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Abstract� A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope
size was described in ���� The ordering is computed by associating a Laplacian matrix with the given matrix
and then sorting the components of a speci�ed eigenvector of the Laplacian� In this paper we provide an
analysis of the spectral envelope reduction algorithm� We describe related �� and ��sum problems	 the former
is related to the envelope size
 while the latter is related to an upper bound on the work in an envelope
Cholesky factorization� We formulate the latter two problems as quadratic assignment problems
 and then
study the ��sum problem in more detail� We obtain lower bounds on the ��sum by considering a relaxation
of the problem
 and then show that the spectral ordering �nds a permutation matrix closest to an orthogonal
matrix attaining the lower bound� This provides stronger justi�cation of the spectral envelope reduction
algorithm than previously known� The lower bound on the ��sum is seen to be tight for reasonably �uniform�
�nite element meshes� We show that problems with bounded separator sizes also have bounded envelope
parameters�
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�� Introduction� We provide a raison d��etre for a novel spectral algorithm to reduce

the envelope of a sparse� symmetric matrix� described in a companion paper ���� The al�
gorithm associates a discrete Laplacian matrix with the given symmetric matrix� and then
computes a reordering of the matrix by sorting the components of an eigenvector correspond�
ing to the smallest nonzero Laplacian eigenvalue� The results in ��� show that the spectral

algorithm can obtain signi�cantly smaller envelope sizes compared to other currently used
algorithms� All previous envelope�reduction algorithms 	known to us
� such as the reverse
Cuthill�McKee 	RCM
 algorithm and variants ��� �� ��� �� ���� are combinatorial in nature�
employing breadth��rst�search to compute the ordering� In contrast� the spectral algorithm

is an algebraic algorithm whose good envelope�reduction properties are somewhat intriguing
and poorly understood�

We describe problems related to envelope�reduction called the �� and ��sum problems�

and then formulate these latter problems as quadratic assignment problems 	QAPs
� We
show that the QAP formulation of the ��sum enables us to obtain lower bounds on the ��sum
	and related envelope parameters
 based on the Laplacian eigenvalues� The lower bounds
seem to be quite tight for �nite element problems when the mesh points are nearly all of the

same degree� and the geometries are simple� Further� a closest permutation matrix to an
orthogonal matrix that attains the lower bound is obtained� to within a linear approxima�
tion� by sorting the second Laplacian eigenvector components in monotonically increasing or
decreasing order� This justi�es the spectral envelope�reducing algorithm more strongly than

earlier results�
Although initially envelope�reducing orderings were developed for use in envelope schemes

for sparse matrix factorization� these orderings have been used in the past few years in sev�
eral other applications� The RCM ordering has been found to be an e�ective pre�ordering

in computing incomplete factorization preconditioners for preconditioned conjugate�gradient
methods ��� �� Envelope�reducing orderings have been used in frontal methods for sparse
matrix factorization ����

The wider applicability of envelope�reducing orderings prompts us to take a fresh look
at the reordering algorithms currently available� and to develop new ordering algorithms�
Spectral envelope�reduction algorithms seem to be attractive in this context� since they
	i
 compare favorably with existing algorithms in terms of the quality of the orderings ����

	ii
 extend easily to problems with weights� e�g�� �nite element meshes arising from dis�
cretizations of anisotropic problems� and
	iii
 are fairly easily parallelizable�
Spectral algorithms are more expensive than the other algorithms currently available� But

since the envelope�reduction problem requires only one eigenvector computation 	to low pre�
cision
� we believe the costs are not impractically high in computation�intensive applications�
e�g�� frontal methods for factorization� In contexts where many problems having the same
structure must be solved� a substantial investment in �nding a good ordering might be justi�

�ed� since the cost can be amortized over many solutions� Improved algorithms that reduce
the costs are being designed as well �����

We focus primarily on the class of �nite element meshes arising from discretizations of

partial di�erential equations� Our goals in this project are to develop e�cient software im�
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plementing our algorithms� and to prove results about the quality of the orderings generated�

The projection approach for obtaining lower bounds of a QAP is due to Hadley� Rendl�
and Wolkowicz ����� and this approach has been applied to the graph partitioning problem
by the latter two authors ����� In earlier work a spectral approach for the graph 	matrix

partitioning problem has been employed to compute a spectral nested dissection ordering

for sparse matrix factorization� for partitioning computations on �nite element meshes on a
distributed�memory multiprocessor ���� ��� ��� ��� and for load�balancing parallel compu�
tations ����� The spectral approach has also been used to �nd a pseudo�peripheral node �����
Juvan and Mohar ���� ��� have provided a theoretical study of the spectral algorithm for

reducing p�sums� where p � �� �� and �� and Helmberg et al� ���� obtain spectral lower
bounds on the bandwidth� A survey of some of these earlier results may be found in �����
Paulino et al� ���� have also considered the use of spectral envelope�reduction for �nite ele�

ment problems�
The following is an outline of the rest of this paper� In Section � we describe various

parameters of a matrix associated with its envelope� introduce the envelope size and envelope
work minimization problems� and the related �� and ��sum problems� We prove that bounds

on the minimum ��sum yield bounds on the minimum envelope size� and similarly� bounds
on the minimum ��sum yield bounds on the work in an envelope Cholesky factorization�
We also show in this section that minimizing the ��sum is NP�complete� We compute lower
bounds for the envelope parameters of a sparse symmetric matrix in terms of the eigenvalues

of the Laplacian matrix in Section �� The popular RCM ordering is obtained by reversing
the Cuthill�McKee 	CM
 ordering� the RCM ordering can never have a larger envelope size
and work than the CM ordering� and is usually signi�cantly better� We prove that reversing
an ordering can improve or impair the envelope size by at most a factor �� and the envelope

work by at most ��� where � is the maximum degree of a vertex in the adjacency graph�
In Section �� we formulate the �� and ��sum problems as quadratic assignment problems�
We obtain lower and upper bounds for the ��sum problem in terms of the eigenvalues of the

Laplacian matrix in Section � by means of a projection approach that relaxes a permutation
matrix to an orthogonal matrix with row and column sums equal to one� We justify the
spectral envelope�reduction algorithm in Section  by proving that a closest permutation
matrix to an orthogonal matrix attaining the lower bound for the ��sum is obtained� to

within a linear approximation of the problem� by permuting the second Laplacian eigenvector
in monotonically increasing or decreasing order� In Section � we show that graphs with
small separators have small envelope parameters as well� by considering a modi�ed nested
dissection ordering� We present computational results in Section � to illustrate that the

��sums obtained by the spectral reordering algorithm can be close to optimal for many �nite
element meshes� Section � contains our concluding remarks� The Appendix contains some
lower bounds for the more general p�sum problem� where � � p ���

�� A menagerie of envelope problems�

���� The envelope of a matrix� Let A be an n� n symmetric matrix with elements

aij� whose diagonal elements are nonzero� Various parameters of the matrix A associated
with its envelope are de�ned below�
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We denote the column indices of the nonzeros in the lower triangular part of the ith row

by

row	i
 � fj � aij �� � and � � j � ig�

For the ith row of A we de�ne

fi	A
 � minfj � j � row	i
g� and

ri	A
 � i� fi	A
�

Here fi	A
 is the column index of the �rst nonzero in the ith row of A 	by our assumption
of nonzero diagonals� � � fi � i
� and the parameter ri	A
 is the row�width of the ith row
of A� The bandwidth of A is the maximum row�width

bw	A
 � maxfri	A
 � i � �� � � � � ng�

The envelope of A is the set of index pairs

Env	A
 � f	i� j
 � fi	A
 � j � i� i � �� � � � � ng�

For each row� the column indices lie in an interval beginning with the column index of the

�rst nonzero element and ending with 	but not including
 the index of the diagonal nonzero
element�

We denote the size of the envelope by Esize	A
 � jEnv	A
j� 	The number Esize	A
 � n

	which includes the diagonal elements
 is called the pro�le of A ����
 The work in the
Cholesky factorization of A that employs an envelope storage scheme is bounded from above
by

Wbound	A
 � 	���

nX
i��

ri	ri � �
�

This bound is tight ���� when an ordering satis�es 	�
 fi	A
 � fj	A
 when i � j for all i� j

between � and n� and 	�
 fi	A
 � i� for all i � �� � � �� n�
A ��� ��point grid and the nonzero structure of the corresponding matrix A are shown

in Figure ���� A � � � indicates a nonzero element� and a � 	 � indicates a zero element
that belongs to the lower triangle of the envelope in the matrix� The row�widths given in

Table ��� are easily veri�ed from the structure of the matrix� The envelope size is obtained
by summing the row�widths� and is equal to ��� 	Column�widths ci are de�ned later in this
section�


The values of these parameters strongly depend on the choice of an ordering of the rows

and columns� Hence we consider how these parameters vary over symmetric permutations
P TAP of a matrixA� where P is a permutation matrix� We de�ne Esizemin	A
� the minimum
envelope size of A� to be the minimum envelope size among all permutations P TAP of A�
The quantities Wboundmin	A
 and bwmin	A
 are de�ned in similar fashion� Minimizing the

envelope size and the bandwidth of a matrix are NP�complete problems ����� and minimizing
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Fig� ���� An ordering of ��point grid and the corresponding matrix� The lower triangle of the envelope

is indicated by marking zeros within it by asterisks�

i � � � � �  � � �

ri � � � � � � � � �
ci � � � � � � � � �

Table ���

Row�widths and column�widths of the matrix in Figure ��

the work bound is likely to be intractable as well� So one has to settle for heuristic orderings
to reduce these quantities�

It is helpful to consider a �column�oriented� expression for the envelope size for obtaining

a lower bound on this quantity in Section �� The width of a column j of A is the number of
row indices in the jth column of the envelope of A� In other words�

cj	A
 � jfk � k � j� and 
� � j�ak� �� �gj�
	This is also called the jth front�width�
 It is then easily seen that the envelope size is

Esize	A
 �
nX
j��

cj�	���


The work in an envelope factorization scheme is given by

Ework	A
 � 	���

nX

j��

c�j �	���


where we have ignored the linear term in cj � The column�widths of the matrix in Figure ���

are given in Table ���� These concepts and their inter�relationships are described by Liu and
Sherman ����� and are also discussed in the books ��� ����
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The envelope parameters can also be de�ned with respect to the adjacency graph G �

	V�E
 of A� Denote nbr	v
 � fvg � adj	v
� In terms of the graph G and an ordering � of
its vertices� we can de�ne

r	v� �
 � maxf�	v
� �	w
 � w � nbr	v
� �	w
 � �	v
g�
Hence we can write the envelope size and work associated with an ordering � as

Esize	G��
 �
X
v�V

r	v� �
 �
X
v�V

maxf�	v
� �	w
 � w � nbr	v
� �	w
 � �	v
g�

Wbound	G��
 �
X
v�V

r	v� �
� �
X
v�V

maxf	�	v
� �	w

� � w � nbr	v
� �	w
 � �	v
g�

The goal is to choose a vertex ordering � � V � f�� � � � � ng to minimize one of the param�
eters described above� We denote by Esizemin	G
 	Wboundmin	G

 the minimum value of

Esize	G��
 	Wbound	G��

 over all orderings �� The reader can compute the envelope size
of the numbered graph in Figure ���� using the de�nition given in this paragraph� to verify
that Esize	G
 � ���

The jth front�width has an especially nice interpretation if we consider the adjacency

graph G � 	V�E
 of A� Let the vertex corresponding to a column j of A be numbered vj so
that V � fv�� � � � � vng� and de�ne Vj � fv�� � � � � vjg� Denote adj	X
 � 	�v�Xadj	v

 nX� for
a subset of vertices X� Then cj	A
 � jadj	Vj
j�

To illustrate the dependence of the envelope size on the ordering� we include in Figure ���
an ordering that leads to a smaller envelope size for the ��point grid� Again� a � � � indicates
a nonzero element� and a � 	 � indicates a zero element that belongs to the lower triangle of
the envelope in the matrix� This ordering by �diagonals� yields the optimal envelope size for

the ��point grid �����

���� �� and ��sum problems� It will be helpful to consider quantities related to the
envelope size and envelope work� the ��sum and the ��sum�

For real � � p ��� we de�ne the p�sum to be

	pp	A
 �
nX
i��

X
j�row	i


	i� j
p�

Minimizing the ��sum 	p � �
 is the optimal linear arrangement problem� and the limiting

case p � � corresponds to the minimum bandwidth problem� both these are well�known
NP�complete problems ����� We show in the Section ��� that minimizing the ��sum is NP�
complete as well�

We write the envelope size and ��sum� and the envelope work and the ��sum� in a way

that shows their relationships�

Esize	A
 �
nX
i��

max
j�row	i


	i� j
�	���


	�	A
 �
nX
i��

X
j�row	i


	i� j
�	���
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Fig� ���� Another ordering of a ��point grid and the corresponding matrix� Again the lower triangle of

the envelope is indicated by marking the zeros within it by asterisks�

Wbound	A
 �
nX
i��

max
j�row	i


	i� j
��	���


	��	A
 �
nX
i��

X
j�row	i


	i� j
��	��


The parameters 	��min	A
 and 	���min	A
 are the minimum values of these parameters over

all symmetric permutations P TAP of A�
We now consider the relationships between bounds on the envelope size and the ��sum�

and between the upper bound on the envelope work and the ��sum� Let � denote the
maximum number of o�diagonal nonzeros in a row of A� 	This is the maximum vertex

degree in the adjacency graph of A�

Theorem ���� The minimum values of the envelope size� envelope work in the Cholesky

factorization� ��sum� and ��sum of a symmetric matrix A are related by the following in�
equalities�

Esizemin�A	 � 	��min	A
 � �Esizemin�A	�	���


Wboundmin�A	 � 	���min	A
 � �Wboundmin�A	�	���


	��min	A
 � 	��min	A
 �
q
jEj 	��min	A
�	���


Proof� We begin by proving 	���
� Our strategy will be to �rst prove the inequalities

Wbound	A
 � 	��	A
 � �Wbound	A
�

and then to obtain the required result by considering two di�erent permutations of A�




The bound Wbound	A
 � 	��	A
 is immediate from equations 	���
 and 	��
� If the

inner sum in the latter equation is bounded from above by

� max
j�row�i�

	i� j
��

then we get �Wbound	A
 as an upper bound on the ��sum�
Now let X� be a permutation matrix such that fA� � XT

� AX�� and Wbound	fA�
 �
Wboundmin	A
� Then we have

	���min	A
 � 	��	
fA�
 � �Wbound	fA�
 � �Wboundmin	A
�

Further� let X� be a permutation matrix such that fA� � XT
� AX�� and 	��	

fA�
 � 	���min	A
�

Again� we have

Wboundmin	A
 �Wbound	fA�
 � 	��	
fA�
 � 	���min	A
�

We obtain the result by putting the last two inequalities together�

We omit the proof of 	���
 since it can be obtained by a similar argument� and proceed
to prove 	���
� The �rst inequality 	�	A
 � 	�	A
 holds since the p�norm of any real vector
is a decreasing function of p� The second inequality is also standard� since it bounds the
��norm of a vector by means of its ��norm� This result was obtained earlier by Juvan and

