, acyclic coloring,

distance- 3
2 coloring, acyclic bicoloring, distance- 3

2 bicoloring, and distance-2

coloring imply the following relationships among their respective chromatic

numbers. The chromatic numbers for distance-k coloring (and bicoloring)

of a general graph G (and bipartite graph Gb) are denoted by χk(G) (and

χkb(Gb)). Similarly the chromatic numbers for acyclic coloring (and bicol-

oring) of a graph G (and a bipartite graph Gb) are denoted by χa(G) (and

χab(Gb)).

Theorem 3.20 For a general graph G = (V,E),

χ1(G) ≤ χa(G) ≤ χ 3

2

(G) ≤ χ2(G) = χ1(G
2).

Proof: Observe that a distance-2 coloring is a distance- 3
2 coloring; a distance-

3
2 coloring is an acyclic coloring; and an acyclic coloring is a distance-1

coloring. 2

Theorem 3.21 For a bipartite graph Gb = (V1, V2, E),

χab(Gb) ≤ χ 3

2
b(Gb) ≤ min{χ1(Gb

2[V1]), χ1(Gb
2[V2])},

where (Gb
2[W]) is the sub-graph of Gb

2 induced by W .

21

Proof: The first inequality is obvious. For the second inequality, observe

that a partial distance-2 coloring on V2 is a valid distance- 3
2 bicoloring where

all the vertices in V1 are specified to be colored with 0. A similar argument,

with the roles of V1 and V2 interchanged, can be used to complete the proof.

2

In the context of matrix estimation using numerical methods, the im-

plication of Theorem 3.21 is that, an optimal two-dimensional partition,

irrespective of the structure of the matrix, yields fewer (or at most as many)

groups compared to an optimal one-dimensional partition, and hence poten-

tially results in a more efficient computation.

The results in this section show that distance-2 coloring is an archetypal

model in the estimation of Jacobian and Hessian matrices using techniques

that rely on one-dimensional partition via direct and substitution methods.

Distance-2 coloring has other applications. Examples include channel

assignment [20] and facility location problems (see Chapter 5 in [27]). From

a more theoretical perspective, distance-2 coloring for planar graphs has

been studied in [2] and a similar study for chordal graphs is available in [1].

4 Partial Matrix Estimation

In many PDE constrained optimization contexts, the Jacobian or the Hes-

sian is formed only for preconditioning purposes. For preconditioning, it is

often common to compute a subset of the matrix elements. Computing a

good preconditioner is critical for fast convergence to the solution. The re-

cent survey article [19] discusses various applications where methods known

as “Jacobian-free Newton-Krylov” are used. A basic ingredient in the use

of these methods is an approximate computation of some elements of the

Jacobian. Also, there are examples in which only certain elements of the

Hessian need to be updated in an iterative procedure, while others do not

because they are unlikely to change in value [3].

In this section we develop the graph coloring formulations of the par-

titioning problems that arise in the estimation of a specified subset of the

nonzero entries of a matrix via direct methods. We call this partial matrix

estimation as opposed to full matrix estimation, where all nonzero entries

are required to be determined.

The coloring formulations in this section are new and more sophisticated

than the coloring formulations in full matrix estimation. The motivation

for developing the new graph formulations is that efficient partial matrix

estimation can be used to further reduce the number of colors needed to

22

estimate the required elements. For example, if only the diagonal elements

of a Hessian are needed, then we need only the distance-1 coloring of the

adjacency graph, rather than the distance- 3
2 coloring required for full matrix

estimation.

The colorings defined in this section allow a vertex to have the color

zero. A vertex with color zero signifies the fact that it would not be used to

estimate any element of the matrix represented by the graph, i.e., columns or

rows that correspond to the color zero are not used to estimate any elements

in those columns or rows.

The rest of this section is organized in three parts. Each part deals with

a scenario defined by the kind of matrix under consideration (symmetric

or nonsymmetric) and the type of partition employed (one-dimensional or

two-dimensional). In each case, the required entries are assumed to be deter-

mined using a direct method. The problems that correspond to estimation

via substitution are not considered in this paper.

4.1 Nonsymmetric matrix, One-dimensional partition

Let A ∈ Rm×n be a nonsymmetric matrix, and S denote the set of nonzero

elements of A required to be estimated. A partition {C1, . . . , Cp} of a subset

of the columns of A is consistent with a direct determination of S if for every

aij ∈ S, column aj is included in some group that contains no other column

with a nonzero in row i.

Let Gb(A) = (V1, V2, E) be the bipartite graph of A, and F ⊆ E corre-

spond to the elements of S. A mapping φ : V2 → {0, 1, . . . , p} is a distance-

2 coloring of Gb restricted to F if the following conditions hold for every

(v, w) ∈ F , where v ∈ V1, w ∈ V2.

1. φ(w) 6= 0, and

2. for every path (u, v, w), φ(u) 6= φ(w).

Theorem 4.1 The mapping φ is a distance-2 p-coloring of Gb(A) restricted

to F if and only if φ induces a column partition {C1, . . . , Cp} consistent with

a direct determination of S.

Proof: Assume that φ is a distance-2 p-coloring of Gb(A) restricted to F .

We show that the groups {C1, . . . , Cp} where Cα = {aj : φ(aj) = α}, 1 ≤

α ≤ p, constitute a partition of a subset of the columns of A consistent with

a direct determination of S. First, observe that by coloring condition 1, for

every aij ∈ S ((ri, aj) ∈ F), φ(aj) 6= 0 and thus column aj belongs to group

Cφ(aj) and hence is involved in the partition. Assume now that the partition

23

induced by the coloring is not consistent with a direct determination of S.

This occurs only if there exist nonzero elements aij and aik, k 6= j, such that

aij ∈ S and both aj and ak belong to group Cα′ for some α′, 1 ≤ α′ ≤ p.

But this contradicts coloring condition 2, and hence cannot occur.

Conversely, assume that the partition C = {C1, . . . , Cp} is consistent

with a direct determination of S. Construct a coloring φ of Gb(A) as follows.

φ(aj) = α if aj ∈ Cα, and φ(aj) = 0 if aj 6∈ C. We claim that φ is a distance-

2 p-coloring of Gb(A) restricted to F . Each vertex in V2 incident to an edge

in F corresponds to a column with an entry in S and thus gets a nonzero

color. Thus φ satisfies coloring condition 1. Consider any path (aj , ri, ak)

where (ri, aj) ∈ F . Note that such a path in Gb(A) exists whenever entries

aij and aik are nonzero. The partition condition implies that column ak

cannot be in the same group as aj . Thus, by construction, φ(aj) 6= φ(ak),

satisfying coloring condition 2. 2

4.2 Symmetric matrix, One-dimensional partition

Let A ∈ Rn×n be a symmetric matrix with nonzero diagonal elements, and S

denote the set of nonzero elements of A required to be estimated. A partition

{C1, . . . , Cp} of a subset of the columns of A is symmetrically consistent with

a direct determination of S if for every aij ∈ S at least one of the following

two conditions are met.

1. The group containing aj has no other column with a nonzero in row i.

2. The group containing ai has no other column with a nonzero in row j.

Let G(A) = (V,E) be the adjacency graph of A, Fod ⊆ E correspond to

the off-diagonal elements in S, and Fd correspond to the diagonal elements

in S, i.e., Fd = {(u, u) : u ∈ U} where U ⊆ V . Let F = Fod∪Fd. A mapping

φ : V → {0, 1, 2, . . . , p} is a distance- 3
2 coloring of G restricted to F if the

following conditions hold.

1. For every (u, u) ∈ Fd,

1.1. φ(u) 6= 0, and

1.2. for every (u, v) ∈ E, φ(u) 6= φ(v).

2. For every (v, w) ∈ Fod,

2.1. φ(v) 6= φ(w), and

2.2. at least one of the following two conditions holds:

24

2.2.1. φ(v) 6= 0 and for every path (v, w, x), φ(v) 6= φ(x) or

2.2.2. φ(w) 6= 0 and for every path (u, v, w), φ(u) 6= φ(w).

Theorem 4.2 The mapping φ is a distance- 3
2 p-coloring of G(A) restricted

to F if and only if φ induces a column partition {C1, . . . , Cp} symmetrically

consistent with a direct determination of S.

Proof: Assume that φ is a distance- 3
2 p-coloring of G(A) restricted to F .

We show that the groups {C1, . . . , Cp} where Cα = {aj : φ(aj) = α}, 1 ≤

α ≤ p, constitute a partition of a subset of the columns of A symmetrically

consistent with a direct determination of S.

By coloring conditions 1 and 2, for every aij ∈ S ((ai, aj) ∈ F), at least

one of ai or aj has a nonzero color and hence is involved in the partition

{C1, . . . , Cp}. Let aij ∈ S be a diagonal entry (i = j). Then, coloring

condition 1 ensures that φ(ai) 6= 0 and that φ(ai) 6= φ(ak) for every (ai, ak) ∈

E. Thus, by construction, column ai belongs to group Cφ(ai) and no column

ak, k 6= i with aik 6= 0 is in Cφ(ai). This clearly satisfies the partition

condition. Let aij ∈ S now be an off-diagonal entry (i 6= j). Assume

without loss of generality that φ(aj) 6= 0. By condition 2.1, φ(aj) 6= φ(ai).

By condition 2.2.2, there is no path (ak, ai, aj) in G(A), for any k 6= i, j such

that φ(aj) = φ(ak). The last two statements together imply that column

aj belongs to group Cφ(aj) and that no column ak, k 6= j with aik 6= 0 is

in Cφ(aj). This satisfies partition condition 1. A similar argument applies

to the case where φ(ai) 6= 0 which implies the satisfaction of the alternative

partition condition.

To prove the converse, assume that the partition C = {C1, . . . , Cp} is

symmetrically consistent with a direct determination of S. Construct a

coloring φ of G(A) as follows. φ(aj) = α if aj ∈ Cα, and φ(aj) = 0 if

aj 6∈ C. We claim that φ is a distance- 3
2 p-coloring of G(A) restricted to F .

Consider a diagonal element aii ∈ S. The partition conditions ensure

that ai is in some group Cα′ and that there is no column ak ∈ Cα′ , k 6= i

such that aik 6= 0. Thus, by construction, φ(ai) 6= 0 and φ(ai) 6= φ(ak)

for every (ai, ak) ∈ E, satisfying coloring condition 1. Consider now the

case where aij ∈ S is an off-diagonal element. First, observe that since all

diagonal elements are nonzero, ai and aj cannot belong to the same group.

Thus φ(ai) 6= φ(aj), satisfying coloring condition 2.1. Second, observe that

there are two possibilities by which the partitioning conditions have been

satisfied. We consider only one of these; the second one can be treated in

a similar manner. Suppose aj belongs to some group Cα′ and that there is

no other column ak ∈ Cα′ , k 6= j such that aik 6= 0. Thus, by construction,

25

φ(aj) 6= 0 and φ(aj) 6= φ(ak) for every path (ak, ai, aj) in G(A), satisfying

coloring condition 2.2.2. 2

A special case of Theorem 4.2 is the problem of estimating only the

diagonal elements of A, i.e., Fd = {(v, v) : v ∈ V } and Fod = ∅. For this

problem, condition 1 is the only applicable condition, and states that a

distance-1 coloring of G(A) is sufficient.

4.3 Nonsymmetric matrix, Two-dimensional partition

Let A ∈ Rm×n be a nonsymmetric matrix, and S denote the set of nonzero

elements of A required to be estimated. A bipartition (ΠC ,ΠR) of a subset

of the columns and rows of A is consistent with a direct determination of S

if for every aij ∈ S at least one of the following conditions are met.

1. The group (in ΠC) containing column j has no other column having a

nonzero in row i.

2. The group (in ΠR) containing row i has no other row having a nonzero

in column j.

Let Gb(A) = (V1, V2, E), and F ⊆ E correspond to the elements in S. A

mapping φ : [V1, V2] → {0, 1, . . . , p} is said to be a distance- 3
2 bicoloring of

Gb restricted to F if the following conditions are met.

1. Vertices in V1 and V2 receive disjoint colors, except for color 0; i.e., for

every u ∈ V1 and v ∈ V2, either φ(u) 6= φ(v) or φ(u) = φ(v) = 0.

2. At least one endpoint of an edge in F receives a nonzero color; i.e., for

every (v, w) ∈ F , φ(v) 6= 0 or φ(w) 6= 0.

3. For every (v, w) ∈ F ,

3.1. if φ(v) = 0, then, for every path (u, v, w), φ(u) 6= φ(w),

3.2. if φ(w) = 0, then, for every path (v, w, x), φ(v) 6= φ(x),

3.3. if φ(v) 6= 0 and φ(w) 6= 0, then for every path (u, v, w, x), either

φ(u) 6= φ(w) or φ(v) 6= φ(x).

Theorem 4.3 The mapping φ is a distance- 3
2 p-bicoloring of Gb restricted

to F if and only if φ induces a bipartition (ΠC ,ΠR), |ΠC | + |ΠR| = p,

consistent with a direct determination of S.

Proof: Let the construction of a partition given a coloring, and vice-versa,

be done in a similar manner as in the proof of Theorem 4.1.

26

Assume that φ is a distance- 3
2 bicoloring of Gb(A) restricted to F . Let

the induced bipartition be (ΠC ,ΠR). Coloring condition 1 implies that

(ΠC ,ΠR) is a bipartition. By condition 2, for every aij ∈ S, either aj ∈ ΠC

or ri ∈ ΠR (or both). Assume now that (ΠC ,ΠR) is not consistent with a

direct determination of S. This occurs only if one of the following cases hold

for any aij ∈ S:

• φ(ri) = 0, φ(aj) 6= 0 and there exists a column ak, k 6= j with aik 6= 0

such that φ(aj) = φ(ak). But this contradicts coloring condition 3.1,

and hence cannot occur.

• φ(aj) = 0, φ(ri) 6= 0 and there exists a row rl, l 6= i with alj 6= 0 such

that φ(ri) = φ(rl). But this contradicts coloring condition 3.2, and

hence cannot occur.

• φ(ri) 6= 0, φ(aj) 6= 0, and there exist column ak, k 6= j with aik 6= 0,

and row rl, l 6= i with alj 6= 0 such that φ(aj) = φ(ak) and φ(ri) =

φ(rl). But this contradicts coloring condition 3.3, and hence cannot

occur.

Hence, (ΠC ,ΠR) is consistent with a direct determination of S.

Conversely, assume that (ΠC ,ΠR) is a bipartition consistent with a direct

determination of S. Clearly, the constructed coloring φ satisfies conditions

1 and 2. To complete the proof, we show that φ also satisfies condition 3.

Assume that φ violates condition 3. Then one of the following cases must

have happened:

• There exists a path (ak, ri, aj) for some (ri, aj) ∈ F such that φ(ri) =

0 and φ(aj) = φ(ak). But this implies that element aij cannot be

determined directly, contradicting the assumption that (ΠC ,ΠR) is

consistent with a direct determination of S.

• There exists a path (ri, aj , rl) for some (ri, aj) ∈ F such that φ(aj) = 0

and φ(ri) = φ(rl). Again this implies that element aij cannot be

determined directly, a contradiction of our assumption.

• There exists a path (ak, ri, aj , rl) for some (ri, aj) ∈ F such that

φ(ri) = φ(rl) 6= 0 and φ(aj) = φ(ak) 6= 0. But this implies that

element aij cannot be determined directly, contradicting the assump-

tion.

2

27

X X

X

X

X

X

X

X

X

X

X

 X

X X

X

a b c d e f g h

X

1

2

3

4

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

111

1

1

1

1 11

1

1

12

2 2

2

2

2

Figure 4: A matrix and its bipartite and intersection graph, resp.

5 Column Intersection vs. Bipartite Graph For-

mulation

In this section we compare our bipartite graph based formulations with

formulations based on a column intersection graph.

Figure 4 depicts a matrix A, the corresponding bipartite graph Gb(A) =

(V1, V2, E), and the column intersection graph Gc(A) = (V2, E
′). Note that

we have augmented the graph Gc(A) with edge weights—w(ai, aj) is the size

of the intersection of the sets represented by vertices ai and aj . In terms of

matrix A, w(ai, aj) is the total number of rows where both columns ai and

aj have nonzero entries. In the bipartite graph Gb(A), it corresponds to the

number of common neighbors of vertices ai and aj.

In Sections 5.1 to 5.4, we compare and contrast the two graph formu-

lations in terms of flexibility, storage space requirement, ease of graph con-

struction, and use of existing software.

5.1 Flexibility

Notice that the column intersection graph is a ‘compressed’ representation

of the structure of the underlying matrix. Clearly, some information is lost

in the compression process. In particular, given an edge in Gc between two

columns, we cannot determine the row at which they share nonzero entries.

By contrast, the bipartite graph is an equivalent representation of the struc-

ture of the matrix. This provides flexibility. As an illustration, notice that

the bipartite graph can be used in a one-dimensional (row or column) par-

tition as well as a two-dimensional (combined row and column) partition.

The column intersection graph, on the other hand, is applicable only to a

28

column partition. Moreover, the graph formulations for partial matrix esti-

mation problems would have required new types of ‘intersection’ graphs to

be defined. In general, the advantage of the bipartite graph representation

is that the representation is decoupled from the eventual technique to be

employed and the matrix entries to be determined.

5.2 Storage Space Requirement

Although Lemma 3.18 correlates the bipartite graph of a matrix with its

column intersection graph, one cannot immediately deduce that one graph

is denser than the other. The density of the respective graph namely depends

on the structure of the matrix. Here, we make a rough analysis to show that

for sparse matrices of practical interest, the column intersection graph is

likely to be denser than the bipartite counterpart.

Given a matrix A, the graph Gb(A) = (V1, V2, E) and the weighted

graph Gc(A) = (V2, E
′), for a vertex u in Gb, let N1(u) = {v : (u, v) ∈ E},

d1(u) = |N1(u)|, and let the average degree-1 in the sets V1 and V2 of Gb

be δ1(V1) and δ1(V2), respectively. Further, let w denote the average edge

weight in Gc. Then,

∑

e∈E′

w(e) =
1

2
·

∑

u∈V2

∑

v∈N1(u)

(d1(v)− 1)

|E′| · w ≈
1

2
· |V2| · δ1(V2) · (δ1(V1)− 1)

=
1

2
· |E| · (δ1(V1)− 1)

|E′| = |E| · (
δ1(V1)− 1

2w
)

Therefore, as long as δ1(V1)−1
2w > 1, the column intersection graph is likely to

have more edges (and hence requires more storage space) than the bipartite

graph of the matrix.

5.3 Ease of Construction

The sparsity structure of matrix A directly, without any further computa-

tion, gives the corresponding bipartite graph Gb(A). In principle, the data

structure used to represent A can be used for implementing algorithms that

use Gb(A). By contrast, Gc(A) has to be computed. As the following Lemma

states, the time required for the computation of Gc(A) is proportional to

the number of edges in Gc(A).

29

Lemma 5.1 Given a graph Gb(A) = (V1, V2, E), the time required for con-

structing Gc(A) is Tconst = O(|V2|(δ1(V2)(δ1(V1)− 1)).

It should however be noted that once the graph Gc(A) is computed, a

subsequent distance-1 coloring of Gc(A) can be done faster than a distance-2

coloring of Gb(A). As we shall show in Section 6, the overall time required

for constructing and distance-1 coloring of Gc(A) is of the same order as the

time required for a direct distance-2 coloring of Gb(A).

5.4 Use of Existing Software

Serial program packages that implement various practically effective distance-

1 coloring heuristics exist [5, 6]. For matrix partitioning problems where a

column intersection graph based formulation can be applied, these packages

can be readily used. On the other hand, since distance-2 coloring is a pro-

totypical model in our context, efficient programs, including parallel ones,

for the distance-2 coloring problem need to be developed.

6 Distance-k Coloring Algorithms

In this section we present several fast algorithms for the various coloring

problems considered in this paper. The algorithm design is greatly simplified

by taking distance-2 coloring as a generic starting point.

For any fixed integer k ≥ 1, DkGCP is NP-hard [21]. A proof sketch

showing that the problem of finding a (3
2 , p)-coloring with the minimum p

is NP-hard, even if the graph is bipartite, is given in [8]. The problem of

finding a distance- 3
2 bicoloring with the fewest number of colors is also NP-

hard [9]. Further, finding an acyclic p-coloring with the least value of p is

NP-hard [4].

Since all the graph coloring problems of our concern are NP-hard, in

practical applications, we are bound to rely on using approximation algo-

rithms or heuristics. An algorithm A is said to be a γ-approximation algo-

rithm for a minimization problem if its runtime is polynomial in the input

size and if for every problem instance I with an optimal solution OPT (I),

the solution A(I) output by A is such that A(I)
OPT (I) ≤ γ. The approximation

ratio γ ≥ 1, and the goal is to make γ as close to unity as possible. If

no such guarantee can be given for the quality of an approximate solution

obtained by a polynomial time algorithm, the algorithm is usually referred

to as a heuristic.