Mohar ����� we include its proof for completeness� Applying the Cauchy�Schwarz inequality
to 	��	A
 we have�B� nX

i��

X
j�row	i


	i� j


�CA
�

�
�B� nX
i��

X
j�row	i


�

�CA
�B� nX
i��

X
j�row	i


	i� j
�

�CA � jEj	��	A
�

We obtain the result by considering two orderings that achieve the minimum �� and ��sums�
�

���� Complexity of the ��sum problem� We proceed to show that minimizing the
��sum is NP�complete� In Section � we show that the spectral algorithm computes a ��sum
within a factor of two for the �nite element problems in our test collection� This proof shows

that despite the near�optimal solutions obtained by the spectral algorithm on this test set�
it is unlikely that a polynomial time algorithm can be designed for computing the minimum
��sum�

Readers who are willing to accept the complexity of this problem without proof should

skip this section� we recommend that everyone do so on a �rst reading�
Given a graph G � 	V�E
 on n vertices� MINTWOSUM is the problem of deciding if

there exists a numbering of its vertices � � V � f�� � � � � ng such thatP�u�v��E	�	u
��	v

� �
k� for a given positive integer k� This is the decision version of the problem of minimizing
the ��sum of G�

�



Theorem ���� MINTWOSUM is NP�complete


Remark� This proof follows the framework for the NP�completeness of the ��sum problem
in Even ��� 	Section ����
� but the details are substantially di�erent�

Proof� The theorem will follow if we show that MAXTWOSUM� the problem of deciding
whether a graph G� on n vertices has a vertex numbering with ��sum greater than or equal to

a given positive integer k�� is NP�complete� For� the ��sum of G� under some ordering is at
least k� if and only if the ��sum of the complement of G� under the same ordering is at most
p	n
 � k�� where p	n
 �

Pn
j��

Pj��
i�� 	j � i
� � n���� � �	n�
 is the ��sum of the complete

graph�

We show that MAXTWOSUM is NP�complete by a reduction from MAXCUT� the
problem of deciding whether a given graph G � 	V�E
 has a partition of its vertices into
two sets fS� V n Sg such that j
	S� V n S
j� the number of edges joining S and V n S� is
at least a given positive integer k� From the graph G we construct a graph G� � 	V � �
V � fx�� � � � � xn�g� E� � E
 by adding n� isolated vertices to V and no edges to E� We claim
that G has a cut of size at least k if and only if G� has a ��sum at least k� � k � n	�

If G has a cut 	S� V n S
 of size at least k� de�ne an ordering �� of G� by interposing

the n� isolated vertices between S and V n S� number the vertices in S �rst� the isolated
vertices next� and the vertices in V n S last� where the ordering among the vertices in each
set S and V n S is arbitrary� Every edge belonging to the cut contributes at least n	 to the
��sum� and hence its value is at least k � n	�

The converse is a little more involved�
Suppose that G� has an ordering �� � V � � f�� �� � � � � n � n�g with ��sum greater than

or equal to k �n	� The ordering �� of G� induces a natural ordering � � V � f�� � � � � ng of G�
if we ignore the isolated vertices and maintain the relative ordering of the vertices in V � For

each � � i � n� de�ne the ordered set Si � fv � V � �	v
 � ig� Then each pair 	Si� V nSi
 is
a cut in G� Further� each such cut in G induces a cut 	S�

i� V
� n S�

i
 in the larger graph G
� as

follows� The vertex set S�
i is formed by augmenting Si with the isolated vertices numbered

lower than the highest numbered 	non�isolated
 vertex in Si 	with respect to the ordering
��
�

We now choose a cut 	S�� V � n S�
 that maximizes the ���sum over the cut edges�X
v�S��w�V �nS�

�v�w��E��

j��	v
� ��	w
j�

from among the n cuts 	S �
i� V

� n S �
i
� By means of this cut and the ordering �

�� we de�ne a

new ordering �� by moving the isolated vertices in the ordered set S� to the highest numbers
in that set� and by moving the isolated vertices in V � n S� to the lowest numbers in that
set� and preserving the relative ordering of the other vertices� The e�ect is to interpose the
isolated vertices in �between� the two sets of the cut�

Claim� The ��sum of the graph G� under the ordering �� is greater than that under ���
To prove the claim� we examine what happens when an isolated vertex x belonging to

S� is moved to the higher end of that ordered set�

De�ne three sets A�� B �� C � as follows� The set A� 	B �
 is the set of vertices in S�

numbered lower 	higher
 than x in the ordering ��� and C � � V � n S�� Also� let E� denote
�



the edges joining A� and B�� E� denote edges joining B� and C �� and E� denote those joining

A� and C ��
Denote the contribution� with respect to the ordering ��� of an edge ek � E� to the ��sum

by ak� and that of an edge el � E� by bl� Then the change in the ��sum due to moving x isX
E�

	bl � �

� � b�l �

X
E�

	ak � �
� � a�k

� jE�j� jE�j�
X
E�

�bl �
X
E�

�ak�

The third term on the right�hand�side is the contribution to the ��sum made by the edges
E� in the cut 	A� �B�� C �
 � 	S�� V � nS�
� while the fourth term is the contribution made by
the edges E� in the cut 	A�� B� � C �
� By the choice of the cut 	S�� V � n S�
� we �nd that the

di�erence is positive� and hence that the ��sum has increased in the new ordering obtained
from �� by moving the vertex x�

We now show that after moving the vertex x� 	A� � B�� C �
 continues to be a cut that
maximizes the ��sum over the cut edges among all cuts 	S�

i� V
� n S�

i
 with respect to the new

ordering� For this cut� the ��sum over cut edges has increased by jE�j because the number of
each vertex in B has decreased by one in the new ordering� Among cuts with one set equal
to an ordered subset of A�� the ��sum over cut edges can only decrease when x is moved�
since the set B� moves closer to A�� and C � does not move at all relative to A�� Now consider

cuts of the form 	A��B�
�� B

�
� �C �
� with B�

� an ordered subset of B
�� and B �

� �B�
� � B�� The

cut edges now join A� to B�
��C �� and B�

� to B
�
��C �� The edges joining A� to B �

� contribute a
smaller value to the ��sum in the new ordering relative to ��� while the edges joining A� to C �

contribute the same to the ��sum in both cuts A� �B�� C �
 and 	A� �B �
�� B

�
� �C �
 under the

new ordering� The edges joining B �
� and B

�
� do not change their contribution to the ��sum in

the new ordering� The edges that join B�
� and C

� form a subset of the edges that join B� and
C �� and hence the contribution of the former to the ��sum is no larger than the contribution

of the latter set in the new ordering� This shows that the cut 	A� � B �� C �
 continues to
have a ��sum over the cut edges larger than or equal to that of any cut 	A� � B �

�� B
�
� � C �
�

Finally� any cut that includes A�� B�� and an ordered subset C �
� of C

� can be shown by similar
reasoning to not have a larger ��sum than 	S�� V � n S�
�

The reasoning in the previous paragraph permits us to move the isolated vertices in S�

one by one to the higher end of that set without decreasing the ��sum while simultaneously
preserving the condition that the cut 	S�� V � nS�
 has the maximum value of the ��sum over
the cut edges� The argument that we can move the isolated vertices in V �nS� to the beginning

of that ordered set follows from symmetry since both the ��sum and the ��sum are unchanged
when we reverse an ordering� Hence by inducting over the number of isolated vertices moved�
the ordering �� has a ��sum at least as large as the ordering ��� This completes the proof of
the claim�

The rest of the proof involves computing an upper bound on the ��sum of the graph G�

under the ordering �� to show that since G� has ��sum greater than k�� the graph G has a
cut of size at least k�

Let 
 � j	S�� V � n S�
j� The cut edges contribute at most 
 � 	n� � n
� to the upper
bound on the ��sum� the uncut edges contribute at most the ��sum of a complete graph on