In the case of distance-1 coloring, there exist several, practically effective

heuristics [7]. In this section we show that some of the ideas used in the

30

distance-1 coloring heuristics can be adapted to the cases considered in this

paper by extending the notion of neighborhood. The algorithms we present

are greedy in nature, i.e., the vertices of a graph are processed in some order

and at each step a decision that looks best at the moment (and that will

not be reversed later) is made.

In Section 6.1, we present a generic greedy distance-2 coloring algorithm

and give a detailed analysis of its performance both in terms of computation

time and number of colors used. In Sections 6.2 to 6.5, adaptations of

this algorithm, tailored to the various coloring problems of our concern are

presented.

Notations Some notations used in the rest of this section are first in

order. Recall that for a vertex u in a graph G, a vertex w 6= u is a distance-

k neighbor of u if the shortest path connecting u and w has length ≤ k.

Let Nk(u) = {w : w is a distance-k neighbor of u}. Let dk(u) = |Nk(u)|

denote the degree-k of u; ∆ be the maximum degree-1 in G; and δk =
1
|V |

∑

u∈V dk(u) denote the average degree-k in G.

Further, in a bipartite graph Gb = (V1, V2, E), let the maximum degree-1

in the vertex sets V1 and V2 be denoted by ∆(V1) and ∆(V2) , respectively.

Similarly, let the average degree-k in the sets V1 and V2 be denoted by δk(V1)

and δk(V2), respectively.

6.1 Distance-2 Coloring Algorithms

A simple approach for an approximate distance-2 coloring of a graph G =

(V,E) is to visit the vertices in some order, each time assigning a ver-

tex the smallest color that is not used by any of its distance-2 neighbors.

Note that the degree-2 of a vertex u in G is bounded by ∆2, i.e., d2(u) ≤
∑

w∈N1(u) d1(w) ≤ ∆ · d1(u) ≤ ∆2. Thus, since the vertices in G can always

be distance-2 colored trivially using |V | different colors, it is always possible

to color a vertex using a value from the set {1, 2, . . . ,min{∆2 + 1, |V |}}.

Algorithm GreedyD2Coloring, outlined below, uses this as it colors the ver-

tices of the graph in an arbitrary order. In the algorithm, color(v) is the

color assigned to vertex v and forbiddenColors is a vector of size Cmax =

min{∆2 + 1, |V |} used to mark the colors that cannot be assigned to a

particular vertex. Specifically, forbiddenColors(c) = v indicates that color c

cannot be assigned to vertex v.

Lemma 6.1 GreedyD2Coloring finds a distance-2 coloring in time O(|V |δ2).

31

GreedyD2Coloring(G = (V,E))

for each vi ∈ V do
for each colored vertex u ∈ N2(vi) do

forbiddenColors(color(u)) = vi

end-for
color(vi) = min{c : forbiddenColors(c) 6= vi}

end-for

Proof: We first show correctness. In step i of the algorithm, the color used

by each of the distance-2 neighbors of vertex vi is marked (using vi) in the

vector forbiddenColors. Thus, at the end of the inner for loop, the set of

colors that are allowed for vertex vi is the set of indices in forbiddenColors

where the mark used is different from vi. The minimum value in this set

is thus the smallest allowable color for vertex vi. Notice that the vector

forbiddenColors does not need to be initialized at every step as the marker

vi is used only in step i.

Turning to complexity, note that marking the forbidden colors at step i

of the algorithm takes O(d2(vi)) time. Finding the smallest allowable color

to vi can be done within the same order of time by scanning forbiddenColors

sequentially until the first index c where a value other than vi is stored is

found. The total time is thus proportional to
∑

v∈V d2(v) = O(|V |δ2). 2

We now analyze the quality of the solution provided by GreedyD2Coloring.

Let the number of colors used by GreedyD2Coloring on a graph G = (V,E)

be χ2
greedy(G). Then recalling the lower bound given in Lemma 3.19, we

get the following theorem and its corollary.

Theorem 6.2 ∆ + 1 ≤ χ2(G) ≤ χ2
greedy(G) ≤ min{∆2 + 1, |V |}.

Corollary 6.3 GreedyD2Coloring is an O(
√

|V |)-approximation algorithm.

Proof: The approximation ratio γ is at most 1
∆+1 ·min{∆2 +1, |V |}. There

are two possibilities to consider. In the first case ∆2 +1 < |V |. This implies

∆ = O(
√

|V |) and γ = ∆2+1
∆+1 = O(∆) = O(

√

|V |). In the second case

|V | < ∆2 + 1. This implies ∆ = Ω(
√

|V |) and γ = |V |

∆+1 = O(
√

|V |). 2

Note that for practical problems, such as problems that arise in solv-

ing PDEs using good finite element discretizations, ∆2 + 1 � |V |, making

GreedyD2Coloring an O(∆)-approximation algorithm.

The actual number of colors used by GreedyD2Coloring depends on the

order in which the vertices are visited. In GreedyD2Coloring, an arbitrary

32

ordering is assumed. A solution with fewer number of colors can be expected

if a more elaborate ordering criterion is used. For example, the ideas in

largest degree first and incidence degree ordering for distance-1 coloring [7]

can be adapted to the distance-2 coloring case.

As a final remark on the complexity of GreedyD2Coloring, we show that

the algorithm runs in linear time in the number of vertices for certain sparse

graphs. Let δ2 = 1
|V |

∑

u∈V d1(u)2 and let the standard deviation of degree-1

in G = (V,E) be given by

σ2 =
1

|V |

∑

v∈V

(d1(v) − δ1)
2
.

Then,

|V |σ2 =
∑

v∈V

d1(v)2 +
∑

v∈V

δ1
2
− 2

∑

v∈V

d1(v)δ1

= |V |δ2 + |V |δ1
2
− 2δ1

∑

v∈V

d1(v)

= |V |δ2 + |V |δ1
2
− 2|V |δ1

2

= |V |δ2 − |V |δ1
2

Rewriting we get,

δ2 = δ1
2
+ σ2.

Noting that δ2 ≥ δ2, we get the following corollary to Lemma 6.1.

Corollary 6.4 GreedyD2Coloring has time complexity O(|V |(δ1
2
+ σ2)).

Since δ1 = 2|E|

|V |

, the complexity expression in Corollary 6.4 reduces to

O(|E|

2

|V |

) for graphs where σ < δ1. In particular, for sparse graphs, where

|E| = O(|V |), the time complexity of GreedyD2Coloring becomes O(|V |).

6.2 Partial Distance-2 Coloring Algorithms

Here we modify GreedyD2Coloring slightly to make it suitable for solving the

partial distance-2 coloring problem GCP1 (our graph formulation of MPP1).

For any vertex v ∈ V2, the number of vertices at distance exactly two

units from v is at most ∆(V2)(∆(V1)− 1). Thus, vertex v can always be as-

signed a color from the set {1, 2, . . . , Cmax}, where Cmax = min{∆(V2)(∆(V1)−

1))+1, |V2|}. In Algorithm GreedyPartialD2Coloring, given below, the vector

forbiddenColors is of size Cmax.

The following result is straightforward.

33

GreedyPartialD2Coloring(Gb = (V1, V2, E))

for each v ∈ V2 do
for each u ∈ N1(v) do

for each colored vertex w ∈ N1(u) do
forbiddenColors(color(w)) = v

end-for
end-for
color(v) = min{c : forbiddenColors(c) 6= v}

end-for

Lemma 6.5 GreedyPartialD2Coloring has time complexity

O(|V2|δ1(V2)(δ1(V1)− 1)).

As stated earlier, a distance-1 coloring formulation for MPP1 was pro-

vided in [7] using the column intersection graph. From Lemmas 5.1 and 6.5

and noting that greedy distance-1 graph coloring is linear in the number of

edges, it follows that the time required for the construction of the column

intersection graph plus the computation of a (greedy) distance-1 coloring is

asymptotically the same as the time required for the direct computation of

a (greedy) partial distance-2 coloring. This means the two formulations are

(asymptotically) comparable in terms of overall computation time.

6.3 Distance-3
2

Coloring Algorithms

Recall that a distance- 3
2 coloring, which was used to model MPP2, is a

distance-1 coloring where every path of length three uses at least three colors.

We propose two algorithms for this problem. In finding a valid color to assign

a vertex, the first algorithm visits the distance-3 neighbors of the vertex

while the second algorithm visits only the distance-2 neighbors. In both

algorithms the vector forbiddenColors is of size Cmax = min{∆2 + 1, |V |}.

GreedyD 3
2ColoringAlg1 outlines the first algorithm.

Figure 5 graphically shows the decision made during one of the |V | steps

of GreedyD 3
2ColoringAlg1. The root of the tree corresponds to the vertex v

to be colored at the current step. The neighbors of v that are one, two,

and three edges away are represented by the nodes at level u, w, and x,

respectively. Each tree node corresponds to many vertices of the input

graph. A darkly shaded node signifies that the vertex is already colored.

The forbidden colors are marked by an f and ‘?’ indicates that whether

the color is forbidden or not depends on the color used at level x. The

correspondence between the figure and Lines 1, 2 and 3 of the algorithm is

34

GreedyD 3
2ColoringAlg1(G = (V,E))

for each v ∈ V do
for each u ∈ N1(v) do

if u is colored (1)
forbiddenColors(color(u)) = v

for each colored vertex w ∈ N1(u) do
if u is not colored (2)

forbiddenColors(color(w)) = v
else

for each colored vertex x ∈ N1(w), x 6= u do
if (color(x) == color (u)) (3)

forbiddenColors(color(w)) = v
break

end-if
end-for

end-if
end-for

end-for
color(v) = min{c : forbiddenColors(c) 6= v}

end-for

v

f

f

?

x

w

u

Figure 5: Visualizing a step in GreedyD 3
2ColoringAlg1

35

obvious.

Notice that in Line 2 of the algorithm, the color of the vertex w in the

path (v, u, w) where u is not yet colored is forbidden for vertex v. Later

on, when vertex u is colored, the test in Line 1 ensures that u gets a color

different from both v and w, making the path use three different colors.

Had the requirement in Line 2 not been imposed, a situation in which a

path (v, u, w, x) is two-colored could arise. Thus from its construction, the

output of GreedyD 3
2ColoringAlg1 is a valid distance- 3

2 coloring. The amount

of work done in each step of the algorithm is proportional to d3(v). Thus

we get the following result.

Lemma 6.6 GreedyD 3
2ColoringAlg1 finds a distance- 3

2 coloring in time

O(|V |δ3).

We shall now present the second distance- 3
2 coloring algorithm in which

the coloring at each step is obtained by considering only the distance-2

neighborhood (in contrast to distance-3 neighborhood of the previous case).

The idea behind the algorithm (formulated in terms of matrices) was first

suggested by Powell and Toint [26].

Recall that distance- 3
2 coloring is a relaxed distance-2 coloring. As an

illustration, suppose v, u, w, x is a path in a graph. A coloring φ in which

φ(v) = φ(w) = 2, φ(u) = 1 and φ(x) = 3 is a valid distance- 3
2 (but not

distance-2) coloring on this path.

One way of relaxing the requirement for distance-2 coloring so as to

obtain a distance- 3
2 coloring is to let two vertices at distance of exactly two

units from each other share a color as long as the vertex in between them has

a color of lower value. More precisely, let v, u, w be a path in G and suppose

v and u are colored and we want to determine the color of w. We allow

φ(w) to be equal to φ(v) as long as φ(u) < φ(v). To see that this coloring

can always be extended to yield a valid distance- 3
2 coloring, consider the

path v, u, w, x, an extension of path v, u, w in one direction. Now, since

φ(w) = φ(v) > φ(u), we cannot let φ(x) be equal to φ(u). Obviously, φ(x)

should be different from φ(w), otherwise it will not be a valid distance-1

coloring. Thus the path v, u, w, x uses three colors, φ is a distance-1 coloring

and therefore it is a valid distance- 3
2 coloring. The algorithm that makes

use of this idea is given in GreedyD 3
2ColoringAlg2.

Clearly, the runtime of GreedyD 3
2ColoringAlg2 is O(|V |δ2). Notice, how-

ever, that GreedyD 3
2ColoringAlg1 may use smaller number of colors than

GreedyD 3
2ColoringAlg2. For instance, Figure 6 shows an example where the

first algorithm uses three colors in coloring the vertices in their alphabetical

order while the second one uses four in doing the same.

36

GreedyD 3
2ColoringAlg2(G = (V,E))

for each v ∈ V do
for each u ∈ N1(v) do

if u is colored
forbiddenColors(color(u)) = v

for each colored vertex w ∈ N1(u) do
if u is not colored

forbiddenColors(color(w)) = v
else

if (color(w) < color(u))
forbiddenColors(color(w)) = v

end-if
end-for

end-for
color(v) = min{c : forbiddenColors(c) 6= v}

end-for

a

b

c d

1

2

3 4

a

b

c d

1

2

3 1

Figure 6: GreedyD 3
2ColoringAlg1 vs. Alg2

6.4 Acyclic Coloring Algorithms

Here we present an effective algorithm called GreedyAcyclicColoring to find

an approximate solution for the acyclic coloring problem (GCP3).

The basic idea in our algorithm is to detect and ‘break’ a two-colored

cycle while an otherwise distance-1 coloring of the graph proceeds. Specifi-

cally, the algorithm colors the vertices of a graph G = (V,E) while making

a Depth First Search (DFS) traversal. Recall that a back-edge in the DFS-

tree of an undirected graph defines a unique cycle. For more information on

DFS, refer to the book [11].

In GreedyAcyclicColoring, the DFS-tree T (G) of the graph G is implicitly

constructed as the algorithm proceeds. Let φ(v) denote the color of vertex

v and s(v) denote the order in which v is first visited in the DFS traversal

of G (1 ≤ s(v) ≤ |V |). The root r of T (G) has s(r) = 1. Further, let

p(v) be a pointer to the parent of v in T (G), and l(v) be a pointer to the

lowest ancestor of v in T (G) such that φ(l(v)) 6= φ(v) and φ(l(v)) 6= φ(p(v)).

37

The latter pointer will be used in the detection of a two-colored cycle. In

particular, the algorithm proceeds in such a way that the path in T (G) from

v up to, but not including, l(v) is two-colored. At the beginning of the

algorithm, for every vertex u, l(u) is set to point to null.

Consider the step in GreedyAcyclicColoring where vertex v is first visited.

To start with, v is assigned the smallest color different from all of its distance-

1 neighbors in G, including its parent p(v) in T (G). If there exists a back-

edge b = (v, w) in the current T (G) such that s(l(p(v))) < s(w) and φ(v) =

φ(p(p(v))), then this implies that the cycle corresponding to b is two-colored

(see Figure 7 which shows a partial view of the DFS-tree at the step where

vertex v is to be colored). To break the cycle, v is assigned a new color—the

smallest color different from φ(p(v)) and φ(p(p(v)))—and l(v) is set to point

to p(p(v)). Otherwise, if no such back-edge exists, the color of v is declared

final and l(v) is updated in the following manner. If φ(v) 6= φ(p(p(v))), then

l(v) = p(p(v)); otherwise l(v) = l(p(v)).

l(p(v))

v

w

?

T(G)

Figure 7: Visualizing a step in GreedyAcyclicColoring

Notice that the amount of work done in each DFS visit of a vertex v in the

graph is proportional to the degree-1 of v. This makes GreedyAcyclicColoring

an O(|E|)-time algorithm.

We note that Coleman and Cai [4] have proposed an algorithm for the

acyclic coloring problem. The idea in their algorithm is to first transform

a given graph G = (V,E) to a ‘completed’ graph G′ = (V,E′) such that a

distance-1 coloring of G′ is equivalent to an acyclic coloring of G, and then

use a known distance-1 coloring heuristic on G′. The construction of G′ is

done in the following way. Start by setting E ′ = E; visit the vertices in V in

a predefined order ; at each step i, if vertex vi is adjacent to vertices vj and

38

vk such that both vj and vk are ordered before vi then add the edge (vj , vk)

to E′.

Our approach differs from that of Coleman and Cai in at least two ways.

First, the graph G′ used in the latter approach may require substantially

more storage space than the original graph G used in our approach. Second,

an edge in E ′ \ E in the latter approach may actually be redundant. For

example, a distance-1 coloring of an odd-length cycle in G uses at least three

colors and hence is a valid acyclic coloring whereas the Coleman and Cai

approach adds one redundant edge to the cycle.

6.5 Bicoloring Algorithms

Here we consider problems GCP4 and GCP5, introduced in Sections 3.4 and

3.5, respectively.

Recall that in a distance- 3
2 p-bicoloring, some of the vertices are assigned

the neutral color 0. We make the following crucial observation which helps

us identify a possible set of such vertices. The observation is a direct conse-

quence of Condition 2 of Definition 3.8.

Observation 6.7 Let Gb = (V1, V2, E) be a bipartite graph and

φ : [V1, V2]→ {0, 1, . . . , p} be a distance- 3
2 bicoloring of Gb. Then,

• the set C = {v : φ(v) 6= 0} is a vertex cover in Gb, and

• the set I = {v : φ(v) = 0} is an independent set in Gb.

One consequence of Observation 6.7 is that |I|+ |C| = |V1|+ |V2|. Thus,

minimizing the cardinality of the vertex cover C corresponds to maximizing

the cardinality of the independent set I.

6.5.1 An algorithm for GCP4

In light of Observation 6.7, we suggest GCP4Algorithm as a scheme for solving

the coloring problem GCP4.

GCP4Algorithm(Gb = (V1, V2, E))

1. Find a vertex cover C in Gb.

2. Assign the vertices in the set I = (V1 ∪ V2) \ C the color 0.

3. Color the vertices in C such that the result is a distance-3/2 bicoloring
of Gb.

39

In Step 1 of GCP4Algorithm, any vertex cover can be used. However,

the choice of the vertex cover affects the subsequent coloring in Step 3, both

in terms of number of colors used and coloring time spent. To reduce the

coloring time in Step 3, the size of the vertex cover should be minimized.

Furthermore, minimizing the potential number of colors to be used imposes

an additional requirement: the vertex cover should include those vertices

from V1 and V2 with relatively high number of distance-1 neighbors. (Recall

the introductory discussion in Section 2.2 used to motivate the need for

a two-dimensional partition: matrices with a few dense rows and columns

benefit from a two-dimensional partition.)

In a bipartite graph, a minimum cardinality vertex cover can be obtained

via finding a maximum matching in polynomial time [22, 28]. In fact, it can

be computed practically in effectively linear time in the number of edges

[24].

Once Steps 1 and 2 are carried out, Step 3 can be done by a suitable

adaptation of GreedyD 3
2ColoringAlg1. GreedyD 3

2BiColoring, given here only

pictorially, is such an adaptation. One of the differences between the coloring

and bicoloring algorithms is that in the latter case, two disjoint set of colors

are used in coloring the vertices in V1 and V2 of the bipartite graph Gb =

(V1, V2, E). Another difference is that at a step of the bicoloring algorithm

where v is colored, a vertex within the distance-3 neighborhood of v may be

one of three types: it is colored with a positive value, it is colored with 0, or

it is not yet colored. The choice of color for v thus needs to consider these

three options.

v

f

x

w

u

f ?

Figure 8: Visualizing a step in GreedyD 3
2BiColoring

40

Figure 8 shows a visual presentation of the ith step of GreedyD 3
2BiColoring.

Note the similarity with Figure 5. Notice also that, in choosing a color for

vertex v in Gb = (V1, V2, E), since the colors for vertices in V1 and V2 are

drawn from two disjoint sets, we need only consider colors of vertices two

edges away from v. In the figure, dark shaded nodes correspond to colored

vertices, light shaded nodes show vertices with color zero, and unshaded

nodes correspond to uncolored vertices. Observe that the node with color

0 at level u has only two children. The colors of the vertices in the nodes

marked by an f indicate forbidden colors and whether the color at the node

marked by ‘?’ is forbidden or not depends on the color used at node x: if

φ(u) = φ(x), φ(w) is forbidden, otherwise, it is not.

The time complexity of GreedyD 3
2BiColoring is O((|V1|+ |V2|)δ3), which

is also the overall time complexity of GCP4Algorithm assuming that step 1

is done using a greedy algorithm that is linear in the number of edges.

Notice that a partial distance-2 coloring of Gb on V2 is a just special

case of the scheme GCP4Algorithm. To see this, consider the trivial choice of

vertex cover C = V2 in Step 1. This implies that, in Step 2, the vertices in

the set I = V1 will be colored with zero. By Condition 3 of Definition 3.8,

vertices adjacent to a vertex colored with zero are required to be assigned

different colors. Thus, the result is effectively a partial distance-2 coloring

of Gb on V2.

We note that Hossain and Steihaug [17] and Coleman and Verma [9] have

each proposed an algorithm for GCP4. These algorithms can be interpreted

in light of GCP4Algorithm. The algorithm of Hossain and Steihaug (HS)

implicitly finds a vertex cover while the coloring of the graph proceeds.

Using our terminology, the vertices that remain uncolored at the end of the

HS-algorithm form an independent set in the graph and can thus be assigned

the neutral color 0.