�



n vertices� The latter is p	n
 � n���� � �	n�
� Thus we have� keeping only leading terms�


	n� � n
� � 	�
 � 	����

n� � kn	

� 
 � 	�

�n� � 	����
�n� � k�

The second term on the left hand side is less than � for n � � since the number of cut edges

 is at most n���� the third term is less than one for all n� The sum of these two terms is
less than � for n � �� Hence we conclude that the graph G has a cut with at least k edges�

This completes the proof of the theorem� �

�� Bounds for envelope size� In this section we present lower bounds for the mini�
mum envelope size and the minimumwork involved in an envelope�Cholesky factorization in

terms of the second Laplacian eigenvalue� We will require some background on the Laplacian
matrix�

���� The Laplacian matrix� The Laplacian matrix Q	G
 of a graph G is the n � n

matrix D�M � where D is the diagonal degree matrix and M is the adjacency matrix of G�
If G is the adjacency graph of a symmetric matrix A� then we could de�ne the Laplacian
matrix Q directly from A�

qij �

�������
�� if i �� j and aij �� ��
� if i �� j and aij � ��Pn

j��
j ��i
jqijj if i � j�

Note that

xTQx � xTDx � xTMx

�
X
j�i

aij ��


	xi � xj

��	���


The eigenvalues of Q	G
 are the Laplacian eigenvalues of G� and we list them as ��	Q
 �
��	Q
 � � � � � �n	Q
� An eigenvector corresponding to �k	Q
 will be denoted by xk� and will
be called a kth eigenvector of Q� It is well�known that Q is a singular M �matrix� and hence
its eigenvalues are nonnegative� Thus ��	Q
 � �� and the corresponding eigenvector is any
nonzero constant vector c� If G is connected� then Q is irreducible� and then ��	Q
 � �� the

smallest nonzero eigenvalues and the corresponding eigenvectors have important properties
that make them useful in the solution of various partitioning and ordering problems� These
properties were �rst investigated by Fiedler ��� ���� as discussed in Section �� more recently

several authors have studied their application to such problems�

���� Laplacian bounds for envelope parameters� It will be helpful to work with
the �column�oriented� de�nition of the envelope size� Let the vertex corresponding to a
column j of A be numbered vj in the adjacency graph so that V � fv�� � � � � vng� and let
Vj � fv�� � � � � vjg� Recall that the column width of a vertex vj is cj � jadj	Vj
j� and that the
envelope size of G 	or A
 is

Esize	G
 �
nX

j��

cj�

��



Recall also that � denotes the maximum degree of a vertex� Given a set of vertices S� we

denote by 
	S
 the set of edges with one endpoint in S and the other in V n S�
We make use of the following elementary result� where the lower bound is due to Alon

and Milman ��� and the upper bound is due to Juvan and Mohar �����
Lemma ���� Let S � V be a subset of the vertices of a graph G
 Then

��	Q

jSjjV n Sj

n
� j
	S
j � �n	Q


jSjjV n Sj
n

� �

Theorem ���� The envelope size of a symmetric matrix A can be bounded in terms of

the eigenvalues of the associated Laplacian matrix as

��	Q


�
	n� � �
 � Esize	A
 � �n	Q



	n� � �
�

Proof� From Lemma ����

j
	Vj
j � ��	Q


n
j	n� j
�

Now cj	A
 � jadj	Vj
j � j
	Vj
j��� substituting the lower bound for j
	Vj
j� and summing
this latter expression over all j� we obtain the lower bound on the envelope size�

The upper bound is obtained by using the inequality cj	A
 � j
	Vj
j with the upper
bound in Lemma ���� �

A lower bound on the work in an envelope�Cholesky factorization can be obtained from
the lower bound on the envelope size�

Theorem ���� A lower bound on the work in the envelope�Cholesky factorization of a
symmetric positive de�nite matrix A is

Ework	A
 � Esize	A
�

�n
�

Proof� The proof follows from Equations ��� and ���� by an application of the Cauchy�
Schwarz inequality� We omit the details� �

Cuthill and McKee ��� proposed one of the earliest ordering algorithms for reducing the
envelope size of a sparse matrix� George ���� discovered that reversing this ordering leads to a
signi�cant reduction in envelope size and work� The envelope parameters obtained from the
reverse�Cuthill�McKee 	RCM
 ordering are never larger than those obtained from CM �����

The RCM ordering has become one of the most popular envelope size reducing orderings�
However� we do not know of any published quantitative results on the improvement that may
be expected by reversing an ordering� and here we present the �rst such result� For degree�

bounded �nite element meshes� no asymptotic improvement is possible� the parameters are
improved only by a constant factor� Of course� in practice� a reduction by a constant factor
could be quite signi�cant�

��



Theorem ���� Reversing the ordering of a sparse symmetric matrix A can change

�improve or impair	 the envelope size by at most a factor �� and the envelope work by at
most ��


Proof� Let vj denote the vertex in the adjacency graph corresponding to the jth column
of A 	in the original ordering
 so that the jth column width cj	A
 � jadj	Vj
j� where Vj �
fv�� � � � � vjg� Let eA denote the permuted matrix obtained by reversing the column and row
ordering of A� We have the inequality

cj	A
 � jadj	Vj
j � j
	Vj
j � �jadj	V n Vj
j � �cn�j	 eA
�
Since Esize	A
 �

Pn
j�� cj	A
� summing this inequality over j from one to n� we obtain

Esize	A
 � �Esize	 eA
� By symmetry� the inequality Esize	 eA
 � �Esize	A
 holds as well�
The inequality on the envelope work follows by a similar argument from the equation

Ework	A
 � 	���

Pn

j�� c
�
j � �

�� Quadratic assignment formulation of �� and ��sum problems� We formulate

the �� and ��sum problems as quadratic assignment problems in this section�

���� The ��sum problem� Let the vector p �
	
� � � � � n


T
� and let � be a

permutation vector� i�e�� a vector whose components form a permutation of �� � � �� n� We

may write � � Xp� where X is a permutation matrix with elements

xij �

�
�� if j � �	i

�� otherwise

�

It is easily veri�ed that the 	�	i
� �	j

 element of the permuted matrixXTAX is the element
aij of the unpermuted matrix A� Let B � p pT � then bij � ij� We denote the set of all
permutation vectors with n components by Sn�

We write the ��sum as a quadratic form involving the Laplacian matrix Q�

	���min	A
 � min
X

	��	X
TAX


� min
��Sn

X
��j����i�

a��i����j� ��


	�	i
� �	j

�

� min
��Sn

�TQ�

� min
��Sn

nX
i��

nX
j��

qij �	i
�	j
�

The transformation from the second to the third line makes use of 	���
�

This quadratic form can be expressed as a quadratic assignment problem by substituting
b��i����j� � �	i
�	j
�

min
��Sn

�TQ� � min
��Sn

nX
i��

nX
j��

qij b��i���j��

��



There is also a trace formulation of the QAP in which the variables are the elements of

the permutation matrix X� We obtain this formulation by substituting Xp for �� Thus

min
��Sn

�TQ� � min
X

pTXTQXp�

We may consider the last scalar expression as the trace of a � � � matrix� and then use the
identity trMN � trNM to rewrite the right�hand�side of the last displayed equation as

min
X
trQXp pTXT � min

X
trQXBXT �

This is a quadratic assignment problem since it is a quadratic in the unknowns xij� which
are the elements of the permutation matrix X� The fact that B is a rank�one matrix leads
to great simpli�cations and savings in the computation of good lower bounds for the ��sum

problem�

���� The ��sum problem� Let M be the adjacency matrix of a given symmetric
matrix A and let S denote a �distance matrix� with elements sij � ji� jj� both of order n�
Then

	��min	A
 � min
X

	�	XTAX


� min
��Sn

X
��j����i�

m��i����j� ��


�	i
� �	j


� 	���
 min
��Sn

nX
i��

nX
j��

mij s��i����j�

� 	���
min trMXSXT �

Unlike the ��sum� the matrices involved in the QAP formulation of the ��sum are both

of rank n� Hence the bounds we obtain for this problem by this approach are considerably
more involved� and will not be considered here�

�� Eigenvalue bounds for the ��sum problem�

���� Orthogonal bounds� A technique for obtaining lower 	upper
 bounds for the

QAP

min
X
trQXBXT � X is a permutation matrix�

is to relax the requirement that the minimum 	maximum
 be attained over the class of

permutation matrices� Let u � 	��
p
n

	
� � � � � �



denote the normalized n�vector of

all ones� A matrixX of order n is a permutation matrix if and only if it satis�es the following
three constraints�

Xu � u� XTu � u�	���


XTX � In�	���


xij � �� i� j � �� � � � � n�	���

��



The �rst of these� the stochasticity constraint � expresses the fact that each row sum or

column sum of a permutation matrix is one� the second states that a permutation matrix
is orthogonal� and the third that its elements are non�negative� The simplest bounds for a
QAP are obtained when we relax both the stochasticity and non�negativity constraints� and
insist only that X be orthonormal� The following result is from ����� see also �����

Theorem ���� Let the eigenvalues of a matrix be ordered

��	�
 � ��	�
 � � � � �n	�
 �

Then� as X varies over the set of orthogonal matrices� the following upper and lower bounds
hold�

nX
i��

�i	Q
�n���i	B
 � trQXBXT �
nX
i��

�i	Q
�i	B
� �

The Laplacian matrix Q has ��	Q
 � �� also �i	B
 � �� for i � �� � � �� n � �� and
�n	B
 � pT p � 	��
n	n��
	�n��
� Hence the lower bound in the theorem above is zero�
and the upper bound is 	��
�n	Q
n	n � �
	�n � �
�

���� Projection bounds� Stronger bounds can be obtained by a projection technique
described by Hadley� Rendl� and Wolkowicz ����� The idea here is to satisfy the stochasticity

constraints in addition to the orthonormality constraints� and relax only the non�negativity
constraints� This technique involves projecting a permutation matrix X into a subspace
orthogonal to the stochasticity constraints 	���
 by means of an eigenprojection�

Let the n � n � � matrix V be an orthonormal basis for the orthogonal complement

of u� By the choice of V � it satis�es two properties� V Tu � �� and P �
	
u V



is an

orthonormal matrix of order n�
Observe that

P TXP �

�
uT

V T


X
	
u V



�

�
uTXu uTXV

V TXu V TXV


�

�
� �T

� Y


�

where Y � V TXV �

This suggests that we take

X � P

�
� �T

� Y


P T

� u uT � V Y V T �	���


Note that with this choice� the stochasticity constraints Xu � u and XTu � u are satis�ed�
Furthermore� if X is an orthonormal matrix of order n satisfying Xu � u� then

P TXP �

�
� �T

� Y



is orthonormal� and this implies that Y is an orthonormal matrix of order n��� Conversely�
if Y is orthonormal of order n � �� then the matrix X obtained by the construction above

��



is orthonormal of order n� The non�negativity constraint X � � becomes� from 	���
�

V Y V T � �u uT � These facts will enable us to express the original QAP in terms of a
projected QAP in the matrix of variables Y �

To obtain the projected QAP� we substitute the representation of X from 	���
 into the
objective function trQXBXT � Since Qu � � by the construction of the Laplacian� terms of

the form Qu uT � � � vanish� Further�

trQV Y V TBu uT � tr uTQV Y V TBu�

where we use the identity trMN � tr NM for an n � k matrix M and a k � n matrix
N � Again this term is zero since uTQ � �T � Hence the only nonzero term in the objective
function is

trQ V Y V T B V Y TV T

� tr 	V TQV 
 Y 	V TBV 
 Y T

� tr bQY bBY T �

where cM � V TMV is a projection of a matrix M �

We have obtained the projected QAP in terms of the matrix Y of order n � �� where
the constraint that X be a permutation matrix now imposes the constraints that Y is or�
thonormal and that V Y V T � �u uT � We obtain lower and upper bounds in terms of the
eigenvalues of the matrices bQ and bB by relaxing the non�negativity constraint again�

Theorem ���� The following upper and lower bounds hold for the ��sum problem�

	����
��	Q
	n� �
n	n � �
 � 	��	A
 � 	����
�n	Q
	n� �
n	n� �
�

Proof� If we apply the orthogonal bounds to the projected QAP� we get

n��X
i��

�i	 bQ
�n�i	 bB
 � 	��	A
 �
n��X
i��

�i	 bQ
�i	 bB
�
The vector u is the eigenvector of Q corresponding to the zero eigenvalue� and hence eigen�
vectors corresponding to higher Laplacian eigenvalues are orthogonal to it� Thus any such

eigenvector xj can be expressed as xj � V rj� Substituting this last equation into the eigen�

value equation Qxj � �j	Q
xj� and pre�multiplying by V
T � we obtain bQrj � �j	Q
rj� Hence

for i � �� � � �� n� we have �i	Q
 � �i��	 bQ
� Also� �n��	 bB
 � pTV V Tp� and all other eigen�

values are zero� Hence it remains to compute the largest eigenvalue of bB�
From the representation In � PP T � u uT � V V T � we compute

pTV V Tp

� pT p� 	pT u
 	uT p

� 	��
n	n � �
	�n � �
� 	���
n	n � �
� � 	����
	n � �
n	n � �
�

We get the result by substituting these eigenvalues into the bounds for the ��sum� �

��



For justifying the spectral algorithm for minimizing the ��sum� we observe that the lower

bound is attained by the matrix

X
 � u uT � V RSTV T �	���


where R 	S
 is a matrix of eigenvectors of bQ 	 bB
� and the eigenvectors correspond to the
eigenvalues of bQ 	 bB
 in non�decreasing 	non�increasing
 order�

The result given above has been obtained by Juvan and Mohar ���� without using a QAP
formulation of the ��sum� We have included this proof for two reasons� First� in the next
subsection� we show how the lower bound may be strengthened by diagonal perturbations

of the Laplacian� Second� in the following section� we consider the problem of �nding a
permutation matrix closest to the orthogonal matrix attaining the lower bound�

���� Diagonal perturbations� The lower bound for the ��sum can be further im�
proved by perturbing the Laplacian matrix Q by a diagonal matrix Diag	d
� where d is an

n�vector� and then using an optimization routine to maximize the smallest eigenvalue of the
perturbed matrix�

Choosing the elements of d such that its elements sum to zero� i�e�� uTd � �� simpli�es
the bounds we obtain� and hence we make this assumption in this subsection� We begin by

denoting Q	d
 � Q�Diag	d
� and expressing

f	X
 � trQXBXT � trQ	d
XBXT � trDiag	d
XBXT �

The second term can be written as a linear assignment problem 	LAP
 since one of the

matrices involved is diagonal� Let the permutation vector � � Xp� and let dB denote the
n�vector formed from the diagonal elements of B�

trDiag	d
XBXT �
nX
i��

dib��i����i� � tr d dB
TXT �

We now proceed� as in the previous subsection� to obtain projected bounds for the
quadratic term� and thus for f	X
� Note that Q	d
u � 	��

p
n 
d since Qu � �� and

uTQ	d
u � � since the elements of d sum to zero� We let Bu � 	��
p
n 
 r	B
 denote

the row�sum of the elements of B�
With notation as in the previous subsection� we substitute X � u uT � V Y V T in the

quadratic term in f	X
� The �rst term tr Q	d
u uTBu uT � tr uTQ	d
u uTBu � �� The

second and third terms are equal� and their sum can be transformed as follows�

� trQ	d
V Y V TBu uT � � tr uTQ	d
V Y V TBu

� 	��n
 tr dTV Y V Tr	B
 � 	��n
 tr V T r	B
 dTV Y

� 	��n
 tr Y TV Td r	B
TV � 	��n
 tr d r	B
TV Y TV T �

Note that this term is linear in the projected variables Y � and we shall �nd it convenient to
express it in terms of X by the substitution XT � u uT � V Y TV T � Thus