The algorithm of Coleman and Verma uses a preprocessing step to iden-

tify the rows and columns of the underlying matrix that eventually need

to be colored with positive values. The preprocessing step uses a non-

straightforward matrix-based procedure. It appears that the procedure effec-

tively produces a small sized vertex cover (however, this is not clearly stated

in the paper). After the preprocessing step, a certain ‘column intersection’

graph, adapted to the distance- 3
2 bicoloring requirements, is constructed to

finally use known distance-1 coloring heuristics on the resulting graph.

41

6.5.2 An algorithm for GCP5

Similarly, by virtue of Observation 6.7, the approach we suggest for solving

the acyclic bicoloring problem is given in GCP5Algorithm.

GCP5Algorithm(Gb = (V1, V2, E))

1. Find a vertex cover C in Gb.

2. Assign the vertices in the set I = (V1 ∪ V2) \ C the color 0.

3. Color the vertices in C such that the result is an acyclic bicoloring of
Gb.

7 Conclusion

We have studied the efficient estimation of sparse Jacobian and Hessian

matrices using FD and AD techniques. We considered methods that rely

on a one-dimensional as well as a two-dimensional partition to be used in

an evaluation based on a direct or a substitution scheme. We introduced

partial matrix estimation problems in distinction from full matrix estimation

problems. In doing so, we developed a unified graph theoretic framework to

cope with a variety of complex matrix partitioning problems.

At the basis of our graph problem formulations lies a robust graph rep-

resentation of the sparsity structure of a matrix: a nonsymmetric matrix is

represented by its bipartite graph and a symmetric matrix by its adjacency

graph.

We showed that the distance-2 graph coloring problem is a generic model

for the various one-dimensional matrix partitioning problems.

Our unified graph theoretic approach enabled us to provide some fresh

insight into the matrix problems and as a result we developed several sim-

ple and effective algorithms. Our emphasis has been on greedy algorithms.

Other algorithmic techniques need to be explored in the future. For ex-

ample, it could be interesting to find a distance-2 coloring algorithm that

uses asymptotically the same time as the greedy algorithm discussed in this

paper and balances the number of vertices in each color class. Finding a

random color, rather than the smallest color, from an allowable set could be

an idea to consider in this regard.

In the case of two-dimensional partition problems, based on the known

relationship to graph bicoloring, we argued that finding a ‘small’-size vertex

cover as a preprocessing step contributes to making the overall computation

42

more efficient. A more precise characterization of the ‘optimum’ vertex cover

required is a worthwhile issue.

We have not developed any special algorithms for the restricted coloring

problems arising in partial matrix estimation. The ideas used in our algo-

rithms for the coloring problems in full matrix estimation can be adapted

to the restricted cases by observing the particular coloring conditions.

In general, most of the algorithms in the literature for solving the coloring

problems considered in this paper rely on first transforming the input graph

G = (V,E) to some denser graph G′ = (V,E′), E′ ⊇ E, such that a distance-

1 coloring of G′ is equivalent to the particular coloring problem on G. In

contrast, the algorithms proposed in this paper solve the particular coloring

problem directly on G. As has been argued, the main advantages offered

by our approach are the possibility to mix-and-match methods, less storage

space requirement, and ease of developing flexible software.

One of the motivations for the current study has been the need for the

development of parallel algorithms for solving partitioning problems in large-

scale PDE-constrained optimization contexts. In a recent work [13], we have

shown some parallel algorithms (using the shared-memory programming

model) for the distance-2 and distance- 3
2 coloring problems. Our results,

theoretical as well as experimental, were promising. We believe that this

study lays a foundation for further work on the development and imple-

mentation of not only shared-memory but also distributed-memory parallel

algorithms.

Acknowledgement We thank Trond Steihaug for interesting discussions.

References

[1] G. Agnarsson, R. Greenlaw, and M. M. Halldórsson. On powers of

chordal graphs and their colorings. Congress Numerantium, 100:41–65,

2000.

[2] G. Agnarsson and M. M. Halldórsson. Coloring powers of planar graphs.

In 11th. Ann. ACM-SIAM symp. on Discrete Algorithms, pages 654–

662, 2000.

[3] O. Axelsson and U. Nävert. On a graphical package for nonlinear par-

tial differential equation problems. In B. Gilchrist, editor, Proceedings

of IFIP Congress 77, Information Processing, pages 103–108. North-

Holland, 1977.

43

[4] T. F. Coleman and J. Cai. The cyclic coloring problem and estimation

of sparse Hessian matrices. SIAM J. Alg. Disc. Meth., 7(2):221–235,

April 1986.

[5] T. F. Coleman, B. Garbow, and J. J. Moré. Software for estimating

sparse Jacobian matrices. ACM Trans. Mathematical Software, 10:329–

347, 1984.

[6] T. F. Coleman, B. Garbow, and J. J. Moré. Software for estimating

sparse Hessian matrices. ACM Trans. Mathematical Software, 11:363–

377, 1985.

[7] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices

and graph coloring problems. SIAM J. Numer. Anal., 20(1):187–209,

February 1983.

[8] T. F. Coleman and J. J. Moré. Estimation of sparse Hessian matrices

and graph coloring problems. Math. Program., 28:243–270, 1984.

[9] T. F. Coleman and A. Verma. The efficient computation of sparse Jaco-

bian matrices using automatic differentiation. SIAM J. Sci. Comput.,

19(4):1210–1233, July 1998.

[10] G. Corliss, C. Faure, A. Griewank, L. Hascoét, and U. Naumann. Auto-

matic Differentiation of Algorithms: From Simulation to Optimization.

Springer, New York, 2002.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Al-

gorithms. Massachusetts Institute of Technology, 1990.

[12] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of

sparse Jacobian matrices. J. Inst. Math. Appl., 13:117–119, 1974.

[13] A.H. Gebremedhin, F. Manne, and A. Pothen. Parallel distance-k

coloring algorithms for numerical optimization. In B. Monien and

R. Feldmann, editors, Euro-Par 2002 Parallel Processing, volume 2400

of LNCS, pages 912–921. Springer Verlag, 2002.

[14] A. Griewank and G. F. Corliss. Automatic Differentiation of Algo-

rithms: Theory, Implementation, and Application. SIAM, Philadelphia,

1991.

[15] B. Grünbaum. Acyclic colorings of planar graphs. Israel J. Math.,

14:390–408, 1973.

44

[16] S. Hossain. On the computation of sparse Jacobian matrices and New-

ton steps. Technical Report 146, Department of Informatics, University

of Bergen, Norway, March 1998.

[17] S. Hossain and T. Steihaug. Computing a sparse Jacobian matrix by

rows and columns. Optimization Methods and Software, 10:33–48, 1998.

[18] S. Hossain and T. Steihaug. Reducing the number of AD passes for com-

puting a sparse Jacobian matrix. In G. Corliss, C. Faure, A. Griewank,

L. Hascoét, and U. Naumann, editors, Authomatic Differentiation of Al-

gorithms: From Simulation to Optimization, pages 263 – 270. Springer,

2002.

[19] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov

methods: A survey of appoaches and applications. Available at

http://www.math.odu.edu/˜ keyes/.

[20] S. O. Krumke, M. V. Marathe, and S.S. Ravi. Approximation algo-

rithms for channel assignment in radio networks. In Dial M for Mobility,

Dallas, Texas, October 1998.

[21] Y. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM

J. Disc. Math., 8:99–118, 1995.

[22] L. Lovász and M.D. Plummer. Matching Theory. North-Holland, Am-

sterdam, 1986.

[23] S. T. McCormick. Optimal approximation of sparse Hessians and its

equivalence to a graph coloring problem. Math. Program., 26:153–171,

1983.

[24] R. Motwani. Average-case analysis of algorithms for matchings and

related problems. Journal of the ACM, 41:1329–1356, 1994.

[25] G. N. Newsam and J. D. Ramsdell. Estimation of sparse Jacobian

matrices. SIAM J. Alg. Disc. Meth., 4:404–418, 1983.

[26] M. J. D. Powell and P. L. Toint. On the estimation of sparse Hessian

matrices. SIAM J. Numer. Anal., 16(6):1060–1074, December 1979.

[27] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[28] L. A. Wolsey. Integer Programming. Wiley-Interscience Publication,

New York, USA, 1998.

45

Parallel Distance-k Coloring Algorithms for

Numerical Optimization

Assefaw Hadish Gebremedhin∗ Fredrik Manne Alex Pothen†‡

Abstract

Matrix partitioning problems that arise in the efficient estimation of

sparse Jacobians and Hessians can be modeled using variants of graph

coloring problems. In a previous work [7], we argue that distance-
2 and distance- 3

2
graph coloring are robust and flexible formulations

of the respective matrix estimation problems. The problem size in

large-scale optimization contexts makes the matrix estimation phase

an expensive part of the entire computation both in terms of execution

time and memory space. Hence, there is a need for both shared- and

distributed-memory parallel algorithms for the stated graph coloring

problems. In the current work, we present the first practical shared

address space parallel algorithms for these problems. The main idea in

our algorithms is to randomly partition the vertex set equally among

the available processors, let each processor speculatively color its ver-

tices using information about already colored vertices, detect eventual

conflicts in parallel, and finally re-color conflicting vertices sequentially.

Randomization is also used in the coloring phases to further reduce

conflicts. Our PRAM-analysis shows that the algorithms should give

almost linear speedup for sparse graphs that are large relative to the

number of processors. Experimental results from our OpenMP imple-

mentations on a Cray Origin2000 using various large graphs show that

the algorithms indeed yield reasonable speedup for modest numbers of

processors.

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway. {assefaw,

fredrikm}@ii.uib.no
†Computer Science Department, Old Dominion University, Norfolk, VA 23529 USA;

CSRI, Sandia National Labs, Albuquerque NM 87185 USA; and ICASE, NASA Langley

Research Center, Hampton, VA 23681-2199 USA. pothen@cs.odu.edu
‡This author’s research was supported by NSF grant DMS-9807172, DOE ASCI level-2

subcontract B347882 from Lawrence Livermore National Lab; and by DOE SCIDAC grant

DE-FC02-01ER25476.

1

1 Introduction

Numerical optimization algorithms that rely on derivative information often

need to compute the Jacobian or Hessian matrix. Since this is an expen-

sive part of the computation, efficient methods for estimating these matrices

via finite differences (FD) or automatic differentiation (AD) are needed. It

is known that the problem of minimizing the number of function evalua-

tions (or AD passes) required in the computation of these matrices can be

formulated as variants of graph coloring problems [1, 2, 3, 9, 13]. The par-

ticular coloring problem differs with the optimization context: whether the

Jacobian or the Hessian matrix is to be computed; whether a direct or a

substitution method is employed; and whether only columns, or only rows,

or both columns and rows are to be used to evaluate the matrix elements. In

addition, the type of coloring problem depends on the kind of graph used to

represent the underlying matrix. In [7], we provide an integrated review of

previous works in this area and identify the distance-2 (D2) graph coloring

problem as a unifying, generic, and robust formulation. The D2-coloring

problem has also noteworthy applications in other fields such as channel

assignment [11] and facility location problems [14].

Large-scale PDE-constrained optimization problems can be solved only

with the memory and time resources available on parallel computers. In

these problems, the variables defined on a computational mesh are already

distributed on the processors, and hence parallel coloring algorithms are

needed for computing, for instance, the Jacobian. It turns out that the

problems of efficiently computing the Jacobian and Hessian can be formu-

lated as the D2- and D 3
2 -coloring problems, respectively. The latter coloring

problem is a relaxed variant of the former, and will be described in Sec-

tion 2.2. In these formulations, the bipartite graph associated with the rows

and columns of the matrix is used for the Jacobian; in the case of the Hes-

sian matrix, the adjacency graph corresponding to the symmetric matrix is

used.

In this paper, we present several new deterministic as well as probabilistic

parallel algorithms for the D2- and D 3
2 -coloring problems. Our algorithms

are practical and effective, well suited for shared address space programming,

and have been implemented in C using OpenMP primitives. We report

results from experiments conducted on a Cray Origin 2000 using large graphs

that arise in finite element methods and in eigenvalue computations.

In the sequel, we introduce the graph problems in Section 2, present the

algorithms in Section 3, discuss our experimental results in Section 4, and

conclude the paper in Section 5.

2

2 Background

2.1 Matrix Partition Problems

An essential component of the efficient estimation of a sparse Jacobian or

Hessian using FD or AD is the problem of finding a suitable partition of

the columns and/or the rows of the matrix. The particular partition chosen

defines a system of equations from which the matrix entries are determined.

A method that utilizes a diagonal system is called a direct method, and

one that uses a triangular system is called a substitution method. A direct

method is more restrictive but the computation of matrix entries is straight-

forward and numerically stable. A substitution method, on the other hand,

is less restrictive but it may be subject to approximation difficulties and

numerical instability. Moreover, direct methods offer more parallelism than

substitution methods. In this paper, we focus on direct methods that use

column partitioning.

A partition of the columns of a nonsymmetric matrix A is said to be

consistent with the direct determination of A if whenever aij is a non-zero

element of A then the group containing column j has no other column with

a non-zero in row i [1]. Similarly, a partition of the columns of a symmetric

matrix A is called symmetrically consistent with the direct determination

of A if whenever aij is a non-zero element of A then either (i) the group

containing column j has no other column with a non-zero in row i, or (ii)

the group containing column i has no other column with a non-zero in row

j [2]. From a given (symmetrically) consistent partition {C1, C2, . . . , Cρ} of

the columns of A, the nonzero entries can be determined with ρ function

evaluations (matrix-vector products).

Thus we have the following two problems of interest. Given the sparsity

structure of a nonsymmetric m× n matrix A, find a consistent partition of

the columns of A with the fewest number of groups. We refer to this problem

as NONSYMCOLPART. The second problem of our interest, which we call

SYMCOLPART, states: given the sparsity structure of a symmetric n× n

matrix A, find a symmetrically consistent partition of the columns of A with

the fewest number of groups.

2.2 Graph Problems

In a graph, two distinct vertices are said to be distance-k neighbors if the

shortest path connecting them consists of at most k edges. The number

of distance-k neighbors of a vertex u is referred to as the degree-k of u

and is denoted by dk(u). A distance-k ρ-coloring (or (k, ρ)-coloring for

3

short) of a graph G = (V,E) is a mapping φ : V → {1, 2, . . . , ρ} such

that φ(u) 6= φ(v) whenever u and v are distance-k neighbors. We call a

mapping φ : V → {1, 2, . . . , ρ} a (3
2 , ρ)-coloring of a graph G = (V,E) if φ

is a (1, ρ)-coloring of G and every path containing three edges uses at least

three colors. Notice that a (3
2 , ρ)-coloring is a restricted (1, ρ)-coloring, and

a relaxed (2, ρ)-coloring, and hence the name. For instance, consider a path

u, v, w, x in a graph. The assignment 2, 1, 2, 3 to the respective vertices is

a valid D1- and D 3
2 -coloring, but not a valid D2-coloring. The distance-k

graph coloring problem asks for a (k, ρ)-coloring of a graph with the least

possible value of ρ.

Let A be an m × n rectangular matrix with rows r1, r2, . . . , rm and

columns a1, a2, . . . , an. We define the bipartite graph of A as Gb(A) =

(V1, V2, E) where V1 = {r1, r2, . . . , rm}, V2 = {a1, a2, . . . , an}, and (ri, aj) ∈

E whenever aij 6= 0, for 1 ≤ i ≤ m, 1 ≤ j ≤ n. When A is an n× n sym-

metric matrix with non-zero diagonal elements, the adjacency graph of A is

defined to be Ga(A) = (V,E) where V = {a1, a2, . . . , an} and (ai, aj) ∈ E

whenever aij, i 6= j, is a non-zero element of A. Note that the non-zero

diagonal elements of A are not explicitly represented by edges in Ga(A).

In our work, we rely on the bipartite and adjacency graph representations.

However, in the literature, a nonsymmetric matrix A is often represented by

its column intersection graph Gc(A). In this representation, the columns of

A constitute the vertex set, and an edge (ai, aj) exists whenever the columns

ai and aj have non-zero entries at the same row position (i.e., ai and aj are

not structurally orthogonal). As argued in [7], the bipartite graph represen-

tation is more flexible and robust than the ‘compressed’ column intersection

graph.

Coleman and Moré [1] showed that problem NONSYMCOLPART is

equivalent to the D1-coloring problem when the matrix is represented by

its column intersection graph. We have shown [7] that the same problem

is equivalent to a partial D2-coloring when a bipartite graph is used and

discussed the relative merits of the two approaches. The word ‘partial’ re-

flects the fact that only the vertices corresponding to the columns need to

be colored.

McCormick [13] showed that the approximation of a Hessian using a

direct method is equivalent to a D2-coloring on the adjacency graph of the

matrix. One drawback of McCormick’s formulation is that it does not exploit

symmetry. Later Coleman and Moré [2] addressed this issue and showed that

the resulting problem (SYMCOLPART) is equivalent to the D 3
2 -coloring

problem.

4

3 Parallel Coloring Algorithms

The distance-k coloring problem is NP-hard for any fixed integer k ≥ 1

[12]. A proof-sketch showing that D 3
2 -coloring is NP-hard is given in [2].

Furthermore, Lexicographically First ∆+1 Coloring (LFC), the polynomial

variant of D1-coloring in which the vertices are given in a predetermined

order and the question at each step is to assign the vertex the smallest color

not used by any of its neighbors, is P-complete [8]. The practical implication

of this is that designing efficient fine-grained parallel algorithm for LFC is

hard.

In practice, greedy sequential D1-coloring heuristics are found to be quite

effective [1]. In a recent work [6], we have shown effective methods of paral-

lelizing such greedy algorithms in a coarse-grained setting. Here, we extend

this work to develop parallel algorithms for the D2- and D 3
2 -coloring prob-

lems.

Jones and Plassmann [10] describe a parallel distributed memory D1-

coloring algorithm that uses randomization to assign priorities to the ver-

tices, and then colors the vertices in the order determined by the priorities.

There is no speculative coloring in their algorithm. It was reported that the

algorithm slows down as the number of processors is increased. Finocchi et

al. [5] suggest a parallel D1-coloring algorithm organized in several rounds;

in each round, currently uncolored vertices are assigned a tentative pseudo-

color without consulting their neighbors mapped to other processors; in a

conflict resolution step, a maximal independent set of vertices in each color

class is assigned these colors as final; the remainder of the vertices are un-

colored, and the algorithm moves into the next round. However, they do

not give any implementation and we believe that this algorithm incurs too

many rounds, each with its synchronization and communication steps, for

it to be practical on large graphs.

Our algorithm (in its generic form) may be viewed as a compromise

between these algorithms, where we permit speculative coloring, but limit

the number of synchronization steps to two in the whole algorithm. However,

our current algorithms rely on the shared address space programming model;

we will adapt our algorithms to distributed memory programming models

in future work. We are unaware of any previous work on parallel algorithms

for D2- and D 3
2 -coloring problems.

5

3.1 Generic Greedy Parallel Coloring Algorithm (GGPCA)

The steps of our generic parallel coloring algorithm can be summarized as

shown below; refer to [6] for a detailed discussion of the D1-coloring case.

Let G = (V,E) be the input graph and p be the number of processors.

Phase 0 : Partition

Randomly partition V into p equal blocks V1 . . . Vp. Processor Pi is

responsible for coloring the vertices in block Vi.

Phase 1 : Pseudo-color

for i = 1 to p do in parallel

for each u ∈ Vi do

assign the smallest available color to u, paying attention

to already colored vertices (both local and non-local).

—barrier synchronize—

Phase 2 : Detect conflicts

for i = 1 to p do in parallel

for each u ∈ Vi do

check whether the color of u is valid. If the colors of u and v

are the same for some ‘neighbor’ v of u then

Li = Li ∪min{u, v}

—barrier synchronize—

Phase 3 : Resolve conflicts

Color the vertices in the conflict list L = ∪Li sequentially.

In Phase 0, the vertices are randomly partitioned into p equal blocks each

of which is assigned to some processor. In Phase 1, the processors color the

vertices in their respective blocks in parallel. When two ‘neighbor’ vertices

reside on different processors, the two processors could color both simul-

taneously, possibly assign them the same value, and cause a conflict. The

purpose of Phase 2 is to detect and store any such conflict vertices which

are subsequently re-colored sequentially in Phase 3.

3.2 Simple Distance-2 (SD2) Coloring Algorithm

The meaning of ‘available’ color in GGPCA depends on the required col-

oring. In the case of a D2-coloring, a vertex is assigned the smallest color

not used by any of its distance-2 neighbors. Let ∆ denote the maximum

degree-1 in the graph G = (V,E). It can easily be verified that, in a D2-

coloring, a vertex can always be assigned one of the colors from the set

{1, 2, . . . ,∆2 + 1}. Moreover, since the distance-1 neighbors of a vertex are

6

distance-2 neighbors with each other, the 2-chromatic number, i.e., the least

number of colors required in a D2-coloring, is at least ∆+1. Thus, the greedy

approach is an O(∆)-approximation algorithm. We refer to the variant of

GGPCA that applies to D2-coloring as Algorithm SD2.

Note that the sequential time complexity of greedy D2-coloring is O(∆2|V |).

The following results show that the number of conflicts discovered in Phase

2 of Algorithm SD2 is often small for sparse graphs, making the algorithm

scalable when the number of processors p = O(

√

|V |

2

∆|E|

). The proofs are

straightforward extensions of our proofs for the D1-coloring case given in [6]

and hence are omitted here. One only needs to observe that the degree-2

and degree-1 of a vertex u are related by d2(u) ≤ ∆d1(u). Let δ = 2|E|/|V |

denote the average degree-1 in G.

Lemma 1 The expected number of conflicts created at the end of Phase 1

of Algorithm SD2 is at most ≈ ∆δ(p−1)
2 .

Theorem 2 On a CREW PRAM, Algorithm SD2 distance-2 colors the in-

put graph consistently in expected time O(∆2(|V |

p + ∆δp)) using at most

∆2 + 1 colors.

Corollary 3 When p = O(

√

|V |

2

∆|E|

), the expected runtime of Algorithm SD2

is O(∆2
|V |

p).

The number of conflicts predicted by Lemma 1 is an overestimate. The

analysis assumes that whenever two distance-2 neighbor vertices are col-

ored simultaneously, they are assigned the same color, thereby resulting in a

conflict. However, a more involved probabilistic analysis that takes the dis-

tribution of colors used into account may provide a tighter bound. Besides,

the actual number of conflicts in an implementation could be significantly

reduced by choosing a random color from the allowable set, instead of the

smallest one as given in Phase 1 of GGPCA.

3.3 Improved Distance-2 (ID2) Coloring Algorithm

The number of colors used in Algorithm SD2 can be reduced using a ‘two-

round-coloring’ strategy. The underlying idea in the D1-coloring case is due

to Culberson [4] and was used in our parallel algorithms for D1-coloring

[6]. In Lemma 4 we extend the result to the D2-coloring case; the proof

is basically a reproduction of Culberson’s proof for the distance-1 coloring

case. The greedy sequential algorithm referred to in the lemma is one that

7

visits the vertices of a graph G = (V,E) in some order (a permutation of

{1, 2, . . . , |V |}), each time assigning a vertex the smallest allowed color. In

particular, the first vertex to be visited is assigned color 1.

Lemma 4 Let φ be a distance-2 coloring of a graph G using α colors, and

π a permutation of the vertices such that if φ(vπ(i)) = φ(vπ(l)) = c, then

φ(vπ(j)) = c for i < j < l. Applying the greedy sequential distance-2 coloring

algorithm to G where the vertices have been ordered by π will produce a

coloring φ′ using α or fewer colors.

Proof: The proof is a simple induction showing that the first i color classes1

listed in the permutation will be colored with i or fewer colors. Clearly, the

first color class listed will be colored with color 1. Suppose some element of

the ith class requires color i + 1. This means that it must have a distance-2

neighbor of color i. But by induction the vertices in the 1st to the (i− 1)th

classes used no more than i− 1 colors. Thus, the conflict has to be with a

member of its own color class, but this contradicts the assumption that φ is

a valid distance-2 coloring. 2

The idea in Lemma 4 is that if the greedy coloring algorithm is re-applied

on a graph, with the vertices belonging to the same color class (in the original

coloring) listed consecutively, then the new coloring obtained is better or at

least as good as the original. One ordering (among many) that satisfies this

condition, with a good potential for reducing the number of colors used, is to

list the vertices consecutively for each color class in the reverse order of the

introduction of the color classes. Based on Lemma 4, we modify Algorithm

SD2 and introduce an additional parallel coloring phase between Phases 1

and 2. Algorithm ID2 below outlines the resulting 4-phase algorithm.

Phases 0 and 1. Same as Ph. 0 and 1 of GGPCA.

(Let s be the number of colors.)

Phase 2. for k = s downto 1 do

Partition ColorClass(k) into p equal blocks V ′

1 , . . . , V
′

p

for i = 1 to p do in parallel

for each u ∈ V ′

i do

assign the smallest available color to vertex u.

—barrier synchronize—

Phases 3 and 4. Same as Phases 2 and 3 of GGPCA, respectively.

1Vertices of the same color constitute a color class.

8

In Phase 2, most of the vertices in a color class are at a distance greater

than two edges from each other, and the exceptions arise from the conflict

vertices colored incorrectly in Phase 1. Since the number of such conflict

vertices from Phase 1 is low, the number of conflict vertices at the end of the

re-coloring phase will be even lower. Phases 3 and 4 are included to detect

and resolve any eventual conflicts not resolved in Phase 2.

3.4 Simple Distance- 3
2

(SD3
2
) Coloring Algorithm

Recall that a D 3
2 -coloring is a relaxed D2-coloring (see the example in Sec-

tion 2.2). One way of relaxing the requirement for D2-coloring in GGPCA

so as to obtain a valid D 3
2 -coloring is to let two vertices at a distance of

exactly two edges from each other share a color as long as the vertex in

between them is already colored with a (color of) lower value. We refer to

the variant of GGPCA that employs this technique to achieve a distance-3/2

coloring as Algorithm SD 3
2 .

Note that both Algorithms ID2 and SD 3
2 take asymptotically the same

time as Algorithm SD2.

3.5 Randomization

The potential scalability of GGPCA depends on the number of conflicts dis-

covered in Phase 2, since these are resolved sequentially in Phase 3. For

dense graphs the number of conflicts could be large enough to destroy the

scalability of the algorithm. To overcome this problem, we use randomiza-

tion as a means for reducing the number of conflicts. In the randomized

variants of Algorithms SD2, SD 3
2 , and ID2, a vertex is assigned the next

available color with probability q, where 0 < q ≤ 1. The first attempt is

made with the smallest available color, i.e., the color is chosen with proba-

bility q. An attempt is said to be successful if the vertex is assigned a color.

If an attempt is not successful, then the next available color is tried with

probability q, and so on, until the vertex gets a color. Algorithms SD2, SD 3
2 ,

and ID2, can be seen as the deterministic variants where q = 1. We refer to

the randomized versions of the respective algorithms as RSD2, RSD 3
2 , and

RID2.

Let u and v be two vertices with the same (infinite) set of allowable colors.

If u and v are colored concurrently, it can be shown that the probability that

u and v get the same color is q/(2−q). This shows how randomization leads

to a reduction in the number of conflicts; the lower the value of q, the lower

chance for a conflict to arise. It should however be noted that a ‘low’ value

9

Set Problem |V | |E| ∆ δ δ
Set I (FE) mrng2 1,017,253 2,015,714 4 2 4

fe144 144,649 1,074,393 26 4 15
m14b 214,765 1,679,018 40 4 16

Set II (EV) ev01 10,134 1,318,579 634 93 260
ev02 19,845 3,353,890 749 78 338

Table 1: Test Graphs: the last three columns list the max., min., and average
degree-1, respectively.

of q may result in an increase in the number of colors used. Choosing the

right value for q thus becomes a design issue.

4 Experimental Results and Discussion

Our test bed consists of graphs that arise from finite element methods and

from eigenvalue computations [6]. Table 1 provides the test graphs’ struc-

tural information: columns |V | and |E| give the number of vertices and

edges of each graph, respectively, and the maximum, minimum, and average

degree-1 of each graph is given under columns ∆, δ, and δ, respectively.

Table 2 through 7 provide coloring and timing information of the different

algorithms. The number of blocks (processors) is given in column p. Column

χi gives the number of colors used at the end of Phase i of the corresponding

algorithm. The number of conflicts that arise in Phase 1 (or 2) are listed

under the column labeled K (or K2). The time in milliseconds required

by the different phases are listed under T1, T2, T3, T4; column Ttot gives

the total time used. The last two columns display speedup with respect

to two different references: Sseq lists the speedup obtained in comparison

with the runtime of a pure sequential version, i.e., a version with no conflict

detection phase, and Spar displays speedup obtained by taking the runtime

of a parallel algorithm on one processor as a reference.

Since the deterministic algorithms gave acceptable results on the rela-

tively sparse graphs of Set I, the randomized variants were run only on the

graphs from Set II.

The experimental results show that Algorithm SD2 uses many fewer

colors than the bound ∆2 + 1 and that Algorithm ID2 reduces the number

of colors by up to 10% compared to SD2. The advantage of exploiting

symmetry in Problem SYMCOLPART can be seen by comparing the number

of colors used in SD2 and SD 3
2 ; the latter can be as much as 37% fewer

than the former. In general, the number of colors used in our deterministic

algorithms increases only slightly with increasing p. For the randomized

10

p= 1 2 4 6 8 12 1 2 4 6 8 12
0

0.2

0.4

0.6

0.8

1
 Fig. 1a Simple D2

p= 1 2 4 6 8 12 1 2 4 6 8 12
0

0.2

0.4

0.6

0.8

1
 Fig. 1b Improved D2

Ph. 1
Ph. 2
Ph. 3
Ph. 4

p= 1 2 4 6 8 12 1 2 4 6 8 12
0

0.2

0.4

0.6

0.8

1
 Fig. 1c Simple D3/2

p=1 2 4 6 8 12 1 2 4 6 8 12 1 2 4 6 8 12
0

0.2

0.4

0.6

0.8

1
 Fig. 1d Randomized Algorithms

 RSD2 RID2 RSD3/2

Figure 1: a-c: Relative performance of deterministic algorithms on graphs
fe144 (left-half on each sub-figure) and ev02 (right-half). Fig. 1d: Relative
performance of randomized algorithms on ev02.

algorithms, the number of colors in some cases even decreases as p increases,

but we think this is a random phenomenon.

Based on the results displayed in Tables 2 through 7, Fig. 1 shows how

the different phases of the algorithms scale as more processors are employed

for two representative graphs: fe144 from Set I and ev02 from Set II. For

graph fe144, the time used in resolving conflicts sequentially is negligible

compared to the overall time. Moreover, it can be seen that Phases 1 and 2

of Algorithms SD2 and SD 3
2 scale rather well on this graph as the number

of processors is increased. However, Phase 2 of Algorithm ID2 does not

scale as well. This is due to the existence of many color classes with few

vertices which entails extra synchronization and communication overhead in

the parallel re-coloring phase.

The picture for the more dense graph ev02 is different: the time elapsed

in Phase 3 of Algorithm SD2 is significant and increases as the number of

processors is increased. The situation is somewhat better for SD3/2 and

ID2. Note that ev02 is about 100 times denser than fe144 (where density

= |E|

|V |
2), and the results in Tables 2 to 7 and Fig. 1 agree well with the results

11

in Corollary 3: when the average degree is high, we lose scalability.

Fig. 1d shows how using probabilistic algorithms solves the problem of

high number of conflicts for graph ev02. The improvement in scalability

comes at the expense of increased number of colors used (see Table 2 to 7).

We have experimented using different values for q and found good results

when q = 1/20 for RSD2, and q = 1/6 for RID2 and RSD 3
2 .

It should be noted that the speedups observed in Fig. 1 are all relative

to the respective parallel algorithm run with p = 1 (see Spar in the various

tables). A comparison against a sequential version with no conflict detecting

and resolving phase would yield less speedup (see Sseq in the tables). In

particular, relative to a sequential version, the ideal speedup obtained by

Algorithms SD2 and ID2 is roughly 1
2p and 2

3p, respectively.

Our algorithms in general did not scale well beyond around 16 proces-

sors. We believe this is due to, among other things, the relatively high cost

associated with non-local physical memory accesses. It would be interesting

to see how this affects the behavior of the algorithms on different parallel

platforms.

5 Conclusion

We have presented several simple and effective parallel approximation al-

gorithms as well as results from OpenMP-implementations for the D2- and

D3
2 -coloring problems. The number of colors produced by the algorithms in

the case where p = 1 is generally good as it is typically off from the lower

bound ∆ + 1 of SD2 by a factor much less than the approximation ratio ∆.

As more processors are employed, the algorithms provide reasonable speedup

while maintaining the quality of the solution. In general, our deterministic

algorithms seem to be suitable for sparse graphs and the probabilistic vari-

ants for more dense graphs. We believe the functionality provided by our

algorithms is useful for many large-scale optimization codes, where paral-

lel speedups while desirable, are not paramount, as long as running times

for coloring are low relative to the other steps in the optimization compu-

tations. The three sources of parallelism in our algorithms – partitioning,

speculation, and randomization – can be exploited in developing distributed

parallel algorithms, but the algorithms would most likely differ significantly

from the shared memory variants presented here.

12

References

[1] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices

and graph coloring problems. SIAM J. Numer. Anal., 20(1):187–209,

February 1983.

[2] T. F. Coleman and J. J. Moré. Estimation of sparse Hessian matrices

and graph coloring problems. Math. Program., 28:243–270, 1984.

[3] T. F. Coleman and A. Verma. The efficient computation of sparse Jaco-

bian matrices using automatic differentiation. SIAM J. Sci. Comput.,

19(4):1210–1233, July 1998.

[4] J. C. Culberson. Iterated greedy graph coloring and the difficulty land-

scape. Technical Report TR 92-07, Department of Computing Science,

The University of Alberta, Edmonton, Alberta, Canada, June 1992.

[5] I. Finocchi, A. Panconesi, and R. Silvestri. Experimental analysis

of simple, distributed vertex coloring algorithms. In Proceedings of

the Thirteenth ACM-SIAM Symposium on Discrete Algorithms (SODA

02), San Francisco, CA, 2002.

[6] A. H. Gebremedhin and F. Manne. Scalable parallel graph coloring

algorithms. Concurrency: Pract. Exper., 12:1131–1146, 2000.

[7] A. H. Gebremedhin, F. Manne, and A. Pothen. Graph color-

ing in optimization revisited. Technical Report 226, University of

Bergen, Dept. of Informatics, Norway, January 2002. Available at:

http://www.ii.uib.no/publikasjoner/texrap/.

[8] R. Greenlaw, H.J. Hoover, and W. L. Ruzzo. Limits to Parallel Com-

putation: P-Completeness Theory. Oxford University Press, New York,

1995.

[9] A.K.M S. Hossain and T. Steihaug. Computing a sparse Jacobian ma-

trix by rows and columns. Optimization Methods and Software, 10:33–

48, 1998.

[10] M. T. Jones and P. E. Plassmann. A parallel graph coloring heuristic.

SIAM J. Sci. Comput., 14(3):654–669, May 1993.

[11] S. O. Krumke, M. V. Marathe, and S. S. Ravi. Approximation algo-

rithms for channel assignment in radio networks. In Dial M for Mobility,

2nd International Workshop on Discrete Algorithms and Methods for

13

Mobile Computing and Communications, Dallas, Texas, September 30

– October 1 1998.

[12] Y. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM

J. Disc. Math., 8:99–118, 1995.

[13] S. T. McCormick. Optimal approximation of sparse Hessians and its

equivalence to a graph coloring problem. Math. Program., 26:153–171,

1983.

[14] V. V. Vazirani. Approximation Algorithms. Springer, 2001. Chapter 5.

Problem p χ1 χ3 K T1 T2 T3 Ttot Spar Sseq

mrng2 1 12 12 0 11.5 11 0 22.5 1 0.5
mrng2 2 12 12 1 6.5 6.4 0 12.9 1.7 0.9
mrng2 4 12 12 9 4.2 4 0 8.3 2.7 1.4
mrng2 6 12 12 9 2.8 2.8 0 5.7 4 2
mrng2 8 12 12 9 2.5 2.5 0 5 4.5 2.3
mrng2 12 13 13 16 1.5 1.5 0 3 7.5 3.8

fe144 1 41 41 0 3.8 3 0 6.8 1 0.6
fe144 2 40 40 3 2.3 2.0 0 4.3 1.6 0.9
fe144 4 41 41 13 1.2 1 0 2.2 3.1 1.7
fe144 6 41 41 25 0.8 0.7 0 1.5 4.5 2.5
fe144 8 43 43 20 0.8 0.7 0 1.5 4.5 2.5
fe144 12 42 43 110 0.6 0.5 0 1.1 6.2 3.5

m14b 1 42 42 0 5.6 4.8 0 10.4 1 0.5
m14b 2 43 43 0 3.5 3.1 0 6.6 1.6 0.9
m14b 4 44 44 24 1.8 1.6 0 3.4 3.1 1.7
m14b 6 43 43 16 1.7 1.4 0 3.1 3.4 1.8
m14b 8 44 46 28 1.2 1 0 2.2 4.7 2.6
m14b 12 43 44 70 0.9 0.8 0 1.8 5.8 3.1

ev01 1 3393 3393 0 38.2 28.9 0 67.1 1 0.6
ev01 2 3298 3497 1514 18.7 14.1 7.6 40.4 1.7 0.9
ev01 4 3150 3598 4555 10.3 7 23.4 40.8 1.7 0.9
ev01 6 3215 3725 7786 7.2 5.3 41.3 54 1.2 0.7
ev01 8 2902 3755 10113 5.7 3.9 52 61.6 1.1 0.6
ev01 12 2922 3900 17872 3.9 3 95 102 0.7 0.4

ev02 1 4260 4260 0 144 111 0 255 1 0.6
ev02 2 4212 4353 1012 78.8 58.9 11.2 148.9 1.7 1
ev02 4 4184 4633 4050 46 28 45 119 2.1 1.2
ev02 6 4172 4660 6206 25 18.8 66 110 2.3 1.3
ev02 8 4152 4870 8873 20.6 15.4 104 140 1.8 1
ev02 12 4036 5168 16394 15.5 11 188 214.7 1.2 0.7

Table 2: Performance of Algorithm SD2.

14

Problem p χ1 χ2 χ4 K1 K2 T1 T2 T3 T4 Ttot Spar Sseq

mrng2 1 12 11 11 0 0 9.6 11 8.9 0 29.6 1 0.7
mrng2 2 12 11 11 1 0 4.8 5.7 4.7 0 15.3 1.9 1.3
mrng2 4 13 10 10 0 0 3.6 5.4 2.8 0 11.8 2.5 1.7
mrng2 6 12 10 10 6 0 2.8 3.8 2.4 0 9 3.3 2.3
mrng2 8 12 11 11 9 0 2 2.7 2 0 6.7 4.4 3.1
mrng2 12 12 10 10 20 0 1.5 2 1.5 0 5 6 4.1

fe144 1 41 37 37 0 0 3.2 3.8 2.6 0 9.6 1 0.7
fe144 2 41 38 38 0 0 2.5 2.8 2.1 0 7.4 1.3 1
fe144 4 41 37 37 18 0 1.2 1.2 1 0 3.4 2.8 2.1
fe144 6 41 38 38 39 0 0.9 1 0.7 0 2.6 3.7 2.7
fe144 8 41 37 37 55 0 0.8 1 0.8 0 2.6 3.7 2.7
fe144 12 41 38 38 78 0 0.5 0.7 0.4 0 1.6 6 4.4

m14b 1 42 41 41 0 0 6 8.8 5 0 19.8 1 0.7
m14b 2 43 41 41 0 0 3.9 4.9 3.4 0 12.3 1.6 1.2
m14b 4 43 41 41 26 0 2 2.9 1.7 0 6.6 3 2.2
m14b 6 43 41 41 17 0 1.6 1.5 1 0 4.1 4.8 3.6
m14b 8 44 41 41 31 0 1.2 1.3 1 0 3.6 5.5 4.1
m14b 12 44 41 41 45 0 0.9 1 0.7 0 2.7 7.3 5.5

ev01 1 3393 3148 3148 0 0 38.5 44.5 28.5 0 111.5 1 0.7
ev01 2 3301 3132 3290 1687 316 18.4 24.7 13.4 1.8 58.4 1.9 1.4
ev01 4 3159 3091 3263 4171 863 10 19 7.3 4.6 41 2.7 2
ev01 6 3220 3116 3371 7913 1475 7.8 17.5 5.4 8.5 39.2 2.8 2.1
ev01 8 2927 3041 3468 10932 2675 5.3 15.3 4 14.3 39 2.9 2.1
ev01 12 2906 3071 3481 18264 3040 3.8 17 2.8 16.4 40.6 2.7 2

ev02 1 4260 4016 4016 0 0 150 191 115 0 456 1 0.7
ev02 2 4210 4024 4085 1019 207 75.2 109.2 57.5 2.7 244.7 1.9 1.4
ev02 4 4194 4023 4226 4154 644 42.3 76.5 29.2 7.6 155.7 2.9 2.7
ev02 6 4186 4031 4247 6196 1354 25.4 48.6 19 16 109 4.2 3.1
ev02 8 4138 4013 4349 10732 2007 20 52 15 24 111 4.1 3.1
ev02 12 4030 4008 4455 18392 2819 14 55.2 10 32.7 112.5 4.1 3

Table 3: Performance of Algorithm ID2.