	��n
 tr d r	B
TV Y TV T � 	��n
 tr d r	B
T 	XT � u uT 
 � 	��n
 tr d r	B
TXT �
�



since the second term is equal to tr uT d r	B
Tu� which is zero by the choice of d�
Finally� the fourth term becomes tr bQ	d
Y bBY T � where bQ	d
 � V TQ	d
V � and as beforebB � V TBV �

Putting it all together� we obtain

f	X
 � tr bQ	d
Y bBY T � tr
	
	��n
d r	B


T
XT � d dB

TXT


�

Observe that the �rst term is quadratic in the projected variables Y � and the remaining terms
are linear in the original variables X� Our lower bound for the ��sum shall be obtained by
minimizing the quadratic and linear terms separately�

We can simplify the linear assignment problem by noting that B � p pT � Thus rB�i �

i
Pn

j�� j � 	���
n	n � �
i� and hence 	��n
r	B
 � 	n� �
p� Further� dB � sq	p
� the vector
with ith component equal to i�� Hence the �nal expression for the linear assignment problem
is

tr d
	
	n� �
pT � sq	p
T



XT �

The minimum value of this problem� denoted by L	d
 	the minimum over the permuta�
tion matrices X� for a given d
� can be computed by sorting the components of d and	
	n� �
p � sq	p




�

The eigenvalues of bB can be computed as in the previous subsection� We may choose d

to maximize the lower bound� Thus this discussion leads to the following result�
Theorem ���� The minimum ��sum of a symmetric matrix A can be bounded as

	���min	A
 � max
d

n
	����
��	 bQ	d

	n� �
n	n � �
 � L	d


o
�

where the components of the vector d sum to zero
 �

	� Computing an approximate solution from the lower bound� Consider the
problem of �nding a permutation matrix Z �closest� to an orthogonal matrixX
 that attains

the lower bound in Theorem ���� We show in this section that sorting the second Laplacian
eigenvector components in non�increasing 	also non�decreasing
 order yields a permutation
matrix that solves a linear approximation to the problem� This justi�es the spectral approach

for minimizing the ��sum�
From 	���
� the orthogonal matrix X
 � u uT � V RSTV T � where R 	S
 is a matrix of

eigenvectors of bQ 	 bB
 corresponding to the eigenvalues of bQ 	 bB
 in increasing 	decreasing

order� We begin with a preliminary discussion of some properties of the matrix X
 and the

eigenvectors of Q� For j � �� � � �� n � �� let the jth column of R be denoted by rj � and
similarly let sj denote the jth column of S� Then s� � cV Tp� where c is a normalization
constant� for j � �� � � �� n� �� the vector sj is orthogonal to V Tp� i�e��

sj
TV Tp � ��	��


Recall from the previous section that a second Laplacian eigenvector x� � V r��

��



Now we can formulate the �closest� permutation matrix problem more precisely� The

minimum ��sum problem may be written as

min
Z

k	Q� �I
���Zpk���

We have chosen a positive shift � to make the shifted matrix positive de�nite and hence
to obtain a weighted norm by making the square root nonsingular� It can be veri�ed that
the shift has no e�ect on the minimizer since it adds only a constant term to the objective
function�

We substitute Z � X
 � 	Z �X

 and expand the ��sum about X
 to obtain

k	Q� �I
���Zpk�� �
k	Q� �I
���X
 pk�� � � tr pT 	Z �X



T 	Q� �I
X
 p � k	Q� �I
���	Z �X

 pk���	��


The �rst term on the right�hand�side is a constant since X
 is a given orthogonal matrix�
the third term is a quadratic in the di�erence 	Z �X

 and hence we neglect it to obtain a
linear approximation� It follows that we can choose a permutation matrix Z close to X
 to
approximately minimize the ��sum by solving

min
Z
tr pTZT 	Q� �I
X
 p � min

Z
tr 	Q� �I
X
BZ

T �	��


Substituting for X
 from 	���
 in this linear assignment problem and noting that Qu � ��
we �nd

min
Z

tr 	Q� �I
X
BZ
T � min

Z
tr 	Q� �I
 	u uT � V RSTV T 
BZT

� min
Z

	
trQV RSTV TBZT � � tr u uTBZT � � tr V RSTV TBZT



�	��


The second term on the right�hand�side is a constant since

tr u uTBZT � tr uTBZTu � tr uTBu � 	uT p
��

Here we have substituted ZTu � u from 	���
� We proceed to simplify the �rst term in 	��
�
which is

trQV RSTV TBZT � trQV

��n��X
j��

rj sj
T

�AV Tp pTZT �

From 	��
 we �nd that sj
TV Tp � �� for j � �� � � �� n � �� and hence only the �rst term in

the sum survives� Noting that s� � cV Tp� and V r� � x�� this term becomes

trQx� 	cp
TV 
 V Tp pTZT � c��	Q
	p

TV V Tp
 tr x� p
TZT �

The third term in 	��
 can be simpli�ed in like manner� and hence ignoring the constant
second term� this equation becomes

c	��	Q
 � �
 	pTV V Tp
 min
Z

tr x� p
TZT �

��



Hence we are required to choose a permutation matrix Z to minimize tr x� p
TZT �

tr ZTx� p
T � The solution to this problem is to choose Z to correspond to a permutation of

the components of x� in non�increasing order� since the components of the vector p are in
increasing order� Note that �x� is also an eigenvector of the Laplacian matrix� and since the
positive or negative signs of the components are chosen arbitrarily� sorting the eigenvector

components into non�decreasing order also gives a permutation matrix Z closest� within a
linear approximation� to a di�erent choice for the orthogonal matrix X
 	see ���
�

Similar techniques can be used to show that if one is interested inmaximizing the ��sum�
then a closest permutation matrix to the orthogonal matrix that attains the upper bound

in Theorem ��� is approximated by sorting the components of the Laplacian eigenvector xn
	corresponding to the largest eigenvalue �n	Q

 in non�decreasing 	non�increasing
 order�


� Asymptotic behavior of envelope parameters� In this section� we �rst prove

that graphs with good separators have asymptotically small envelope parameters� and next
study the asymptotic behavior of the lower bounds on the envelope parameters as a function
of the problem size�


��� Upper bounds on envelope parameters� Let �� �� and  be constants such

that 	���
 � ��  � �� and de�ne n
 � 	��	� � �

�������� A class of graphs G has n� �
separators if every graph G on n � n
 vertices in G can be partitioned into three sets A� B�
S such that no vertex in A is adjacent to any vertex in B� and the number of vertices in the
sets are bounded by the relations jAj� jBj � �n and jSj � �n�� If n � n
� then we choose

the separator S to consist of the entire graph� If n � n
� then by the choice of n
�

�n � �n� � n
	
�� �n���



� n

	
�� �n���




� n�

and we separate the graph into two parts A and B bymeans of a separator S� The assumption

that  is at least a half is not a restriction for the classes of graphs that we are interested
in here� Planar graphs have n����separators� and overlap graphs ���� embedded in d � �
dimensions� have n�d����d�separators� The latter class includes �well�shaped� �nite element
graphs in d dimensions� i�e�� �nite element graphs with elements of bounded aspect ratio�

Theorem ���� Let G be a class of graphs that has n��separators and maximum vertex
degree bounded by �
 The minimum envelope size Esizemin�G	 of any graph G � G on n

vertices is O	n���


Proof� If n � n
� then we order the vertices of G arbitrarily� Otherwise� let a separator

S separate G into the two sets A and B� where we choose the subset B to have no more
vertices than A� We consider a �modi�ed nested dissection� ordering of G that orders the
vertices in A �rst� the vertices in S next� and the vertices in B last� 	See the ordering in
Figure ���� where S corresponds to the set of vertices in the middle column�


The contribution to the envelopeES made by the vertices in S is bounded by the product
of the maximum row�width of a vertex in S and the number of vertices in S� Thus

ES � jSj � jA � Sj � �n�	�n � �n�
 � ��n��� � ��n���

We also consider the contribution made by vertices in B that are adjacent to nodes in S�
as a consequence of numbering the nodes in S� There are at most �jSj such vertices in B�

��



Since these vertices are not adjacent to any vertex in A� the contribution EB made by them

is

EB � �jSj � jB � Sj � ��n�	�n � �n�
 � ���n��� ����n���

Let n� 	n�
 denote the number of vertices in the subset A 	B
� Adding the contributions
from the two sets of nodes in the previous paragraph� we obtain the recurrence relation

E	n
 � ��	� � �
n��� � ��	� � �
n�� �max
n��n�

	E	n�
 � E	n�

 �	���


where n�� n� � �n� and n� � n� � n�

We claim that

E	n
 � C�n
��� � C�n

�� log n�	���


for suitable constants C� and C� to be chosen later� We prove the claim by induction on n�
For n � n
� the claim may be satis�ed by choosing C� to be greater than or equal to

	n
 � �
��� since

E	n
 � n	n � �
�� � n	n
 � �
�� � C�n
��� �

Now consider the case when n � n
� Let the maximum in the recurrence relation 	���

be attained for n� � an and n� � bn � 	� � a
n� where ��� � a � � � �� Since n � n
� we
have n�� n� � n� thus the inductive hypothesis can be applied to the subgraphs induced by

A and B� Hence we substitute the bound 	���
 into the recurrence relation 	���
 to obtain

E	n
 �
	
��	� � �
 � C�	a

��� � 	� � a
���



n���

�
	
��	� � �
 � C�	a

�� log an� 	� � a
�� log	� � a
n



n���

For the claim to be satis�ed� this bound must be less than the right�hand�side of the in�
equality 	���
� We prove this by considering the coe�cients of each of the terms n��� and

n���
Consider the n��� term �rst� It is easy to see that a��� � 	� � a
��� � �� because

��� � a � � � �� and  is positive� Furthermore� this expression attains its maximumwhen

a is equal to �� Denote this maximum value by � � ���� � 	� � �
��� � �� Equating the
coe�cients of n��� in the recurrence relation� if

C��� ��	� � �
 � C��

then the �rst term in the claimed asymptotic bound on E	n
 would be true� Both this
inequality and the condition on C� imposed by n
 are satis�ed if we choose

C� � maxf��	� � �

�� �

� 	n
 � �
��g�

��



We simplify the coe�cient of the n�� term a bit before proceeding to analyze it� We

have

a�� log an� 	�� a
�� log	�� a
n

� a�� log an� 	�� a
�� log an �
	
��� � 	�� �
��



log� n � � log � n

� log� n�

In the transformations we have used the following facts� � � a � a� since a � ���� the

maximum of a�� � 	� � a
��� when ��� � a � � and � is greater than or equal to one� is
attained for a � �� this maximum value � is less than one� Hence for the claim to hold� we
require

C� log� n� ��	� � �
 � C� log n�

This last inequality is satis�ed if we choose

C� � ��	� � �


log���
�

�

A similar proof yields Wboundmin	G
 � O	n���
� which is an upper bound on the work
in an envelope�Cholesky factorization� Hence good separators imply small envelope size and

work� Although we have used a �modi�ed nested dissection� ordering to prove asymptotic
upper bounds� we do not advocate the use of this ordering for envelope�reduction� Other
envelope�reducing algorithms considered in this paper are preferable� since they are faster

and yield smaller envelope parameters�


��� Asymptotic behavior of lower bounds� In this subsection we consider the
implications of the spectral lower bounds that we have obtained� We denote the eigenvalue
��	Q
 by �� for the sake of brevity in this subsection� We use the asymptotic behavior of the

second eigenvalues together with the lower bounds we have obtained to predict the behavior
of envelope parameters� For the envelope size� we make use of Theorem ���� for the envelope
work� we employ Theorem ����

The bounds on envelope parameters are tight for dense and random graphs 	matri�

ces
� For instance� the full matrix 	the complete graph
 has �� � � � � � n� and hence
Esizemin	A
 � �	n�
� Similarly� the bound on the envelope work Eworkmin	A
 � �	n�
�
The predicted lower bound is within a factor of three of the envelope size� These bounds are
also asymptotically tight for random graphs where each possible edge is present in the graph

with a given constant probability p� since the second Laplacian eigenvalue satis�es ����

�� � pn��	�p	� � p
n log n����
�

More interesting are the implications of these bounds for degree�bounded �nite element
meshes in two and three dimensions� We will employ the following result proved recently by
Spielman and Teng �����

Theorem ���� The second Laplacian eigenvalue of an overlap graph embedded in d�
dimensions is bounded by O	n���d

 �

��



problem separator �� Esize	A
 Ework	A


size LB UB LB UB

d�dim� O	n����d
 �	n���d
  	n����d
 O	n����d
  	n����d
 O	n����d

Table ���

Asymptotic upper and lower bounds on envelope size and work for an overlap graph in d dimensions�

Planar graphs are overlap graphs in � dimensions� and well�shaped meshes in � dimen�
sions are also overlap graphs with d � ��

Table ��� summarizes the asymptotic lower and upper bounds on the envelope parame�
ters for a well�shaped mesh embedded in d dimensions� The most useful values are d � � and
d � �� As before� the lower bound on the envelope size is from Theorem ���� while the lower
bound on the envelope work is from Theorem ���� The upper bound on the envelope size

follows from Theorem ���� and the upper bound on envelope work follows from the upper
bound on Wbound	A
� discussed at the end of the proof of that theorem�

The lower bounds are obtained for problems where the upper bounds on the second
eigenvalue are asymptotically tight� This is reasonable for many problems� for instance model

problems in Partial Di�erential Equations� Note that the regular �nite element mesh in a
discretization of Laplace�s equation in two dimensions 	Neumann boundary conditions
 has
�� � �	h�
 � �	n��
� where h is the smallest diameter of an element 	smallest mesh spacing
for a �nite di�erence mesh
� The regular three�dimensional mesh in the discretized Laplace�s

equation with Neumann boundary conditions satis�es �� � �	h�
 � �	n����
�
For planar problems� the lower bound on the envelope size is  	n
� while the upper

bound is O	n���
� For well�shaped three�dimensional meshes� these bounds are  	n���
 and
O	n���
� The lower bounds on the envelope work are weaker since they are obtained from
the corresponding bounds on the envelope size� Direct methods for solving sparse systems
have storage requirements bounded by O	n log n
 and work bounded by O	n���
 for a two�
dimensional mesh� in well�shaped three dimensional meshes� these are O	n���
 and O	n�
�

These results suggest that when a two�dimensional mesh possesses a small second Lapla�
cian eigenvalue� envelope methods may be expected to work well� Similar conclusions should
hold for three�dimensional problems when the number of mesh�points along the third dimen�
sion is small relative to the number in the other two dimensions� and for two�dimensional

surfaces embedded in three�dimensional space�

�� Computational results� We present computational results to verify how well the

spectral ordering reduces the ��sum� We report results on two sets of problems�
The �rst set of problems� shown in Table ���� is obtained from John Richardson�s 	Think�

ing Machines Corporation
 program for triangulating the sphere� The spectral lower bounds
reported are from Theorem ���� Gap is the ratio with numerator equal to the di�erence

between the ��sum and the lower bound� and the denominator equal to the ��sum� The
results show that the spectral reordering algorithm computes values within a few percent of
the optimal ��sum� since the gap between the spectral ��sum and the lower bound is within
that range�

��



jV j jEj �� Spectral Spectral Gap	!