15

Problem p χ1 χ3 K T1 T2 T3 Ttot Spar Sseq

mrng2 1 10 10 0 9.3 9 0 18.3 1 0.5
mrng2 2 10 10 1 5.2 4.8 0 10 1.8 0.9
mrng2 4 10 10 6 3.3 2.7 0 6 3 1.6
mrng2 6 10 10 4 2.5 2.5 0 5 3.7 1.9
mrng2 8 11 11 12 2.3 2.3 0 4.6 4 2
mrng2 12 11 11 10 1.7 1.7 0 3.4 5.4 2.7

fe144 1 35 35 0 4.4 3.7 0 8.1 1 0.5
fe144 2 36 36 0 2.8 2.5 0 5.3 1.5 0.8
fe144 4 35 35 6 1.4 1 0 2.4 3.3 1.8
fe144 6 36 36 15 1 0.9 0 1.9 4.3 2.3
fe144 8 35 35 11 0.8 0.6 0 1.5 5.4 2.9
fe144 12 36 36 39 0.5 0.5 0 1 8.1 4.4

m14b 1 34 34 0 5.4 4.6 0 10 1 0.5
m14b 2 37 37 0 2.9 2.6 0 5.5 1.8 1
m14b 4 37 37 3 1.9 1.6 0 3.5 2.9 1.5
m14b 6 39 39 7 1.6 1.3 0 2.9 3.5 1.9
m14b 8 37 37 10 1.2 1.1 0 2.3 4.3 2.3
m14b 12 38 38 16 1 0.8 0 1.8 5.6 3

ev01 1 2148 2148 0 35.5 29 0 64.5 1 0.6
ev01 2 1969 2012 135 19.2 15.4 0.7 35.3 1.8 1
ev01 4 1915 2070 366 9.5 7.6 1.9 19 3.4 1.9
ev01 6 2429 2618 538 7.7 6 2.8 16.5 3.9 2.2
ev01 8 1822 2286 1031 5.6 4.3 6.1 16 4 2.2
ev01 12 2103 2687 1424 4 3 7.5 14.5 4.4 2.5

ev02 1 2697 2697 0 134.4 112.6 0 247 1 0.5
ev02 2 2626 2653 83 74.4 60.1 1 135.5 1.8 1
ev02 4 2590 2736 340 40 32.2 4.4 76.5 3.2 1.8
ev02 6 2584 2818 595 29 21 6.7 56.7 4.4 2.4
ev02 8 2626 2967 960 20 15.6 10 45.5 5.4 3
ev02 12 2536 3049 1569 15.7 11.4 18.6 45.7 5.4 3

Table 4: Performance of Algorithm SD 3
2 .

Problem p χ1 χ3 K T1 T2 T3 Ttot Spar Sseq

ev01 1 4077 4077 0 38 28 0 66 1 0.6
ev01 2 4084 4088 59 20 15 0.3 35.2 1.9 1.1
ev01 4 4043 4051 139 10 7.8 0.8 19 3.5 2
ev01 6 4132 4144 572 7 5.5 3.5 16 4.1 2.4
ev01 8 3998 4015 388 6 4.3 2 12 5.5 3.2
ev01 12 4019 4042 587 4 2.8 3.2 10 6.6 3.8

ev02 1 5564 5564 0 148.3 109 0 257.3 1 0.6
ev02 2 5581 5584 43 82 60 0.6 143 1.8 1
ev02 4 5518 5525 187 41 31 2.3 75 3.4 2
ev02 6 5553 5562 273 26 19 3.3 49 5.2 3
ev02 8 5576 5583 558 21 16 7.4 44 5.8 3.4
ev02 12 5514 5536 522 15 10 6 31 8.3 4.8

Table 5: Performance of Algorithm RSD2, q = 1/20.

16

Problem p χ1 χ2 χ4 K1 K2 T1 T2 T3 T4 Ttot Spar Sseq

ev01 1 3719 3169 3169 0 0 36.6 42.5 27 0 106.1 1 0.7
ev01 2 3706 3161 3173 171 21 19 27 15 0.1 61 1.7 1.3
ev01 4 3648 3183 3217 483 152 10 21 7.5 0.8 40 2.7 2
ev01 6 3736 3205 3326 998 193 8 21 5.3 1 35 3 2.3
ev01 8 3601 3167 3236 1272 342 5.7 19 4 2 30 3.5 2.6
ev01 12 3628 3195 3291 1857 447 3.7 18.7 2.6 2.2 27 3.9 2.9

ev02 1 4919 4024 4024 0 0 132.7 150 97.3 0 380 1 0.7
ev02 2 4871 4027 4066 208 43 72 98 52 0.5 223 1.7 1.3
ev02 4 4860 4025 4082 526 127 37 62 27 1.5 128 3 2.2
ev02 6 4865 4040 4084 787 138 27 59 19 1.7 108 3.5 2.6
ev02 8 4869 4032 4100 1577 207 22 61 15 2.3 101 3.8 2.8
ev02 12 4839 4031 4104 1953 320 15 75 12 4 106 3.6 2.7

Table 6: Performance of Algorithm RID2, q = 1/6.

Problem p χ1 χ3 K T1 T2 T3 Ttot Spar Sseq

ev01 1 2392 2392 0 37 30 0 67 1 0.6
ev01 2 2242 2242 23 18 15 0.1 33 2 1.1
ev01 4 2189 2190 46 9.7 7.8 0.3 18 3.7 2
ev01 6 2582 2583 55 7.6 5.4 0.3 13 5.1 2.8
ev01 8 2170 2225 138 5.8 4.8 0.7 11 6.1 3.4
ev01 12 2496 2528 191 3.8 3 1.3 8 8.4 4.6

ev02 1 3142 3142 0 140 117 0 257 1 0.5
ev02 2 3049 3049 18 71 56 0.2 127 2 1.1
ev02 4 3076 3080 51 38 31 0.6 69 3.7 2
ev02 6 3018 3060 123 25 21 1.4 48 5.3 2.9
ev02 8 3106 3125 155 20 16 1.7 37 6.9 3.8
ev02 12 2995 3081 214 15 12 2.4 29 8.8 4.8

Table 7: Performance of Algorithm RSD 3
2 , q = 1/6.

17

Graph Coloring on Coarse Grained Multicomputers∗

Assefaw Hadish Gebremedhin† Isabelle Guérin Lassous‡

Jens Gustedt§ Jan Arne Telle

Abstract

We present an efficient and scalable Coarse Grained Multicomputer

(CGM) coloring algorithm that colors a graph G with at most ∆ + 1

colors where ∆ is the maximum degree in G. This algorithm is given

in two variants: randomized and deterministic. We show that on a

p-processor CGM model the proposed algorithms require a parallel

time of O(
|E|
p

) and a total work and overall communication cost of

O(|E|).These bounds correspond to the average case for the random-

ized version and to the worst case for the deterministic variant.

key words: graph algorithms, parallel algorithms, graph coloring,

Coarse Grained Multicomputers.

∗Research supported in part by The Aurora Programme, a France-Norway Collabora-

tion Research Project of The Research Council of Norway, The French Ministry of Foreign

Affairs and The Ministry of Education, Research and Technology.
†Department of Informatics, University of Bergen, 5020 Bergen, Norway. {assefaw,

telle}@ii.uib.no
‡INRIA Rocquencourt, France. Isabelle.Guerin-Lassous@inria.fr
§LORIA & INRIA Lorraine, France. Jens.Gustedt@loria.fr

1

1 Introduction

The graph coloring problem deals with the assignment of positive integers

(colors) to the vertices of a graph such that adjacent vertices do not get the

same color and the number of colors used is minimized. A wide range of real

world problems, among others, timetabling and scheduling [20], frequency

assignment [8], register allocation [2], and efficient estimation of sparse ma-

trices in optimization [4], have successfully been modeled using the graph

coloring problem. Besides modeling real world problems, graph coloring

plays a crucial role in the field of parallel computation. In particular, when

a computational task is modeled using a graph where the vertices repre-

sent the subtasks and the edges correspond to the relationship among them,

graph coloring is used in dividing the subtasks into independent sets that

can be performed concurrently.

The graph coloring problem is known to be NP-hard [9], making heuris-

tic approaches inevitable in practice. There exist a number of sequential

graph coloring heuristics that are quite effective in coloring graphs encoun-

tered in practical applications. See [4] for some of the popular heuristics.

However, due to their inherent sequential nature, these heuristics are dif-

ficult to parallelize. In fact, coloring the vertices of a graph in a given

order where each vertex is assigned the smallest color that has not been

given to any of its neighbors is shown to be P-complete [12]. Consequently,

parallel graph coloring heuristics different from the effective sequential col-

oring heuristics had to be suggested. One of the important contributions

in this regard is the parallel maximal independent set finding algorithm

of Luby [21] and the coloring algorithm based on it. Subsequently, Jones

and Plassmann [16] improved Luby’s algorithm and in addition used graph

partitioning as a means to achieve a distributed memory coloring heuristic

based on explicit message-passing. Unfortunately, Jones and Plassmann did

not get any speedup from their experimental studies. Later, Allwrignt et

al. [1] performed a comparative study of the implementations of the Jones-

Plassmann algorithm and a few other variations and reported that none of

the algorithms included in the study yielded any speedup. The justification

for the use of these parallel coloring heuristics has been the fact that they

enabled solving large-scale problems that could not otherwise fit onto the

memory of a sequential machine.

Despite these discouraging experiences, Gebremedhin and Manne [10]

recently proposed a shared memory parallel coloring algorithm that yields

good speedup. Their theoretical analysis using the PRAM model shows

that the algorithm is expected to provide an almost linear speedup and

2

experimental results conducted on the Origin 2000 supercomputer using

graphs that arise from finite element methods and eigenvalue computations

validate the theoretical analysis.

The purpose of this paper is to make this successful approach feasible

for a larger variety of architectures by extending it to the Coarse Grained

Multicomputer (CGM) model of parallel computation [6]. The CGM model

makes an abstraction of the interconnection network among the processors

of a parallel computer (or network of computers) and captures the efficiency

of a parallel algorithm using only a few parameters. Several experiments

show that the CGM model is of practical relevance: implementations of

algorithms formulated in the CGM model in general turn out to be portable,

predictable, and efficient [13, 14].

In this paper we propose a CGM coloring algorithm that colors a graph

G with at most ∆ + 1 colors where ∆ is the maximum degree in G. The

algorithm is given in two variants: one randomized and the other deter-

ministic. We show that the proposed algorithms require a parallel time of

O(|E|

p) and a total work and overall communication cost of O(|E|). These

bounds correspond to the average case for the randomized version and to

the worst case for the deterministic variant.

The remainder of this paper is organized as follows. In Section 2 we

review the CGM model of parallel computation and the graph coloring

problem. In Section 3 we discuss a good data organization for our CGM

algorithms and present the randomized variant of the algorithm along with

its various subroutines. In Section 4 we provide an average case analysis

of the randomized algorithm’s time and work complexity. In Section 5 we

show how to de-randomize our algorithm to achieve the same good time and

work complexity also in the worst case. Finally, in Section 6 we give some

concluding remarks.

2 Background

2.1 Coarse grained models of parallel computation

In the last decade several efforts have been made to define models of par-

allel (or distributed) computation that are more realistic than the classical

PRAM models; see [7] or [19] for an overview of PRAM models. In contrast

to the PRAM models that suppose that the number of processors p is poly-

nomial in the input size N , the new models are coarse grained, i.e., they

assume that p and N are orders of magnitude apart. Due to this assump-

tion, the coarse grained models map much better on existing architectures

3

where in general the number of processors is in the order of hundreds and

the size of the data to be handled could be in the order of billions.

The introduction of the Bulk Synchronous Parallel (BSP) bridging model

for parallel computation by Valiant [24] marked the beginning of the increas-

ing research interest in coarse grained parallel computation. The BSP model

was later modified along different directions. For example, Culler et al. [5]

suggested the LogP model as an extension of Valiant’s BSP model in which

asynchronous execution was modeled and a parameter was added to better

account for communication overhead. In an effort to define a parallel com-

putation model that retains the advantages of coarse grained models while

at the same time is simple to use (involves few parameters), Dehne et al. [6]

suggested the CGM model.

The CGM model considered in this paper is well suited for the design of

algorithms that are not too dependent on a particular architecture and our

basic assumptions of the model are listed below.

• The model consists of p processors and all the processors have the

same size M = O(N/p) of memory, where N is the input size.

• An algorithm on this model proceeds in so-called supersteps. A su-

perstep consists of one phase of local computation and one phase of

interprocessor communication.

• The communication network between the processors can be arbitrary.

The goal when designing an algorithm in this model is to keep the sum

total of the computational cost per processor, the overall communication

cost, and idle time of each processor within T/s(p), where T is the runtime

of the best sequential algorithm on the same input, and the speedup s(p) is

a function that should be as close to p as possible.

To achieve this, it is desirable to keep the number of supersteps of such

an algorithm as low as possible, preferably within O(M). The rationale

here lies in the fact that, among others, the message startup-cost and the

bandwidth of an architecture determine the communication overhead. In

each superstep, a processor may need to do at most O(p) communications

and hence a number of supersteps of O(M) ensures that the total startup-

cost is at most O(Mp) = O(N) and therefore lies within the complexity

bound of the overall computational cost we anticipate for such an algorithm.

The bandwidth restriction of a specific platform must still be observed,

and here the best strategy is to reduce the communication volume as much

as possible. See [13] for an overview of algorithms, implementations and

experiments on the CGM model.

As a legacy from the PRAM model, it is usually assumed that the num-

4

ber of supersteps should be polylogarithmic in p. However, the assumption

seems to have no practical justification. In fact, there is no known relation-

ship between the coarse grained models and the complexity classes NC k.

In practice, algorithms that simply ensure a number of supersteps that is a

function of p (but not of N) perform quite well [11].

To be able to organize the supersteps well, we assume that each processor

can store a vector of size p for every other processor. Thus, the following

inequality is assumed throughout this paper,

p2 < M. (1)

2.2 Graph coloring

A graph coloring is a labeling of the vertices of a graph G = (V,E) with

positive integers, called colors, such that adjacent vertices do not obtain the

same color. It can equivalently be viewed as searching for a partition of

the vertex set of the graph into independent sets. The primary objective

in the graph coloring problem is to minimize the number of colors used.

Even though coloring a graph with the fewest number of colors is an NP-

hard problem, in many applications coloring using a bounded number of

colors, possibly far from the minimum, may suffice. Particularly in many

parallel graph algorithms, a bounded coloring (partition into independent

sets) is needed as a subroutine. For example, graph coloring is used in the

development of a parallel algorithm for computing the eigenvalues of certain

matrices [22] and in parallel partial differential equation solvers [1].

One of the simplest and yet quite effective sequential heuristics for graph

coloring is the greedy algorithm that visits the vertices of the graph in some

order and in each visit assigns a vertex the smallest color that has not been

used by any of the vertex’s neighbors. It is easy to see that, for a graph

G = (V,E), such a greedy algorithm always uses at most ∆+1 colors, where

∆ = maxv∈V {degree of v}. In Greenlaw et al. [12], a restricted variant of

the greedy algorithm in which the ordering of the vertices is predefined, and

the algorithm is required to respect the given order, is termed as Lexico-

graphically First ∆ + 1-coloring (LF∆ + 1-coloring). We refer to the case

where this restriction is absent and where the only requirement is that the

resulting coloring uses at most ∆ + 1 colors, simply as ∆ + 1-coloring.

LF∆+1-coloring is known to be P-complete [12]. But for special classes

of graphs, some NC algorithms have been developed for it. For example,

Chelbus et al. [3] show that for tree structured graphs LF∆ + 1-coloring

is in NC. In the absence of the lexicographically first requirement, a few

NC algorithms for general graphs have been proposed. Luby [21] has given

5

an NC algorithm for ∆ + 1-coloring by reducing the coloring problem to

the maximal independent set problem. Moreover, Karchmer and Naor [17],

Karloff [18], and Hajnal and Szemerédi [15] have each presented different

NC algorithms for Brook’s coloring (a coloring that uses at most ∆ colors

for a graph whose chromatic number is bounded by ∆). Earlier, Naor [23]

had established that coloring planar graphs using five colors is in NC.

However, all of these NC coloring algorithms are mainly of theoretical

interest as they require a polynomial number of processors, whereas, in real-

ity, one has only a limited number of processors on a given parallel computer.

In this regard, Gebremedhin and Manne [10] have recently shown a prac-

tical and effective shared memory parallel ∆ + 1-coloring algorithm. They

show that distributing the vertices of a graph evenly among the available

processors and coloring the vertices on each processor concurrently, while

checking for color compatibility with already colored neighbors, creates very

few conflicts. More specifically, the probability that a pair of adjacent ver-

tices are colored at exactly the same instance of the computation is quite

small. On a somewhat simplified level, the algorithm of Gebremedhin and

Manne works by tackling the list of vertices numbered from 1 to n in a

‘round robin’ manner. At a given time t, where 1 ≤ t ≤ r and r = d n
p e,

processor Pi colors vertex (i − 1) · r + t. The shared memory assumptions

ensure that Pi may access the color information of any vertex at unit cost

of time. Adjacent vertices that are in fact handled at exactly the same time

are the only causes for concern as they may result in conflicts. Gebremedhin

and Manne show that the number of such conflicts is small on expectation,

and that conflicts can easily be resolved a posteriori. Their analysis of the

resulting algorithm using the PRAM model shows that the algorithm colors

a general graph G = (V,E) with ∆ + 1 colors in expected time O(|E|/p)

when the number of processors p is such that p ≤ |V |/
√

2|E|.

However, in a distributed memory setting, the most common case in our

target model CGM, one has to be more careful about access to data located

on other processors.

3 A CGM ∆ + 1-coloring algorithm

We start this section by discussing how we distribute the input graph among

the available processors for our CGM ∆ + 1-coloring algorithms. Then, the

randomized variant of our algorithm is presented in a top-down fashion,

starting with an overview and filling the details as the presentation proceeds.

6

3.1 Data distribution

In general, a good data organization is crucial for the efficiency of a dis-

tributed memory parallel algorithm. For our CGM-coloring algorithm in

particular, the input graph G = (V,E) is organized in the following manner.

• Each processor Pi (1 ≤ i ≤ p) is responsible for a subset Ui of the

vertices (V =
⋃p

i=1 Ui). With a slight abuse of notation, the processor

hosting a vertex v is denoted by Pv.

• Each edge e = {v, w} ∈ E is represented as arcs (v, w) stored at Pv,

and (w, v) stored at Pw.

• For each arc (v, w) processor Pv stores the identity of Pw and thus the

location of the arc (w, v). This is to avoid a logarithmic blow-up due

to the search for Pw.

• The arcs are sorted lexicographically and stored as a linked list per

vertex.

In this data distribution, we require that the degree of each vertex be less

than D = dN
p e, where N = |E|. Vertices with degree greater than D are

treated in a separate preprocessing step.

If the input of the algorithm is not of the desired form, it can be efficiently

transformed into one by carrying out the following steps.

• Generate two arcs for each edge as described above,

• Radix sort (see [13] for a CGM radix sort) the list of arcs such that

each processor receives the arc (v, w) if it is responsible for vertex w,

• Let every processor note its identity on these arcs,

• Radix sort the list of arcs such that every processor receives its proper

arcs (arc (v, w) if it is responsible for vertex v).

3.2 The algorithm

As the time complexity of sequential ∆+1-coloring is linear in the number

of edges |E|, our aim is to design a parallel algorithm in CGM with O(|E|

p)

work per processor and O(|E|) overall communication cost. In an overview,

our CGM coloring algorithm consists of two phases, an initial and a main

recursive phase; see Algorithm 1.

In the initial phase, the subgraph induced by the vertices with degree

greater than dN
p e is colored sequentially on one of the processors. Clearly,

there are at most p such vertices since otherwise we would have more than

N edges in total. Thus the subgraph induced by these vertices has at most

p2 edges. Since p2 is assumed to be less than M , the induced subgraph fits

7

Algorithm 1: ∆ + 1-coloring on a CGM with p processors

Input: Base graph G = (V,E), the subgraph H induced by vertices
of degree greater than D = dN/pe, the lists Fv of forbidden
colors of vertices v ∈ V .

Output: A valid coloring of G = (V,E) with at most ∆ + 1 colors.

initial phase Sequential∆ + 1Coloring(H,{Fv}v) (see Algorithm 3);
main phase ParallelRecursive∆ + 1Coloring(G,{Fv}v) (see Algorithm 2);

t = 1 t = 2 t = 3 t = 4

P6

P5

P4

P3

P2

P1

Figure 1: Graph on 72 vertices distributed onto 6 processors and 4 timeslots.

on a single processor (say P1) and a call to Algorithm 3 colors it sequentially.

Algorithm 3 is also used in a situation other than coloring such vertices. We

defer the discussion on the details of Algorithm 3 to Section 3.2.1 where the

situation that calls for its second use is presented.

The main part of Algorithm 1 is the call to Algorithm 2 which recursively

colors any graph G such that the maximum degree ∆ ≤ M . The basic idea

of the algorithm is based on placing the vertices residing on each processor

into different timeslots. The assignment of timeslots to the vertices gives

rise to two categories of edges. The first category consists of edges which

connect vertices having the same timeslot. We call these edges bad and all

other edges good. Figure 1 shows an example of a graph distributed on 6

processors and 4 timeslots in which bad edges are solid and good edges are

dashed.

In a nutshell, Algorithm 2 proceeds timeslot by timeslot where in each

timeslot the graph defined by the bad edges and the vertices incident on

them is identified and the algorithm is called recursively with the identified

graph as input while the rest of the input graph is colored concurrently.

In Algorithm 2, while partitioning the vertices into k timeslots, where

8

Algorithm 2: Parallel Recursive ∆ + 1-coloring

Input: Subgraph G′ = (V ′, E′) of a base graph G = (V,E) with
M ′ edges per processor such that ∆G′ ≤ M ′, M the initial
input size per processor, lists Fv of forbidden colors for the
vertices.

Output: A valid coloring of G′ with at most ∆G + 1 colors.

base case if (|G′| < N
kp2) then Sequential∆ + 1Coloring(G′,{Fv}v) (see Algo-

rithm 3);
else

high degree HandleHighDegreeVertices(G′ ,{Fv}v ,2k) (see Algorithm 5);
group vertices foreach Pi do

Let Ui,t for t = 1, . . . , k be result of the call
GroupVerticesIntoTimeslots(V ′,k), (see Algorithm 6);
For each vertex v denote the index of its timeslot by tv;
foreach arc (v, w) do collect the timeslot tv in a send buffer
for Pw;
Send out the tuples (w,tv);
Receive the timeslots from the other processors;

for t = 1 to k do

foreach processor Pi do

identify conflicts Consider all arcs e = (v, w) with v ∈ Ui,t and tv = tw = t;
Name this set Si and consider the vertices VSi

that have
such an arc;

balance load Grec =Balance(
⋃p

i=1 VSi
,
⋃p

i=1 Si) (see Algorithm 7);
recurse ParallelRecursive∆ + 1Coloring(Grec,{Fv}v);

foreach processor Pi do

color vertex foreach uncolored vertex v with tv = t do Color v with
least legal color;

send messages foreach arc (v, w) with v ∈ Ui, tv = t and tw > t do

Collect the color of v in a send buffer for Pw;
Send out the tuples (w,color of v);

receive messages Receive the colors from the other processors;
foreach received tuples (w, color of v) do add color of v
to Fw;

9

1 < k ≤ p, we would like to achieve as even a distribution as possible. The

call to Algorithm 6 in line group vertices does this by using the degree

of each vertex as a criterion. This randomized algorithm is presented in

Section 3.2.2 where the issue of load balancing is briefly discussed. Prior to

calling Algorithm 6, vertices with ‘high degrees’ that would otherwise result

in an uneven load balance are treated separately; see line high degree.

The algorithm for treating high degree vertices, Algorithm 5, is presented

in Section 3.2.2.

Notice that an attempt to concurrently color vertices incident on a bad

edge may result in an inconsistent coloring (conflict). In a similar situation,

Gebremedhin and Manne, in their shared memory formulation, tentatively

allow such conflicts and resolve eventual conflicts in a later sequential phase.

The success of their approach lies in the fact that the expected size of the

edges in conflict is relatively small. In our case, we deal with the potential

conflicts a priori. We first identify the subgraphs that could result in con-

flict and then color these subgraphs in parallel recursively until their union

is small enough to fit onto the memory of a single processor. See lines iden-

tify conflicts and recurse in Algorithm 2. Note that, in general, some

processors may receive more vertices than others. We must ensure that

these recursive calls do not produce a blow-up in computation and commu-

nication. In order to ensure that the subgraph that goes into recursion is

evenly distributed among the processors, a call to Algorithm 7 is made at

line balance load. Algorithm 7 is discussed in Section 3.2.2.

In the recursive calls one must handle the restrictions that are imposed

by previously colored vertices. We extend the problem specification and

assume that a vertex v also has a list Fv of forbidden colors that initially

is empty. An important issue for the complexity bounds is that a forbidden

color is added to Fv only when the knowledge about it arrives on Pv. The

list Fv as a whole will only be touched once, namely when v is finally colored.

Observe also that the recursive calls in line recurse need not be synchro-

nized. In other words, it is not necessary (nor desired) that the processors

start recursion at exactly the same moment in time. During recursion, when

the calls reach the communication phase of the algorithm, they will auto-

matically be synchronized in waiting for data from each other.

Clearly, the subgraph defined by the good edges and their incident ver-

tices can be colored concurrently by the available processors. In particular,

each processor is responsible for coloring its set of vertices as shown in line

color vertex of Algorithm 2. In determining the least available color to a

vertex, each processor maintains a Boolean vector Bcolors. This vector is

indexed with the colors and initialized with all values set to “true”. Then

10

Algorithm 3: Sequential ∆ + 1Coloring

Input: M the initial input size per processor, subgraph G′ = (V ′, E′)
of a base graph G = (V,E) with |E ′| ≤ M and lists Fv of
forbidden colors for the vertices.

find allowed foreach processor Pi do

Let U ′

i = Ui ∩ V ′ be the vertices of G′ that are stored on Pi;
For each v ∈ U ′

i let d(v) be the degree of v in G′;
Av = ComputeAllowedColors(v,d(v),{Fv}v) (see Algorithm 4);

Communicate E ′ and all lists Av to P1;
color sequentially for processor P1 do

Collect the graph G′ together with the lists Av;
Color each vertex in G′ with least available color;
Send the resulting colors back to the corresponding processors;

communicate foreach processor Pi do

Inform all neighbors of U ′

i of the colors that have been assigned;
Receive the colors from the other processors and update the lists
Fv accordingly;

when processing a vertex v, the entries of Bcolors corresponding to v’s list

of forbidden colors are set to “false”. After that, the first item in Bcolors

that still is true is looked for and chosen as the color of v. Then, the vector

is reset by assigning all its modified values the value “true” for future use.

After a processor has colored a vertex, it communicates the color infor-

mation to processors hosting a neighbor. In each timeslot the messages to

the other processors are grouped together, see send messages and receive

messages. This way at most p − 1 messages are sent per processor per

timeslot.

3.2.1 The base case

The base case of the recursion is handled by a call to Algorithm 3 (see base

case in Algorithm 2). Note that the sizes of the lists Fv of forbidden colors

that the vertices might have collected during higher levels of recursion may

actually be too large and their union might not fit on a single processor.

To handle this situation properly, we proceed in three steps as shown in

Algorithm 3. Notice that Algorithm 3 is the same routine called in the

initial phase of Algorithm 1.

In the step find allowed, for each vertex v ∈ V ′ a short list of allowed

colors Av is computed. Observe that a vertex v can always be colored using

one color from the set {1, 2, . . . , d(v)+1}, where d(v) is the degree of v. Hence

a list of d(v) + 1 allowed colors suffices to take all restrictions of forbidden

11

Algorithm 4: Compute Allowed Colors

Input: v together with its actual degree d(v) and its (unordered)
list Fv of forbidden colors; A Boolean vector colors with all
values set to true.

Output: a sorted list Av of the least d(v) + 1 allowed colors for v

foreach c ∈ Fv do Set colors[c] = false;
for (c = 1; |Av | < d(v); + + c) do if colors[c] then Av = Av + c;
foreach c ∈ Fv do Set colors[c] = true;

colors into account. Using a similar technique as described in color vertex

of Algorithm 2, we can obtain a sorted list Av of allowed colors for v in time

proportional to |Fv | + d(v). This is done by the call to Algorithm 4 in line

find allowed. Then in the step color sequentially, the vertices of the

input graph are colored sequentially using their computed lists of allowed

colors. In the final step communicate, the color information of the vertices

is communicated.

3.2.2 Load balancing

In this section we address the issue of load balancing. In Algorithm 2,

three matters that potentially result in an uneven load balance are (i) high

variation in the degrees of the vertices, (ii) high variation in the sum of the

degrees in the timeslots, and (iii) the recursive calls on the subgraphs that

go into recursion. The following three paragraphs are concerned with these

points.

Handling high degree vertices Whereas for the shared memory algo-

rithm differences in degrees of the vertices that are colored in parallel just

causes a slight asynchrony in the execution of the algorithm, in a CGM set-

ting it might result in a severe load imbalance and even in memory overflow

of a processor.

Line group vertices of Algorithm 2 groups the vertices into k ≤ p

timeslots of about equal degree sum. If the variation in the degrees of the

vertices is too large, such a grouping would not be even. For example, if we

have one vertex of very large degree, it would always dominate the degree

sum of its time slot thereby creating imbalance. So, we have to make sure

that the degree of each vertex is fairly small, namely smaller than dM ′/qe

where q is a parameter of Algorithm 5. Observe that the notion of ‘small’

degree depends on the input size M ′ and thus may change during the course

of the algorithm. This is why we need to have the line high degree in every

12

Algorithm 5: Handle High Degree Vertices

Input: Subgraph G′ = (V ′, E′) of a base graph G = (V,E) with M ′

edges per processor such that ∆G′ ≤ M ′, lists Fv of forbidden
colors for the vertices and a parameter q.

foreach processor Pi do

find all v ∈ Ui with degree higher than M ′/q (Note: all degrees
are less than N/p);
send the names and the degrees of these vertices to P1;

for processor P1 do

Receive lists of high degree vertices;
Group these vertices into k′ ≤ q timeslots W1, ...,Wk′ of at most
p vertices each and of a degree sum of at most 2N/p for each
timeslot;
Communicate the timeslots to the other processors;

foreach processor Pi do

Receive the timeslots for the high degree vertices in Ui;
Communicate these values to all the neighbors of these vertices;
Receive the corresponding information from the other processors;
Compute Et,i for t = 1, . . . , k′ where one endpoint is in Wt ∪ Ui;

for t = 1 to k′ do

Let Et =
⋃

1≤i≤p Et,i and denote by Gt = (Wt, Et) the induced
subgraph of high degree vertices of timeslot t;
Sequential∆ + 1Coloring(Gt,{Fv}v) (see Algorithm 3);

recursive call and not only at the top level call. Note that q is a multiple of

k, the number of timeslots of Algorithm 2.

Thus, the high degree vertices that we indeed have to treat in each

recursive call are those vertices v with dM ′/qe < deg(v) ≤ M ′. Such vertices

are handled using Algorithm 5, which essentially divides the set of high

degree vertices into k′ ≤ q timeslots and colors each of the subgraphs induced

by these timeslots sequentially.

Grouping vertices into timeslots Algorithm 6 partitions the vertices

into k timeslots. It does so by first dividing the set of vertices into groups

of size k and then distributing the vertices of each group into the distinct

timeslots. Observe that no communication is required during the course of

this algorithm.

The partition obtained with this algorithm is relatively balanced.

Lemma 1 On each processor P , the difference of the degree sums of the

vertices in any two timeslots is at most the maximum degree over all vertices

13

Algorithm 6: Group Vertices Randomly into Timeslots

Input: V ′ the set of vertices, k

foreach processor Pi do

Radix sort its vertices according to their descending degrees;
Let v1, . . . , vs be this order of the vertices;
for i = 0, . . . , d s

k e − 1 do

Let j1, . . . , jk be a random permutation of the values 1, . . . , k;
Assign vik+1, . . . , v(i+1)k to timeslots j1, . . . , jk respectively;

that P holds.

Proof: Since the vertices are considered in descending order of their de-

grees, the difference in degree sums between two timeslots is maximized

when one of the timeslots always receives the vertex with the highest degree

in the group and the other the smallest. In group i, the vertex of highest de-

gree is vik+1 and the one of smallest degree is v(i+1)k. Thus we can estimate

the difference as follows:

d

s
k
e−1
∑

i=0

deg(vik+1)−

d

s
k
e−1
∑

i=0

deg(v(i+1)k) ≤

d

s
k
e−1
∑

i=0

deg(vik+1)−

d

s
k
e−2
∑

i=0

deg(v(i+1)k+1)

which is in turn bounded by deg(v1), where v1 has the maximum degree

over all vertices that P holds.

From Lemma 1 and from the fact that we do not have high degree ver-

tices, it follows that the sum of the degrees of the vertices in any timeslot is

between M ′

2k and 3M ′

2k .

Balancing during recursion In Algorithm 2, unless proper attention is

paid, the edges of the subgraph that goes into recursion may not be evenly

distributed among the processors. To address this, we suggest an algorithm

that ensures that Grec, the graph that goes into recursion in Algorithm 2,

is evenly distributed among the processors. See Algorithm 7.

Obviously Algorithm 7 runs in time proportional to the input size on

each processor and has a constant number of supersteps.

4 Average case analysis

In this section we provide an average case analysis of Algorithm 2. In

Section 5 we show how to replace the randomized algorithm, Algorithm 6,

14

Algorithm 7: Balance

Input: Graph G′ = (V ′, E′), such that each v ∈ V ′ has degG′(v) ≤
|E′|/p.

Output: A redistribution of V ′ and E′ on the processors such that
each processor handles no more than M ′ = 2|E′|/p edges.

Initialize a distributed array Deg indexed by V ′ that holds the de-
grees of all vertices;
Do a prefix sum on Deg and store this sum in a similar array Pre;
foreach processor Pi do

foreach v ∈ V ′ ∩ Ui do

Let j ∈ {1, ..., p} be such that jM ′ ≤ Pre[v] < (j + 1)M ′;
Send v and its adjacent edges to processor Pj ;

foreach processor Pi do

receive the corresponding vertices and edges

by a deterministic one. Every lemma in this section refers to Algorithm 2

unless stated otherwise.

Lemma 2 For any edge {v, w}, the probability that tv = tw is at most 1
k .

Proof: Consider Algorithm 6. We distinguish between two cases. The first

is the case where v and w reside on different processors. In this case, the

choices for the timeslots of v and w are clearly independent, implying that

the probability that w is in the same timeslot as v is 1
k .

The same argument applies for the case where v and w reside on the same

processor but are not processed in the same group. Whenever they are in

the same group, they are never placed into the same timeslot. Therefore,

the overall probability is bounded by 1
k .

Lemma 3 The expected sum total of the number of edges of all subgraphs

going into recursion in recurse is at most |E′
|

k .

Proof: The expected total number of edges going into recursion is equal

to the expected total number of bad edges. The latter is in turn equal to
∑

e∈E′ prob(e is bad), which by Lemma 2 can be bounded by |E′
|

k .

Lemma 4 The expected overall size of the subgraphs at the ith recursion

level is at most N/ki, with at most M/ki per processor.

Proof: Notice that the choices of timeslots between two successive recursion

levels may not be independent. However, the dependency that may occur

actually reduces the number of bad edges even more. This can be seen from

a similar argument as that of Lemma 2: vertices that are in the same group

of the degree sequence in Algorithm 6 are forced to be separated into two

15

different timeslots. For all others, the choices are again independent.

Thus, the total number of edges going into recursion can be immediately

bounded by N/ki. The fact that it is also balanced across the processors is

due to Algorithm 7.

Lemma 5 The expected sum total of the sizes of all the subgraphs handled

by any processor during Algorithm 2 (including all recursions) is O(M).

Proof: By Lemma 4, the expected sum of the sizes of these graphs is

bounded by
∞

∑

i=0

k−iM =
k

k − 1
M ≤ 2M, (2)

for all k ≥ 2. Thus, the total expected size in all the steps per processor is

O(M).

Lemma 6 For any 1 < k ≤ p, the expected number of supersteps is at most

quadratic in p.

Proof: The expected recursion depth of our algorithm is the minimum

value d such that N/kd ≤ M = N/p, which implies kd ≥ p, i.e. d = dlogk pe.

The total number of supersteps in each call (including the supersteps in

Algorithm 5) is c · k, for some constant c ≥ 1. The constant c captures the

following supersteps:

• some to handle high degree vertices,

• one to propagate the chosen timeslots,

• some to balance the edges inside each timeslot,

• one to propagate the colors for each timeslot.

Thus, the total number of supersteps on recursion level i is c · k i and the

expected number of supersteps is bounded as follows

dlogk pe
∑

i=1

c · ki ≤ c · klogk p+1 = c · k · p. (3)

Lemma 7 The expected overall work involved in base case is O(M).

Proof: Algorithm 3 on input G′ = (V ′, E′) and lists of forbidden colors Fv

has overall work and communication cost proportional to |G′| and the size

of the lists Fv.

There are kdlogk pe expected calls to Algorithm 3 in Algorithm 2; therefore

P1 is expected to handle kdlogk pe N
kp2 edges and kdlogk pe N

kp2 ≤ k1+logk p N
kp2 ≤

kp N
kp2 = M . This implies an expected work and communication cost of

O(M) for base case.

16

Lemma 8 The expected overall work per processor involved in high degree

is O(M).

Proof: In Algorithm 2, in the first call to Algorithm 5 (M ′ = M), every

processor holds at most q = 2k high degree vertices (i.e vertices v of degree

degv(G) such that N
pq < degv(G) ≤ N

p). Otherwise, it would hold more than

(M/q) · q = M edges. So, overall, there are at most p · q such vertices for the

first level of recursion. Processor P1 distributes these O(p2) vertices onto k′

timeslots such that each timeslot has a degree sum of at most 2N/p = 2M .

Thus, each timeslot induces a graph of expected size 2M/k ′. Subsequently,

sequential ∆+1-coloring is called for the subgraph induced by each timeslot,

for total work O(M) = O(M ′).

By induction we see that in the ith level of recursion, if a vertex v is of

high degree, its degree degv(Grec) has to be M ′

q < degv(Grec) ≤ M ′. Using

the same argument as the one above, it can be shown that the total work

to handle these vertices is O(M ′).

From Lemma 5, the total expected work in all the steps per processor is

O(M).

Lemma 9 The expected overall work per processor involved in

group vertices is O(M).

Proof: Observe that the radix sort can be done in O(M ′), since the sort

keys are less than M ′. The random permutations can easily be computed

locally in linear time.

Again, Lemma 5 proves the claim.

Theorem 1 For any 1 < k ≤ p, the expected work, communication, and

idle time per processor of Algorithm 2 is within O(M). In particular, the

expected total run-time per processor is O(M).

Proof: From Lemma 6 we see that the expected number of supersteps is

O(p2); hence by inequality (1) the expected communication overhead gen-

erated in all the supersteps is O(M).

We proceed by showing that the work and communication that a pro-

cessor has to perform in Algorithm 2 is a function of the number of edges

on that processor, i.e. M . Inserting a new forbidden color into an unsorted

list Fv can be done in constant time. Since an edge contributes an item to

the list of forbidden colors of one of its incident vertices at most once, the

size of such a list is bounded by the degree of the vertex. Thus, the total

size of these lists on any of the processors will never exceed the input size

M ′ (recall that vertices of degree greater than N
p have been handled in the

preprocessing step).

17

As discussed in Section 3.2, a Boolean vector Bcolors is used in deter-

mining the color to be assigned to a vertex. In the absence of high degree

vertices no list Fv will be longer than M ′

q and hence the size of Bcolors

need not exceed M ′

q + 1. Even when this restriction is relaxed, as shown in

Section 3.2.2, we need at most p colors for vertices of degree greater than

N/p and need not add more than ∆′ + 1 colors, where ∆′ is the maximum

degree among the remaining vertices (∆′ ≤ M ′). Overall, this means that

we have at most p + M ′ + 1 colors and hence the vector Bcolors still fits on

a single processor. So, Bcolors can be initialized in a preprocessing step in

time O(M ′).

After that, coloring any vertex v can be done in time proportional to the

size of Av, which is bounded by the degree of v. Thus, the overall time spent

per processor in coloring vertices is O(M ′). By Lemma 5, the expected total

time (including recursions) per processor is O(M).

Lemmas 7, 8, and 9 show that the contributions of base case, high

degree, and recurse in Algorithm 2 are within O(M) per processor, proving

the claim on the total amount of work per processor.

As for processor idle time, observe that the bottleneck in all the algo-

rithms as presented is the sequential processing of parts of the graphs by

processor 1. Since the total run time (of Algorithm 3) on processor 1 is

expected to be O(M), the same expected bound holds for the idle time of

the other processors.

5 An add-on to achieve a good worst case behavior

So far, for a possible implementation of our algorithm, we have some degree

of freedom in choosing the number of timeslots k. If our goal is just to get

results based on expected values as shown in Section 4, we can avoid recursion

by choosing k = p and by replacing the recursive call in Algorithm 2 by a

call to Sequential∆+1Coloring(Grec, {Fv}v) (Algorithm 3). We can do this

since by Lemma 4 the expected size of Grec is N/k which in this case means

N/p = M , implying that Grec fits on one processor. The resulting algorithm

would have cp supersteps, for some integer c > 1; see Lemma 6.

To get a deterministic algorithm with a good worst case bound we choose

the other extreme, namely k = 2, and replace the call to the randomized

Algorithm 6, in line group vertices of Algorithm 2, by a call to Algo-

rithms 8 and 9. This will enable us to bound the number of edges that go

into recursion. We need to distinguish between two types of edges: internal

and external edges. Internal edges have both of their endpoints on the same

18

Algorithm 8: Deterministically group the vertices on processor Pi into
k = 2 buckets.

HandleHighDegreeVertices(G,{Fv}v ,8) (see Algorithm 5);
initialize bucket[0] and bucket[1] to empty;
foreach vertex v do

determine the number of edges connecting v to bucket[0] and
bucket[1], resp;
insert v in the bucket to which it has the least number of edges;
if this bucket is full then

put the remaining vertices in the other bucket;
return ;

return ;

processor while external edges have their endpoints on different processors.

First we argue that internal edges are handled by the call to Algorithm 8.

Then we show that external edges are handled by the subsequent call to Al-

gorithm 9. For internal edges, the following two points need to be observed.

1. The vertices are grouped into two timeslots of about equal degree sum.

2. Most of the internal edges are good.

To achieve the first goal, Algorithm 8 first calls Algorithm 5 to get rid of

vertices with degree ≥ M/8. The constant 8 is somewhat arbitrary and

could be replaced by any constant k′ > 2 depending on the needs of an

implementation. Algorithm 8 groups the vertices of internal edges according

to (1) and (2) above into bucket[0] and bucket[1] that will form the two

timeslots. A bucket is said to be full when the degree sum of its vertices

becomes greater than M/2.

Proposition 1 Suppose γiM of the edges on processor Pi are external (0 ≤

γiM ≤ M). Then after an application of Algorithm 8 at least (1
4 − γi

2)M of

the edges on Pi are good internal edges and each bucket has a degree sum of

at most 5M
8 .

Proof: Considering the fact that each vertex is of degree less than M/8,

the claim for the degree sum is immediate.

To see the lower bound on the number of good internal edges, consider

the bucket B that became full. The vertices in B have a degree sum of at

least M/2 and at least (1
2 −γi)M of these edges are internal. We claim that

at least half of these internal edges are good.

For the following argument, suppose that an edge is considered only

when its second endpoint is placed into a bucket. We distinguish between

19

Algorithm 9: Determine an ordering on the k = 2 buckets on each
processor.

foreach processor Pi do

foreach edge (v, w) do inform the processor of w about the
bucket of v;
for s = 1 . . . p do

for r, r′ = 0, 1 do set mrr′
is = 0;

foreach edge (v, w) do add 1 to mrr′
is , where Ps is the processor

of w and r and r′ are the buckets of v and w;
Broadcast all values mrr′

is for s = 1, . . . , p to all other processors;
inv[1] = false;
for s = 2 to p do

A|| = 0; A = 0;
for s′ < s do

if ¬inv[s′] then

A|| = A|| + m00
ss′ + m11

ss′;
A = A + m01

ss′ + m10
ss′

else

A|| = A|| + m01
ss′ + m10

ss′;
A = A + m00

ss′ + m11
ss′

if A < A|| then inv[s] = true;
else inv[s] = false;

two types of internal edges. Early edges join vertices both of which have

been put into a bucket before the bucket was full, while edges for which at

least one of the endpoints was placed thereafter are called late edges .

First, observe that until one of the two buckets becomes full, both buckets

have more good internal edges than bad internal edges. So, at least one half

of the early edges are good. But, notice that all the late edges that have

one endpoint in B are also good. This is the case since the second endpoint

of a late edge is never placed in B.

Therefore, overall, there are at least 1
2 (1

2 − γi)M good internal edges.

To handle the external edges we add a call to Algorithm 9 right after

the call to Algorithm 8. This algorithm counts the number mrr′
is of edges

between all possible pairs of buckets on different processors, and broadcasts

these values to all processors. Then a quick iterative algorithm is executed

on each processor to ascertain as to which of the processor’s two buckets

represents the first and second timeslot.

After having decided the order in which the buckets are processed on

20

processors P1, . . . , Pi−1, we compute two values for processor Pi: A|| the

number of external bad edges if we would keep the numbering of the buckets

as the timeslot numbering, and A the corresponding number if we would

interchange them. Depending on which value is less, the order of the two

buckets of processor Pi is kept as-is or exchanged.

Using the same type of argument as the one above, we get the following

remark.

Remark 10 Algorithm 9 ensures that overall at least 1
2 of the external edges

are good.

Note that the above statement is true for the whole edge set, but not nec-

essarily for the set of edges on each processor.

Proposition 2 Algorithms 8 and 9 run with linear work and communica-

tion and in a constant number of supersteps. The assignment of timeslots

they make is such that at least 1
4 of the edges are good.

Proof: For the number of good edges, let γi be the fraction of external

edges of processor Pi. The total amount of good edges can now be bounded

from below by

1

2

(p
∑

i=1

γi

)

M +
p
∑

i=1

(

1

4
−

γi

2

)

M =
p
∑

i=1

M

4
=

pM

4
=

N

4
. (4)

For the complexity claim, observe that because of the load balancing done

in line balance load of Algorithm 2 (see Section 3.2.2) all processors hold

the same amount (up to a constant factor) M ′ of edges.

This implies that the recursion depth is dlog 4

3

pe (which is greater than

dlog2 pe of the average case). Moreover, more edges go into recursion here

than in the average case and therefore the work and total communication

costs are slightly greater than the costs for the average case, but still within

O(M).

6 Conclusion

We have presented a randomized as well as a deterministic Coarse Grained

Multicomputer coloring algorithm that colors the vertices of a general graph

G using at most ∆ + 1 colors, where ∆ is the maximum degree in G. We

showed that on a p-processor CGM model our algorithms require a parallel

time of O(|G|

p) and a total work and overall communication cost of O(|G|).

These bounds correspond to the average case for the randomized version and

to the worst case for the deterministic variant. To the best of our knowledge,

our algorithms are the first parallel coloring algorithms with good speedup

for a large variety of architectures.

21

In light of the fact that LF∆+1-coloring is P-complete, a CGM LF∆+1-

coloring algorithm, if found, would be of significant theoretical importance.

Brent’s scheduling principle shows that anything that works well on PRAM

should, in principle, also work well on CGM or similar models (although

the constants that are introduced might be too big to be practical). But

the converse may not necessarily be true. There are P-complete problems

(problems where we can’t expect exponential speedup on PRAM) that have

polynomial speedup [25]. It can be envisioned that such problems may as

well have efficient CGM algorithms. In this regard, our CGM ∆+1-coloring

algorithm might be a first step towards a CGM LF∆+1-coloring algorithm.

We also believe that, in general, designing a parallel algorithm on the

CGM model is of practical relevance. In particular, we believe that the

algorithms presented in this paper should have efficient and scalable imple-

mentations (i.e. implementations that yield good speedup for a wide range

of N/p).

Such implementations would also be of interest in other contexts. One

example is the problem of finding maximal independent sets. Notice that

in our algorithms the vertices colored by the least color always constitute a

maximal independent set in the input graph. In general, considering G
≥i,

the subgraph induced by the color classes i, i+1, . . ., we see that color class

i always forms a maximal independent set in the graph G
≥i.

Acknowledgements

We are grateful to the anonymous referees for their helpful comments and

pointing out some errors in an earlier version of this paper. Isabelle Guérin

Lassous and Jens Gustedt would like to acknowledge that part of this work

was accomplished within the framework of the “opération CGM” of the

parallel research center Centre Charles Hermitte in Nancy, France.

References

[1] J. R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C. L.

Martin. A comparison of parallel graph coloring algorithms. Technical

Report SCCS-666, Northeast Parallel Architecture Center, Syracuse

University, 1995.

[2] G.J. Chaitin, M. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins,

and P. Markstein. Register allocation via coloring. Computer Lan-

guages, 6:47–57, 1981.

22

[3] B. Chelbus, K. Diks, W. Rytter, and T. Szymacha. Parallel complex-

ity of lexicographically first problems for tree-structured graphs. In

A. Kreczmar and G. Mirkowska, editors, Mathematical Foundations of

Computer Science 1989, volume 379 of LNCS, pages 185–195. Springer-

Verlag, 1989.

[4] T.F. Coleman and J.J. Moré. Estimation of sparse jacobian matrices

and graph coloring problems. SIAM Journal on Numerical Analysis,

20(1):187–209, 1983.

[5] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken. LogP: Towards a realistic model

of parallel computation. In Proceeding of the fourth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages

1–12, San Diego, CA, 1993.

[6] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computa-

tional geometry for coarse grained multicomputers. International Jour-

nal on Computational Geometry, 6(3):379–400, 1996.

[7] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In

Tenth ACM Symposium on Theory of Computing, pages 114–118, San

Diego, CA, 1978.

[8] A. Gamst. Some lower bounds for a class of frequency assignment

problems. IEEE transactions of Vehicular Technology, 35(1):8–14, 1986.

[9] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H.

Freeman, New York, 1979.

[10] A. H. Gebremedhin and F. Manne. Scalable parallel graph coloring al-

gorithms. Concurrency: Practice and Experience, 12:1131–1146, 2000.

[11] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards

efficiency and portability: Programming with the BSP model. In

8th Annual ACM symposium on Parallel Algorithms and Architectures

(SPAA’96), pages 1–12, Padua, Italy, June 1996.

[12] R. Greenlaw, H.J. Hoover, and W. L. Ruzzo. Limits to Parallel Com-

putation: P-Completeness Theory. Oxford University Press, New York,

USA, 1995.

[13] I. Guérin Lassous, J. Gustedt, and M. Morvan. Feasability, portability,

predictability and efficiency: Four ambitious goals for the design and

23

implementation of parallel coarse grained graph algorithms. Technical

Report 3885, INRIA, 2000.

[14] I. Guérin Lassous, J. Gustedt, and M. Morvan. Handling graphs accord-

ing to a coarse grained approach: Experiments with MPI and PVM.

In Jack Dongarra, Péter Kacsuk, and N. Podhorszki, editors, Recent

Advances in Parallel Virtual Machine and Message Passing Interface,

7th European PVM/MPI Users’ Group Meeting, volume 1908 of LNCS,

pages 72–79. Springer Verlag, 2000.

[15] P. Hajnal and E. Szemerédi. Brooks coloring in parallel. SIAM Journal

on Discrete Mathematics, 3(1):74–80, 1990.

[16] M. T. Jones and P. E. Plassmann. A parallel graph coloring heuristic.

SIAM Journal of Scientific Computing, 14(3):654–669, May 1993.

[17] M. Karchmer and J. Naor. A fast parallel algorithm to color a graph

with D colors. Journal of Algorithms, 9(1):83–91, 1988.

[18] H. J. Karloff. An NC algorithm for Brook’s theorem. Theoretical Com-

puter Science, 68(1):89–103, 16 October 1989.

[19] R. Karp and V. Ramachandran. Parallel algorithms for shared-memory

machines. In Handbook of Theoretical Computer Science Volume A:

Algorithms and Complexity, pages 869–942. Elsevier, 1990.

[20] G. Lewandowski. Practical Implementations and Applications Of Graph

Coloring. PhD thesis, University of Wisconsin-Madison, August 1994.

[21] M. Luby. A simple parallel algorithm for the maximal independent set

problem. SIAM Journal on Computing, 15(4):1036–1053, 1986.

[22] F. Manne. A parallel algorithm for computing the extremal eigenvalues

of very large sparse matrices (extended abstract). In Para98, volume

1541 of LNCS, pages 332–336. Springer-Verlag, 1998.

[23] J. Naor. A fast parallel coloring of planar graphs with five colors.

Information Processing Letters, 25(1):51–53, 20 April 1987.

[24] L. G. Valiant. A bridging model for parallel computation. Communi-

cations of the ACM, 33(8):103–111, 1990.

[25] J. S. Vitter and R. A. Simons. New classes for parallel complexity: A

study of unification and other complete problems for P. IEEE Trans-

actions on Computers, C-35(5):403–418, 1986.

24

PRO: a Model for Parallel Resource-Optimal

Computation ∗

Assefaw Hadish Gebremedhin† Isabelle Guérin Lassous‡

Jens Gustedt§ Jan Arne Telle

Abstract

We present a new parallel computation model that enables the de-

sign of resource-optimal scalable parallel algorithms and simplifies their

analysis. The model rests on the novel idea of incorporating relative

optimality as an integral part and measuring the quality of a parallel

algorithm in terms of granularity.

Key words: Parallel computers, Parallel models, Parallel algo-

rithms, Complexity analysis

∗Research supported by IS-AUR 02-34 of The Aurora Programme, a France-Norway

Collaboration Research Project of The Research Council of Norway, The French Ministry

of Foreign Affairs and The Ministry of Education, Research and Technology.
†Department of Informatics, University of Bergen, N-5020, Norway. {assefaw,

telle}@ii.uib.no
‡LIP & INRIA Rhone-Alpes, France. Isabelle.Guerin-Lassous@inria.fr
§LORIA & INRIA Lorraine, France. gustedt@loria.fr

1

1 Introduction

One of the challenges in parallel processing is the development of a gen-

eral purpose and effective model of parallel computation. Unlike the realm

of sequential computation, where the Random Access Machine (RAM) has

successfully served as a standard computational model, no such single uni-

fying model exists in the field of parallel computation. From an algorith-

mic point of view, the performance of a sequential algorithm is adequately

evaluated using its execution time making the RAM powerful enough for

analysis and design. On the other hand, the performance evaluation of a

parallel algorithm involves several metrics, the most important of which are

speedup, optimality (or efficiency), and scalability. Speedup and optimality

are relative in nature as they are expressed with respect to some sequential

algorithm. The notion of relativity is also relevant from a practical point

of view. A parallel algorithm is often not designed from scratch, but rather

starting from a sequential algorithm.

We believe that a parallel computation model should incorporate the

most important performance evaluation metrics of parallel algorithms as

the RAM does for sequential algorithms. In light of this, the objective of

the current work is to develop a model that simplifies the design and analysis

of resource-optimal scalable parallel algorithms.

In an interesting survey paper [21], Maggs et al. suggest that an ideal

parallel computation model be designed within “the philosophy of simplic-

ity and descriptivity balanced with prescriptivity”. The Parallel Resource-

Optimal (PRO) computation model proposed here is developed within this

spirit. The key features of the PRO model that distinguish it from existing

parallel computation models are relativity, resource-optimality, and a new

quality measure referred to as granularity.

Relativity pertains to the fact that the design and analysis of a parallel

algorithm in PRO is done relative to the time and space complexity of a

specific sequential algorithm. Consequently, the parameters involved in the

analysis of a PRO-algorithm are the number of processors p, the input size

n, and the time and space complexity of the reference sequential algorithm

Aseq.

A PRO-algorithm is required to be both time- and space-optimal (hence

resource-optimal). A parallel algorithm is said to be time- (or work-) optimal

if the overall computation and communication cost involved in the algorithm

is proportional to the time complexity of the sequential algorithm used as

a reference. Similarly, it is said to be space-optimal if the overall memory

space used by the algorithm is of the same order as the memory usage of

2

the underlying sequential version. As a consequence of its time-optimality, a

PRO-algorithm always yields linear speedup relative to the reference sequen-

tial algorithm; i.e., the ratio between the sequential and parallel runtime is

a linear function of p.

The quality of a PRO-algorithm is measured by the range of values p

can assume while linear speedup is maintained. This range is captured

by an attribute of the model called the granularity function Grain(n). In

other words, a PRO-algorithm with granularity Grain(n) is required to be

fully scalable for all values of p such that p = O(Grain(n)). The granularity

function Grain(n) determines the quality of one PRO-algorithm over another

relative to the same sequential time and space complexity. The higher the

function value Grain(n) the better the algorithm. Note that since optimality

(consequently linear speedup) is ‘hard-wired’ into the model, the runtime

cannot be a quality measure for a PRO algorithm. However, in a sense, the

time and space complexity of the reference sequential algorithm Aseq can also

be seen as a quality measure of the PRO-algorithm. This means that the

selection of the reference sequential algorithm is of significant importance.

The rest of the paper is organized as follows. In Section 2 we give an

overview of existing parallel computation models and highlight their limita-

tions. In Section 3 the PRO model is presented in detail and in Section 4

it is compared with a selection of existing parallel models. In Section 5 we

illustrate how the model is used in design and analysis using the matrix mul-

tiplication problem as an example. In Section 6 we give a PRO-algorithm

for one-to-all broadcast, as an example of a primitive communication rou-

tine found in a potential PRO library. Finally, we conclude the paper in

Section 7 with some remarks.

2 Existing models and their limitations

There exists a plethora of parallel computation models in the literature. On

the theoretical end, we find the Parallel Random Access Machine (PRAM)

model [8, 17] which in its simplest form posits a set of p processors, with

global shared memory, executing the same program in lockstep. In this

model, every processor can access any memory location at unit cost of time

regardless of the memory location. This assumption is in obvious disagree-

ment with the reality of practical parallel computers.

However, despite its serious limitation of being an ‘idealized’ model of

parallel computation, the standard PRAM model still serves as a theoreti-

cal framework for investigating the maximum possible computational paral-

lelism in a given task. Specifically, on this model, the NC versus P -complete

3

dichotomy [14] is used to reflect the ease/hardness of finding a parallel al-

gorithm for a problem. Recall that NC denotes the class of problems which

have PRAM-algorithms with polylogarithmic runtime and polynomial num-

ber of processors in the input size. A problem is said to be P -complete

if an NC-algorithm for it would imply that all polynomial time sequential

problems have NC-algorithms. The problem of whether or not P = NC

has long been an open problem.

The NC versus P -complete dichotomy has its own practical limitations.

First, P -completeness does not depict a full picture of non-parallelizability

since the runtime requirement for an NC parallel algorithm is so stringent

that the classification is confined to the case where up to polynomial num-

ber of processors in the input size is available (fine-grained setting). For

example, there are P -complete problems for which less ambitious, but still

satisfactory, runtime can be obtained by parallelization in PRAM [23]. In

a fine-grained setting, since the number of processors p is a function of the

input size n, it is customary to express speedup as a function of n. Thus

the speedup obtained using an NC-algorithm is sometimes referred to as

exponential. In a coarse-grained setting, i.e., the case where n and p are

orders of magnitude apart, speedup is expressed as a function of only p and

some recent results [4, 7, 9, 15] show that this approach is practically rele-

vant. Second, an NC-algorithm is not necessarily work-optimal, and thus

not resource-optimal considering runtime and memory space as resources

that one wants to use efficiently. Third, even if we restrict ourselves to

work-optimal NC-algorithms and apply Brent’s scheduling principle, which

says an algorithm in theory can be simulated on a machine with fewer pro-

cessors by only a constant factor more work, implementations of PRAM

algorithms often do not reflect this optimality in practice [6]. This is mainly

because the PRAM model does not account for non-local memory access

(communication), and a Brent-type simulation relies heavily on cheap com-

munication.

To overcome the defects of the PRAM related to its failure of captur-

ing real machine characteristics, the advocates of shared memory models

propose several modifications to the standard PRAM model. In particular,

they enhance the standard PRAM model by taking practical machine fea-

tures such as memory access, synchronization, latency and bandwidth issues

into account. Pointers to the PRAM family of models can be found in [21].

Critics of shared memory models argue that the PRAM family of mod-

els fail to capture the nature of existing parallel computers with distributed

memory architectures. Examples of distributed memory computational mod-

els suggested as alternatives include the Postal Model [2] and the Block

4

Distributed Memory (BDM) model [18]. Other categories of parallel mod-

els such as low-level, hierarchical memory, and network models are briefly

reviewed in [21].

A more recent category of parallel models is that of ‘bridging’ models, a

notion popularized by Valiant with his introduction of the Bulk Synchronous

Parallel (BSP) model [22]. The BSP model is a distributed memory coarse-

grained model in which parallel computation proceeds as a sequence of bar-

rier synchronized supersteps where local computation and communication

are distinct rather than intermingled phases. Culler et al. [5] extended the

BSP model by allowing asynchronous execution and better accounting for

communication overhead. Their model is coined LogP, an acronym for the

four parameters involved. A common feature of the BSP, LogP, and other

related models is their lack of simplicity: each model involves relatively

many parameters making analysis and design of algorithms cumbersome.

The Coarse Grained Multicomputer (CGM) model [4, 7] was later pro-

posed in an effort to retain the advantages of BSP while keeping the model

simple (making the number of parameters fewer). The BSP and its special

case CGM have been the primary inspirations for our model. Thus, we be-

lieve that many optimal CGM and BSP algorithms can easily be adapted

to PRO.

The PRO model attempts to partially address the limitations of existing

parallel models highlighted in the foregoing discussion and compromises be-

tween theoretical and practical considerations. One of its advantages from

a theoretical point of view is that it is a step forward towards the identi-

fication of the class of problems for which ‘good’ parallel algorithms exist

in a more realistic (practical) way than the existing NC versus P -complete

classification.

Our main goal in suggesting the PRO model is to enable the development

of scalable and resource-optimal parallel algorithms and to simplify their

analysis. The model identifies the salient features of a parallel algorithm that

make its practical scalability and optimality highly likely. In this regard, it

can be considered as a set of ‘guidelines’ for the algorithm designer in the

quest for developing scalable and efficient parallel algorithms. Hence, PRO

can be seen as a mix of a parallel computation model and a parallel algorithm

design scheme which makes it biased towards the software side in its role as

a bridging model.

5

3 The PRO model

The PRO model is an algorithm design and analysis tool used to deliver

a practical, optimal, and scalable parallel algorithm relative to a specific

sequential algorithm whenever this is possible. Let Time(n) and Space(n)

denote the time and space complexity of a specific sequential algorithm for

a given problem with input size n. The PRO model is defined to have the

following attributes.

Machine The underlying machine is assumed to consist of p processors

with M = O(Space(n)
p) private memory each, interconnected by some

communication network (or shared memory) that can deliver messages

in a point-to-point fashion. A message can consist of several machine

words.

Coarseness We assume that p ≤ M , i.e., the size of the local memory of

each processor is big enough to store p words.

Execution For any value p = O(Grain(n)), a PRO algorithm,

• consists of O(Time(n)
p2) supersteps. A superstep consists of a local

computation phase and an interprocessor communication phase.

In particular, in each superstep, each processor

– sends at most one message to every other processor,

– sends and receives at most M words in total, and pays a unit

of time per word sent and received,

– performs local computation, and pays a unit of time per op-

eration,

• has parallel runtime Time(n, p) = O(Time(n)
p).

Note that the granularity function Grain(n) is a quality measure of a

PRO-algorithm.

As discussed in the LogP paper [5], technological factors are forcing par-

allel systems to converge towards systems formed by a collection of essen-

tially complete computers connected by a robust communication network.

The machine model assumption of PRO is consistent with this convergence

and maps well on several existing parallel computer architectures. The mem-

ory requirement M = O(Space(n)
p) ensures that the space utilized by the un-

derlying sequential algorithm is uniformly distributed among the p proces-

sors. Since we may, without loss of generality, assume that Space(n) = Ω(n),

the implication is that the private memory of each processor is large enough

6

to store its ‘share’ of the input and any additional space the sequential al-

gorithm might require. When Space(n) = Θ(n), note that the input data

must be uniformly distributed on the p processors. In this case the machine

model assumption of PRO is similar to the assumption in the CGM model

[7].

The coarseness assumption p ≤ M is consistent with the structure of

existing parallel machines and machines to be built in the foreseeable future.

The assumption is required to simplify the implementation of collecting

messages (from possibly all other processors) on a single processor.

The execution of a PRO-algorithm consists of a sequence of supersteps

(or rounds). The length of (time spent in) a superstep on each processor is

determined by the sum of the time used for communication and the time

used for local computation. The length of a superstep s in the parallel

algorithm seen as a whole, denoted by Times(n, p), is the maximum over

the lengths of the superstep on all processors. We can conceptually think as

if the supersteps are synchronized by a barrier set at the end of the longest

superstep across the processors. However, note that in PRO the processors

are not in reality required to synchronize at the end of each superstep. The

parallel runtime Time(n, p) of the algorithm is the sum of the lengths of

all the supersteps. Notice that the hypothetical barriers result in only a

constant factor more time compared with an analysis that does not assume

the barriers.

In PRO, since a processor sends at most one message to every other

processor in each superstep, each processor is involved in at most 2(p − 1)

messages per superstep. Therefore, the requirement Steps = O(Time(n)
p2) on

the number of supersteps implies that the overall time paid per processor

for communication overhead and latency is O(Time(n)/p) and hence can be

neglected from the analysis since our goal is to achieve an O(Time(n)/p)

parallel runtime. Notice that the bandwidth restriction of the underlying

architecture which in turn contributes to the communication cost is ac-

counted for since each processor pays a unit of time per word sent and

received. This is not an unrealistic assumption noting that the network

throughput (accounted in machine words) on modern architectures such as

high performance clusters is relatively close to the CPU frequency and to

the CPU/memory bandwidth.

The condition Time(n, p) = O(Time(n)
p) requires that a PRO-algorithm

be optimal and yield linear speedup relative to the sequential algorithm used

as a reference. This requirement ensures the potential practical use of the

parallel algorithm.

7

Observation 1 A PRO algorithm relative to a sequential algorithm with

runtime O(Time(n)) and space requirement O(Space(n)) has maximum gran-

ularity Grain(n) = O(min{
√

Space(n),
√

(Time(n)}) = O(
√

Space(n)). A

PRO algorithm that achieves this is said to have optimal grain.

Observation 1 is due to the limit on the memory size of each processor,

the coarseness assumption, and the bound on the number of supersteps. The

limit on the size of the private memory of each processor (M = O(Space(n)
p))

together with the coarseness assumption p ≤ M imply p = O(
√

Space(n)).

The fact that the number of supersteps of a PRO-algorithm should be

Steps = O(Time(n)/p2), gives p = O(
√

(Time(n)/Steps)) upon resolving

and we clearly have Steps ≥ 1. Finally, note that Time(n) ≥ Space(n),

since an algorithm has to at least read the input.

Since a PRO-algorithm yields linear speedup for any p = O(Grain(n)),

a result like Brent’s scheduling principle is implicit for these values of p.

But Observation 1 shows that we cannot start with an arbitrary number of

processors and efficiently simulate on a fewer number. So Brent’s scheduling

principle does not hold with full generality in the PRO model, which is in

accordance with practical observations.

The design of a PRO-algorithm may sometimes involve subroutines for

which there do not exist sequential counterparts. Examples of such tasks in-

clude communication primitives such as broadcasting, data (re)-distribution

routines, and load balancing routines. Such routines are often required in

various parallel algorithms. With a slight abuse of notation, we call such

parallel routines PRO-algorithms if the overall computation and communi-

cation cost is linear in the input size to the routines.

4 Comparison with other models

In this section we compare the PRO model with PRAM, QSM, BSP, LogP,

and CGM. Our tabular format for comparison is inspired by a similar presen-

tation in [13], where the Queuing Shared Memory (QSM) model is proposed.

The columns of Table 1 are labeled with the names of the selected models in

our comparison and some relevant features of a model are listed along the

rows.

The synchrony assumption of the model is indicated in the row labeled

synch. Lock-step indicates that the processors are fully synchronized at each

step (of a universal clock), without accounting for synchronization. Bulk-

synchrony indicates that there can be asynchronous operations between syn-

chronization barriers. The row labeled memory shows how the model views

8

PRAM [8] QSM [13] BSP [22] LogP [5] CGM [4] PRO
synch. lock-step bulk-synch. bulk-synch. asynch. asynch. asynch.
memory sh. sh. dist. dist. priv. priv.
commun. SM SM MP MP MP/SM MP/SM
parameters n p, g, n p, g,L, n p, g, l, o, n p, n p, n,Aseq

granularity fine fine coarse fine coarse Grain(n)
speedup NA NA NA NA NA Θ(p)
optimal NA NA NA NA NA rel. Aseq

quality time time time time rounds Grain(n)

Table 1: Comparison of parallel computational models

the memory of the parallel computer: sh. indicates globally accessible shared

memory, dist. stands for distributed memory and priv. is an abstraction

for the case where the only assumption is that each processor has access

to private (local) memory. In the last variant the whole memory could ei-

ther be distributed or shared. The row labeled commun. shows the type

of interprocessor communication assumed by the model. Shared memory

(SM) indicates that communication is effected by reading from and writing

to a globally accessible shared memory. Message-passing (MP) denotes the

situation where processors communicate by explicitly exchanging messages

in a point-to-point fashion. The MP abstraction hides the details of how

the message is routed through the interprocessor communication network.

The parameters involved in the model are indicated in the row labeled

parameters. The number of processors is denoted by p, n is the input size,

Aseq is the reference sequential algorithm, l is the communication cost (la-

tency), L is a single parameter that accounts for the sum of latency (l)

and the cost for a barrier synchronization, g is the bandwidth gap, and o

is the overhead associated with sending or receiving a message. Note that

the machine characteristics l and o are are taken into account in PRO, even

though they are not explicitly used as parameters. Latency is taken into

consideration since the length of a superstep is determined by the sum of

the computational and communication cost. Communication overhead is

hidden by the PRO-requirement that states Steps = O(Time(n)
p2).

The row labeled granularity indicates whether the model is fine-grained,

coarse-grained or a more precise measure is used. We say that a model is

coarse-grained if it applies to the case where n � p and call it fine-grained if

it relies on using up to a polynomial number of processors in the input size.

In PRO granularity is exactly the quality measure Grain(n), and appears as

one of the attributes of the model.

The rows labeled speedup and optimal indicate the speedup and resource

optimality requirements imposed by the model. Whenever these issues are

not directly addressed by the model or are not applicable, the word ‘NA’ is

9

used. Note that these requirements are ‘hard-wired’ in the model in the case

of PRO. The label ‘rel. Aseq’ means that the algorithm is optimal relative

to the time and space complexity of Aseq. We point out that the goal in the

design of algorithms using the CGM model [7, 4] is usually stated as that

of achieving optimal algorithms, but the model per se does not impose an

optimality requirement.

The last row indicates the quality measure of an algorithm designed

using the different models. For all other models except CGM and PRO,

the quality measure is running time. In CGM, the number of supersteps

(rounds) is usually presented as a quality measure. In PRO the quality

measure is granularity, one of the features that make PRO fundamentally

different from all existing parallel computation models.

5 Algorithm example: matrix multiplication

In this section we illustrate how the PRO model is used, by starting from a

given sequential algorithm and then designing and analyzing a parallel al-

gorithm relative to it. We use the standard matrix multiplication algorithm

with three nested for-loops as an example. This example is chosen for its

simplicity and since our objective at this stage is to illustrate the use of a

new model rather than solving a “difficult” problem.

Consider the problem of computing the product C of two m × m ma-

trices A and B (input size n = m2). We want to design a PRO-algorithm

relative to the standard sequential matrix multiplication algorithm which

has Time(n) = O(n
3

2) and Space(n) = O(n).

We assume that the input matrices A and B are distributed among

the p processors P0, ..., Pp−1 so that processor Pi stores rows (respectively

columns) m
p · i+1 to m

p · (i+1) of A (respectively B). The output matrix C

will be row-partitioned among the p processors in a similar fashion. Notice

that with this data distribution each processor can, without communica-

tion, compute a block of m2

p2 of the m2

p entries of C expected to reside on

it. In order to compute the next block of m2

p2 entries, processor Pi needs

the columns of matrix B that reside on processor Pi+1. In each superstep

the processors in the PRO algorithm will therefore exchange columns in a

round-robin fashion and then each will compute a new block of results. Note

that each column exchanged in a superstep constitutes one single message.

Note also that the initial distribution of the rows of matrix A remains un-

changed. In Algorithm 1, we have organized this sequence of computation

and communication steps in a manner that meets the requirements of the

10

Algorithm 1: Matrix multiplication

Input: Two m × m matrices A and B. The rows (columns) of A
(B) are divided into m/p contiguous blocks, and stored on
processors P0, P1, . . . Pp−1 respectively

Output: The product matrix C where the rows are stored in con-
tiguous blocks across the p processors

for superstep s = 1 to p do

foreach processor Pi do

Pi computes the local sub-matrix product of its rows and
current columns;
P(i+1)mod p sends its current block of columns to Pi;
Pi receives a new current block of columns from P(i+1)mod p;

PRO model.

Algorithm 1 has p supersteps (Steps = p). In each superstep, the time

spent in locally computing each of the m2/p2 entries is Θ(m) resulting in

local computing time Θ(m3/p2) = Θ(n
3

2 /p2) per superstep. Likewise, the

total size of data (words) exchanged by each processor in a superstep is

Θ(m2/p) = Θ(n/p). Thus, the length of a superstep s is Times(n, p) =

Θ(n
3

2 /p2+n/p). Note that for p = O(
√

n), Times(n, p) = Θ(n
3

2 /p2). Hence,

for p = O(
√

n), the overall parallel runtime of the algorithm is

Time(n, p) =
∑

Steps

Θ(n
3

2 /p2) = Θ(n
3

2 /p) = Θ(Time(n)/p). (1)

Noting that Space(n) = Θ(n), we see that the memory restriction of

the PRO model is respected, i.e., each processor has enough memory size

to handle the transactions. In order to be able to neglect communication

overhead, the condition on the number of supersteps, which in this case

is just p, should be met. In other words, we need p = O(Time(n)/p2) =

O(n
3

2 /p2), which is true for p = O(
√

n). Thus the granularity function of

the PRO-algorithm is Grain(n) =
√

n.

In summary,

Lemma 1 Multiplication of two m by m matrices has a PRO-algorithm

with Grain(n) = m relative to a sequential algorithm with Time(n) = m3

and Space(n) = m2 (input size n = m2).

From Observation 1, we note that Algorithm 1 achieves optimal gran-

ularity. Note that on a relaxed model, where the assumption that p ≤ M

is not present, the strong regularity of matrix multiplication and the exact

11

knowledge of the communication pattern allows for algorithms that have an

even finer granularity than m. For example, a systolic matrix multiplica-

tion algorithm has a granularity of m2. However, PRO is intended to be

applicable for general problems and practically relevant parallel systems.

6 Communication primitive example: one-to-all

broadcast

A good parallel computation model should have a selection of algorithms

for primitive communication tasks available in its algorithm design tool-

box. The PRO model is intended to meet this demand, but for lack of space

we give only one example.

In this section we illustrate how the PRO model allows optimal one-

to-all broadcasting among its processors. Since there is no sequential basis

algorithm in this case, we want an algorithm whose overall communication

and computation cost is linear in the input and output sizes. More precisely,

we consider the situation where the input consists of a vector of size m on

a single processor and the output should be a copy of this vector on each of

the p processors, and we want an algorithm that achieves this in O(m) time

using O(m) memory on each processor. See Algorithm 2.

Algorithm 2: One-to-All Broadcast

Input: A vector V of size m on processor P0

Output: A copy of V on each processor

S1 P0 divides V into p equal sized parts;
P0 sends the ith part of V to processor Pi, for each 0 < i ≤ p;
foreach processor Pi, i > 0 do processor Pi receives the ith part
from P0;

S2 foreach processor Pi do

Pi sends out the ith part to Pj , for each j 6= i and 0 < j ≤ p.

foreach processor Pj,j 6= 0 do

Pj receives the ith part from Pi, for each i 6= j and 0 < i ≤ p

Lemma 2 PRO Algorithm 2 implements a one-to-all broadcast of m mem-

ory words in two supersteps using O(m) time and O(m) space per processor,

for any number of processors p ≤ m.

Proof: First, we note that the algorithm correctly broadcasts the desired

vector V , while observing the space restriction, in two supersteps. We turn

to the timing. In step S1 processor P0 in total sends out (p − 1)m/p words

12

and each of the other processors receives a message of size m/p. In step S2

processor Pi in total sends out p−2
p m words. Processor Pj , j 6= 0, in total

receives p−1
p m words.

The total time is dominated by the communication which is

(p − 1)m/p + m/p +
p − 2

p
m +

p − 1

p
m = (2)

m/p(p + p − 2 + p − 1) < 3m (3)

for total time O(m) as claimed. 2

7 Conclusion

We have introduced a new parallel computation model (called PRO) that en-

ables the development of efficient scalable parallel algorithms and simplifies

the complexity analysis of such algorithms.

The distinguishing feature of the PRO model is the novel focus on rel-

ativity, resource-optimality, and a new quality measure (granularity). In

particular, the model requires a parallel algorithm to be both time- and

space-optimal relative to an underlying sequential algorithm. Having opti-

mality as a built-in requirement, the quality of a PRO-algorithm is measured

by the maximum number of processors that could be used while the opti-

mality of the algorithm is maintained.

The focus on relativity has theoretical as well as practical justifications.

From a theoretical point of view, the performance evaluation metrics of

a parallel algorithm includes speedup and optimality, both of which are

always expressed relative to some sequential algorithm. Moreover, there

is an inherent asymmetry between sequential and parallel computation. A

parallel algorithm would always imply a sequential algorithm, whereas the

converse is usually not true. Thus, in a sense, it is natural to think of an

underlying sequential algorithm whenever one speaks of a parallel algorithm.

From a practical point of view, one notes that the development of a parallel

algorithm is often built on some known sequential algorithm.

The fact that optimality is incorporated as a requirement in the PRO

model enables one to concentrate only on parallel algorithms that are prac-

tically useful.

However, the PRO model is not just a collection of some ‘ideal’ features of

parallel algorithms, it is also a means to achieve these features. In particular,

the attributes of the model capture the salient characteristics of a parallel

algorithm that make its practical optimality and scalability highly likely.

13

In this sense, it can also be seen as a parallel algorithm design scheme.

Moreover, the simplicity of the model eases analysis.

We believe that the PRO model is a step forward towards the identi-

fication of problems for which ‘practically good’ parallel algorithms exist.

Much work remains to be done, and we hope that other members of the

research community will join in. As a first item on the agenda, the PRO

model needs to be tested for compatibility with already existing practical

parallel algorithms.

Acknowledgments We are grateful to the anonymous referees for their

helpful comments.

References

[1] A. G. Alexandrakis, A. V. Gerbessiotis, D. S. Lecomber, and C. J.

Siniolakis. Bandwidth, space and computation efficient PRAM pro-

gramming: The BSP approach. In Proceedings of the SUP’EUR ’96

Conference, Krakow, Poland, September 1996.

[2] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the

Postal Model for message passing systems. In The 4th annual ACM

symposium on parallel algorithms and architectures, pages 13–22, July

1992.

[3] R. P. Brent. The parallel evaluation of generic arithmetic expressions.

Journal of the ACM, 21(2):201–206, 1974.

[4] E. Caceres, F. Dehne, A. Ferreira, P. Locchini, I. Rieping, A. Roncato,

N. Santoro, and S. W. Song. Efficient parallel graph algorithms for

coarse grained multicomputers and BSP. In The 24th International

Colloquium on Automata Languages and Programming, volume 1256 of

LNCS, pages 390–400. Springer Verlag, 1997.

[5] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser,

E. Santos, R. Subramonian, and T. von Eicken. LogP: Towards a real-

istic model of parallel computation. In 4th ACM SIGPLAN Symposium

on principles and practice of parallel programming, San Diego, CA, May

1993.

[6] F. Dehne. Coarse grained parallel algorithms. Algorithmica Special

Issue on “Coarse grained parallel algorithms”, 24(3/4):173–176, 1999.

14

[7] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computa-

tional geometry for coarse grained multicomputers. International Jour-

nal on Computational Geometry, 6(3):379–400, 1996.

[8] S. Fortune and J. Wyllie. Parallelism in random access machines. In

10th ACM Symposium on Theory of Computing, pages 114–118, May

1978.

[9] A. H. Gebremedhin, I. Guérin Lassous, J. Gustedt, and J. A. Telle.

Graph coloring on a coarse grained multiprocessor. In Ulrik Brandes

and Dorothea Wagner, editors, WG 2000, volume 1928 of LNCS, pages

184–195. Springer-Verlag, 2000.

[10] A. V. Gerbessiotis, D. S. Lecomber, C. J. Siniolakis, and K. R. Su-

jithan. PRAM programming: Theory vs. practice. In Proceedings of 6th

Euromicro Workshop on Parallel and Distributed Processing, Madrid,

Spain. IEEE Computer Society Press, January 1998.

[11] A. V. Gerbessiotis and C. J. Siniolakis. A new randomized sorting

algorithm on the BSP model. Technical report, New Jersey Institute of

Technology, 2001.

[12] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel

algorithms. Journal of Parallel and Distributed Computing, 22:251–267,

1994.

[13] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a Shared-

Memory Model Serve as a Bridging Model for Parallel Computation?

Theory of Computing Systems, 32(3):327–359, 1999.

[14] R. Greenlaw, H.J. Hoover, and W. L. Ruzzo. Limits to Parallel Com-

putation: P-Completeness Theory. Oxford University Press, New York,

1995.

[15] I. Guérin Lassous, J. Gustedt, and M. Morvan. Handling graphs accord-

ing to a coarse grained approach: Experiments with MPI and PVM.

In Jack Dongarra, Péter Kacsuk, and N. Podhorszki, editors, 7th Eu-

ropean PVM/MPI Users’ Group Meeting, volume 1908 of LNCS, pages

72–79. Springer Verlag, 2000.

[16] K. Hawick et al. High performance computing and communications

glossary. see http://nhse.npac.syr.edu/hpccgloss/.

[17] J. Jájá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

15

[18] J. JáJá and K. W. Ryu. The Block Distributed Memory model. IEEE

Transactions on Parallel and Distributed Systems, 8(7):830–840, 1996.

[19] R. M. Karp and V. Ramachandran. Parallel Algorithms for Shared-

Memory Machines. In Jan van Leeuwen, editor, Handbook of Theoretical

Computer Science, volume A, Algorithms and Complexity, pages 869–

941. Elsevier Science Publishers B.V., Amsterdam, 1990.

[20] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient

parallel algorithms. Theoretical Computer Science, 71(1):95–132, march

1990.

[21] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of parallel

computation: A survey and synthesis. In 28th HICSS, volume 2, pages

61–70, January 1995.

[22] L. G. Valiant. A bridging model for parallel computation. Communi-

cations of the ACM, 33(8):103–111, 1990.

[23] J. S. Vitter and R. A. Simons. New classes for parallel complexity: A

study of unification and other complete problems for P. IEEE Trans-

actions on Computers, C-35(5):403–418, 1986.

16

	cover.pdf
	ack.pdf
	intro.pdf
	paper1.pdf
	paper2.pdf
	paper3.pdf
	paper4.pdf
	paper5.pdf