LB ��sum

�� �� ���� �� ��� ���
 ��� ���e�� ����e�� ����e�� ��
��� �� ���e�� ���e�� ����e�� ��

���� ����� ����e�� ����e� ����e� ���

����� ������ ����e�� ���e�� ���e�� ���
���� ������ ���e�� �����e�� ����e�� ���

Table ���

��sums from the spectral reordering algorithm and lower bounds for triangulations of the sphere�

Problem jV j jEj �� Spectral Spectral Gap	!


LB ��sum

CAN���� ����� ��� ���e�� ����e� ����e� ���
NASA���� ����� ����� ����e�� ����e�� ����e�� ��
NASA��� ���� ������ ����e�� ����e�� ����e�� �

NACA ����� ����� ����e�� ����e�� ����e�� ��

BARTH� ���� ������ ����� ����e�� ����e�� ��
BARTH ��� ������ ���e�� ���e�� ��e�� ���
BARTH� ���� ������ ����e�� ����e�� ���e�� ��

BCSSTK�� ������ ��������� ���e�� ����e��� ����e��� ��
COPTER� ����� ������� ���e�� ���e��� ����e��� ��

Table ���

��sums from the spectral reordering algorithm and lower bounds for some problems from the Boeing�

Harwell and NASA collections�

Table ��� contains the second set of problems� taken from the Boeing�Harwell and NASA
collections� Here the bounds are weaker than the bounds in Table ���� These problems have
two features that distinguish them from the sphere problems� Many of them have less regular

degree distributions"e�g�� NASA���� has maximumdegree �� and minimumdegree �� They
also represent more complex geometries� Nevertheless� these results imply that the spectral
��sum is within a factor of two of the optimal value for these problems� These results are

somewhat surprising since we have shown that minimizing the ��sum is NP�complete�
The gap between the computed ��sums and the lower bounds could be further reduced

in two ways� First� a local reordering algorithm applied to the ordering computed by the
spectral algorithm might potentially decrease the ��sum� Second� the lower bounds could be

improved by incorporating diagonal perturbations to the Laplacian�

�� Conclusions� The lower bounds on the ��sums show that the spectral reordering
algorithm can yield nearly optimal values� in spite of the fact that minimizing the ��sum is

an NP�complete problem� To the best of our knowledge� these are the �rst results providing

��



reasonable bounds on the quality of the orderings generated by a reordering algorithm for

minimizing envelope�related parameters� Earlier work had not addressed the issue of the
quality of the orderings generated by the algorithms� Unfortunately the tight bounds on the
��sum do not lead to tight bounds on the envelope parameters� However� we have shown
that problems with bounded separator sizes have bounded envelope parameters and have

obtained asymptotic lower and upper bounds on these parameters for �nite element meshes�
Our analysis further shows that the spectral orderings attempt to minimize the ��sum

rather than the envelope parameters� Hence a reordering algorithm could be used in a post�
processing step to improve the envelope and wavefront parameters from a spectral ordering�

A combinatorial reordering algorithm called the Sloan algorithm has been recently used to
reduce envelope size and front�widths by Kumfert and Pothen ����� Currently this algorithm
computes the lowest values of the envelope parameters on a collection of �nite element

meshes�
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Appendix

A� Lower bounds on the minimum p�sum� We prove two lower bounds on the
minimum p�sums� We make use of Lemma ��� in proving the �rst result� In the following

Bm	x
 is the mth Bernoulli polynomial� and Bm is the mth Bernoulli number�
Theorem A��� For � � p � �� the minimum p�sum of a graph G on n vertices

satis�es

	pp�min	G
 �
�

p� �
	Bp��	s� �
�Bp��
 �

where s � 	�����
n

Proof� Consider any ordering � of the vertices of G� Partition the vertices into two sets�

A consisting of the lowest�numbered n�� vertices� and B consisting of the highest�numbered

n�� vertices� By Lemma ��� the number of edges joining A and B� j
	A�B
j� is

j
	A�B
j � ��
n
	n��
��

Hence at least s � j
	A�B
j�� vertices in B are adjacent to vertices in A� Each vertex
in this subset of B has the least row�width when it is adjacent to the highest�numbered
vertex in A and to no other vertices in A� Hence these s vertices make a contribution of at

least �p � � � � � sp to the p�sum� and this sum can be expressed in terms of the Bernoulli
polynomials as stated� �

From an expansion of the Bernoulli polynomial� we �nd that asymptotically

	pp�min	G
 �
�

	p � �
	��
p��
��

p��np�� �O		��p��p
np
�

We proceed to obtain another lower bound on the minimum p�sum�
The next result makes use of the following Lemma A�� recently proved by Helmberg et

al� ����� De�ne the following symmetric function of the two positive integers m�� m� 	with
m� �m� � n
 and parameters ��� �n�

f	m��m�
 �	A��
p
m�m�

�n

��p
m�m� �

q
	n�m�
	n�m�


�
�� �

�p
m�m� �

q
	n�m�
	n�m�


�
�n

�
�

Lemma A��� Let S�� S� be two disjoint subsets of the vertices of a graph G on n vertices�
with jSij � si� for i � �� �
 Then the number of edges joining S� and S�� j
	S�� S�
j� satis�es

j
	S�� S�
j � f	s�� s�
� �

Theorem A��� For � � p ��� the minimum p�sum of a graph G satis�es

	pp�min	G
 �
�

�p���

��
p��

	�n � ��
p��
	��n � ��
	�n � ���
n

p���

�



Proof� Consider any ordering � of the vertices of G� and consider a tripartition A� B�
C� We choose A to consist of the lowest�numbered a � 	n � b
�� vertices� C to consist of
the highest�numbered 	n � b
�� vertices� and B to contain the remaining b vertices in the
�middle�� Here b� the size of B� is a parameter that will be determined later to obtain a large

lower bound�
From Lemma A��� j
	A�C
j� the number of edges joining A and C� is at least f	a� a
�

where the symmetric function f	�� �
 is de�ned in 	A��
� Hence there are at least sC �
f	a� a
�� vertices in C adjacent to vertices in A� Each of these vertices has row�width at

least b�
Initially� consider the contribution to the envelope size Esize	G
 made by these vertices

to obtain a suitable value for b�

Esize	G
 � f	a� a


�
b	A��


�
	n � b


�n

��
n � b

�
�
n� b

�


�� �

�
n � b

�
� n� b

�


�n

�
b

�

�
�

��
b	n� b
 	�� � 	b�n
�n
 �

We choose b to maximize the lower bound on the envelope size� Di�erentiating the cubic
polynomial in 	A��
 with respect to b and simplifying� we obtain the quadratic equation

b� � �

�

�� � �n
�n

nb�
�

�

��
�n
n� � ��

From the quadratic we �nd that the maximizer is� to �rst order� bm � 	���
	���	�n � ��

n�
Now we consider the contribution to the p�sum made by the sC vertices in C adjacent

to vertices in A� Each of these vertices contributes at least bp to the p�sum� and thus a lower
bound on the minimum p�sum is

	pp�min	G
 �
�

��
	n� b
 	�� � 	b�n
�n
 bp�

It is not easy to �nd a maximizer of the right�hand�side in the bound above on the p�sum
since the polynomial in b is of degree p��� Hence we choose b equal to the maximizer of the
envelope size� We obtain the bound stated in theorem by substituting b � bm in the bound
above� �

Juvan and Mohar ���� have proved upper bounds for the p�sums� The techniques in this
Appendix can be used to compute bounds on Esize	A
 and Wbound	A
� but the results are
weaker than those obtained in Section ��

��


